
Solving Five Instances of the Artificial Ant

Problem with Ant Colony Optimization

Daniil S. Chivilikhin ∗ Vladimir I. Ulyantsev ∗∗

Anatoly A. Shalyto ∗∗∗

∗ Computer Technologies Department, St. Petersburg National
Research University of Information Technologies, Mechanics and

Optics, St. Petersburg, Russia (e-mail: chivilikhin.daniil@gmail.com).
∗∗ Computer Technologies Department, St. Petersburg National
Research University of Information Technologies, Mechanics and
Optics, St. Petersburg, Russia (e-mail: ulyantsev@rain.ifmo.ru).
∗∗∗ Computer Technologies Department, St. Petersburg National
Research University of Information Technologies, Mechanics and
Optics, St. Petersburg, Russia (e-mail: shalyto@mail.ifmo.ru).

Abstract: The Artificial Ant problem is a common benchmark problem often used for
metaheuristic algorithm performance evaluation. The problem is to find a strategy controlling
an agent (called an Artificial Ant) in a game performed on a square toroidal field. Some cells
of the field contain “food” pellets, which are distributed along a certain trail. In this paper we
use Finite-State Machines (FSM) for strategy representation and present a new algorithm –
MuACOsm – for learning finite-state machines. The new algorithm is based on an Ant Colony
Optimization algorithm (ACO) and a graph representation of the search space. We compare
the new algorithm with a genetic algorithm (GA), evolutionary strategies (ES), a genetic
programming related approach and reinforcement learning on five instances of the Artificial
Ant Problem.

Keywords: ant colony optimization, automata-based programming, finite-state machine,
learning, induction, artificial ant problem

1. INTRODUCTION

Automata-based programming (Polykarpova and Shalyto
(2009)) is a programming paradigm that proposes the
use of FSMs as key components of software systems.
A software system in the paradigm consists of a finite-
state machine and an automated-controlled object. The
FSM listens to input events from the environment. When
an event is received, the FSM makes a transition to
another state and produces a sequence of output actions
which control the automated-controlled object (e.g. call
its methods and functions). Although a complex software
system may contain many automated-controlled objects,
in this work for simplicity we focus on software systems
with only one automated-controlled object.

The problem of learning FSMs received a significant
amount of research over the past years. For instance,
in (Spears and Gordon (2000)), evolutionary strategies
were used to learn FSM controllers for the Competi-
tion for Resources problem. A random mutation hill
climber (RMHC) was used in (Lucas and Reynolds (2007))
to learn finite-state transducers from test examples. Ge-
netic algorithms were used in (Tsarev and Shalyto (2007))
to build FSMs for the Artificial Ant problem with the John
Muir trail.

The Artificial Ant problem was first introduced in (Jeffer-
son et al. (1991)) and later discussed in (Koza (1992)). The

problem is to find a strategy controlling an agent (called
an Artificial Ant) in a game performed on a square toroidal
field. Some cells of the field contain “food” pellets, which
are distributed along a certain trail that contains turns
and gaps. There are three common trails (i.e. problem
instances) for this problem: John Muir Trail, Santa Fe
trail and Los Altos Hills trail. The goal in the problem
is to build a strategy that would allow the ant to collect
all pellets of food in a limited amount of steps.

Various strategy representations and learning algorithms
were used for tackling this problem. The original ap-
proach by Koza used LISP S-expressions as a strat-
egy representation and genetic programming for learning
an optimal strategy. This approach was further devel-
oped in (Christensen and Oppacher (2007)), (Chellapilla
(1997)), (Janikow and Mann (2005)) and, most recently,
in (Karim and Ryan (2012)).

Another possible strategy representation is a finite-state
machine. In (Kim (2006)) Mealy FSMs and S-experessions
were evolved with GP. Experimental results demostrated
that FSMs prove to be better strategy representations
for the Artificial Ant problem. The authors of (Mesot
et al. (2002)) developed algorithms based on reinforcement
learning and evolution to learn Moore FSMs for the Santa
Fe trail and the harder Los Altos Hills trail.

7th IFAC Conference on Manufacturing Modelling, Management,
and Control
International Federation of Automatic Control
June 19-21, 2013. Saint Petersburg, Russia

978-3-902823-35-9/2013 © IFAC 1043 10.3182/20130619-3-RU-3018.00436



We have developed an FSM learning algorithm based on an
Ant Colony Optimization algorithm (Dorigo (1992), Dorigo
et al. (1996), Stützle and Hoos (2000), Dorigo and Gam-
bardella (1997)) – the MuACOsm algorithm (Chivilikhin
and Ulyantsev (2012)). In MuACOsm the problem of
learning FSMs in stated in the following way. The target
FSM is defined by the maximum number of accessible
states Nstates, a set of events Σ and a set of actions ∆.
The target model problem that the FSM has to solve (e.g.
the Artificial Ant problem) is formalized by a real-valued
fitness function f which is defined on the set of all finite-
state machines with parameters (Nstates,Σ,∆). The goal
is to find an FSM A with a value of the fitness function f
greater than or equal to some predefined boundary value.

In this work we present an improved version of our
algorithm and experimental results of applying it to the
Artificial Ant problem with five trails – John Muir trail,
Santa Fe Trail, Los Altos Hills trail and two trails of our
own design. MuACOsm is compared with a GA, a GP-
related approach, a (1 + 1)-ES and reinforcement learning
in terms of efficiency.

An example of applying the proposed approach to an
automation-related problem is (Buzhinsky and Ulyantsev
(2012)) where MuACOsm is used to tackle the problem of
ummanned aircraft control. Examples of applying meta-
heuristics to automation include (Precup et al. (2012),
Yoshida et al. (2000)).

2. FINITE-STATE MACHINES

A finite-state machine is a six-tuple 〈S, s0,Σ,∆, δ, λ〉,
where S is a set of states, s0 ∈ S is the start state, Σ
is a set of input events and ∆ is a set of output actions.
δ : S×Σ → S is the transition function and λ : S×Σ → ∆
is the action function.

A mutation of an FSM is a rather small change in its
structure. For example, a mutation can change a transi-
tion’s output action or destination state. In this work we
consider two following types of FSM mutations.

• Change transition end state. For a random tran-
sition in the FSM, the transition’s end state s is set to
another state selected uniformly randomly from the
set S \ {s}.

• Change transition action. For a random transition
in the FSM, the transition’s output action a is set to
another action selected uniformly randomly from the
set ∆ \ {a}.

Excluding the current values of transition end state an
action from the set of possible values ensures that a
mutation causes exactly one change.

3. ACO OVERVIEW

Ant Colony Optimization algorithms are metaheuristics
inspired by the foraging behavior of real ants. The
first ACO algorithm called Ant System was developed
in (Dorigo (1992), Dorigo et al. (1996)) and was used to
tackle the traveling salesman problem. Various ACO algo-
rithms were applied to a number of NP-hard combinatorial
optimization problems, for example the sequential order-

ing problem, knapsack problem, bin packing, quadratic
assignment problem, etc.

In order to apply ACO to a combinatorial problem, a graph
representation of the search space must be devised. Solu-
tions in ACO are built by a colony of artificial ants which
use a probabilistic strategy to traverse the graph called
the construction graph. Nodes of the construction graph
represent solution components while complete solutions
are represented by paths in the graph.

Each edge (u, v) of the graph (u and v are nodes of the
graph) has an assigned pheromone value τuv and can also
have an associated heuristic information ηuv. Pheromone
values are modified by the ants in the process of solution
construction, while the heuristic information is assigned
initially and is not changed.

An ACO algorithm consists of three operations that are
repeated until a viable solution is found or a stop criterion
is met.

(1) ConstructAntSolutions. Each ant traverses the
graph following a certain path. It chooses the next
edge to visit according to the pheromone value and
heuristic information of this edge. When an edge has
been selected, the ant appends it to its path and
moves to the next node. The ants continue exploring
the graph until each of them has built a complete
solution to the problem.

(2) PheromoneUpdate. Pheromone values of all graph
edges are modified. A particular pheromone value
can increase if the edge it is associated with has
been traversed by an ant or it can decrease due to
pheromone evaporation. The amount of pheromone
that each ant deposits on a graph edge depends on
the quality of the solution built by this ant measured
by the fitness function value of this solution.

4. MUTATION-BASED ACO FOR LEARNING
FINITE-STATE MACHINES

In this section we provide a full description of the new
algorithm. First we describe the representation of the
search space in the form of a directed graph and discuss the
key difference of the proposed ACO algorithm from other
ACO algorithms. Then we describe the ACO-related steps
of our algorithm, including the initial solution generation
procedure, heuristic information definition, ant solution
constuction procedure, pheromone update rule and dae-
mon actions. The section ends with a highlight of the
key differences of the proposed algorithm and its previous
version.

4.1 Search Space Representation

The search space, which is a set of all FSMs with the
specified parameters (Nstates,Σ,∆), is represented in the
form of a directed graph G, where nodes are associated
with FSMs and edges are associated with FSM mutations.
The following two properties hold for graph G.

(1) Let u be a node associated with FSM A1 and v be
a node associated with FSM A2. If machine A2 lays
within one mutation from A1, then a fully constructed

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

1044



graph G contains edges u → v and v → u. Otherwise,
nodes u and v are not connected with an edge.

(2) Consequently, for each pair of FSMs A1 and A2 and
the corresponding pair of nodes u and v, a fully
constructed graph G contains paths from u to v and
also from v to u.

Note that a fully constructed graph G should contain all
FSMs with parameters (Nstates,Σ,∆). Constructing such
a graph would effectively mean performing a brute force
search on the search space.

The described representation of the search space, or prob-
lem reduction, is very different from the classical problem
reduction usually performed in ACO. Typically, in order to
solve a combinatorial problem with ACO, it is mapped on
some problem where graph nodes represent solution com-
ponents while full solutions are represented by sequences
of components. The goal is then to find a minimum or
maximum cost path in this graph.

In our problem mapping described above, graph nodes
represent complete solutions themselves. The ants travel
between solutions, which are actually built by an external
local search procedure – FSM mutation.

4.2 Initial Solution Generation

In the beginning of the algorithm a random initial solution
is generated by filling both the transition and action tables
of the FSM with values selected uniformly randomly from
sets of all possible values. Next, a simple RMHC is applied
to the random solution for one hundred fitness evaluations.

The RMHC, or a (1+1)-ES, stores one current solution.
On each step it performs one random mutation of the
current solution and calculates the fitness function value
of the new solution. The current solution is replaced by the
new solution if the new solutions’s fitness function value
is greater than or equal to the current solution’s fitness
value.

4.3 Heuristic Information

As discussed before in Section 3, each edge of the construc-
tion graph can have an associated value called heuristic
information. Consider an edge (u → v), where u and v are
nodes of the construction graph G. The heuristic informa-
tion ηuv is calculated as follows:

ηuv = max (ηmin, f(v)− f(u)) ,

where ηmin is a small positive constant value. This ensures
that the heuristic information is always positive.

4.4 Constructing Ant Solutions

On this step all ants traverse the graph and construct
solutions. First, a start node is selected for each ant. We
have experimented with several ways to select start nodes.
The most efficient way we found was to select a single start
node which is associated with the current best solution –
solution with the largest fitness value. All ants use this
best node as a start node.

Second, all ants explore the graph while searching for good
solutions. On each colony iteration all ants traverse the

graph until they stop. Let the artificial ant be located
in a node u associated with FSM A. If this node has
adjacent nodes, then the ant selects the next node v to
visit according to the rules discussed below.

(1) Expansion. The ant attempts to construct new solu-
tions by making Nmut mutations of A. The procedure
of processing a single mutation of machine A is as
follows. First, a mutated FSM Amut is constructed.
Then we try to find a node t in graph G associated
with Amut. If G does not contain such a node, we
construct a new node and associate it with Amut.
Finally we add an edge (u, t) to G. After all Nmut

mutations have been performed, the ant selects the
best newly constructed node v and moves to that
node.

(2) ACO path selection. The ant probabilistically se-
lects the next node from the existing successors setNu

of node u. Node v ∈ Nu is selected with a probability
defined by the classical ACO formula:

puv =
ταuv · η

β
uv

∑
w∈Nu

ταuw · ηβuw
,

where α, β ∈ [0, 1] define the influence of pheromone
values and heuristic information on path selection.

The ant uses the expansion rule with a probability of pnew
and the ACO path selection rule with a probability of
1 − pnew. If node u does not have adjacent nodes, then
the next node is always selected using the expansion rule.

Each ant in the colony is given at most nstag steps to make
without an increase in its best fitness value; when the ant
exceeds this number, it is stopped. Ants take turns to make
one move until all the ants stop. The whole colony is given
at most Nstag iterations to run without an increase of the
best fitness value before the algorithm is restarted.

4.5 Pheromone Update

We use our own pheromone update rule we call the
global elitist min-bound pheromone update based on the
MAX MIN rule (Stützle and Hoos (2000)) and the elitist
rule (Dorigo (1992)), that fits our problem better than any
other.

For each graph edge (u, v) we store τbestuv – the best
pheromone value that any ant has ever deposited on edge
(u, v). For each ant path, a sub-path is selected that spans
from the start of the path to the best node in the path.
The values of τbestuv are updated for all edges along this
sub-path. Next, for each graph edge (u, v), the pheromone
value is updated according to the formula:

τuv = max(τmin, ρτuv + τbestuv ),

where ρ ∈ [0, 1] is the evaporation rate and τmin is an
empirically selected minimum pheromone bound (we use
a value of 0.001).

4.6 Differences from Previous Version

The MuACOsm algorithm described above differs from the
original version from Chivilikhin and Ulyantsev (2012) in
several key points. First, on the step of initial solution gen-
eration the original algorithm used the random solution as
the root node of the construction graph. Later it was found

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

1045



that the use of a random mutation hill climber described in
section 4.2 for about a hundred fitness evaluations boosts
up performance by several percent.

Second, the original algorithm did not use heuristic infor-
mation and, consequently, search was biased by pheromone
trails only. Introduction of heuristic information typically
increases performance of ACO algorithms, which is also
the case for our algorithm. And third, in the last version
of MuACOsm we introduced a lower bound on pheromone
values τmin, which helped us overcome the issue of un-
bounded pheromone evaporation.

5. SOLVING THE ARTIFICIAL ANT PROBLEM

The problem is to find a strategy represented by an FSM
for controlling an agent (called an Artificial Ant) in a game
performed on a square toroidal field. Some cells of the
field contain “food” pellets, which are distributed along a
certain trail.

The ant’s initial position is the leftmost upper cell and it
is initially “looking” east. It can determine whether the
next cell contains a piece of food or not. On each step it
can turn left, turn right or move forward, eating a piece of
food if the next cell contains one. The goal is to build an
FSM that would allow the ant to eat all food in a limited
number of steps. Examples of fields are shown on Fig. 1-4.

In this problem there are two input events – F (the next
cell contains food) and !F (the next cell does not contain
food) – and three output actions: L (turn left), R (turn
right) and M (move forward). The fitness function we use
is defined in the following way:

f = nfood +
smax − 1− slast

smax

,

where nfood is the number of food pellets eaten by the ant,
smax is the maximum number of steps the ant is allowed
to make and slast is the number of the step on which the
ant ate the last piece of food.

5.1 Santa Fe Trail

The Santa Fe trail contains 89 food pellets, 21 turns and
has a total length of 144. Many published results are avail-
able for the Artificial Ant problem with the Santa Fe Trail.
The best results were achieved in (Christensen and Op-
pacher (2007)) by two approaches: Memorized-Random-
Tree-Search with GP + Subroutines (43,000 fitness evalua-
tions) and Memorized-Random-Tree-Search with Random
Search + Subroutines (20,696 fitness evaluations).

These approaches use LISP S-expression representation
of programs instead of finite-state machines. However,
the comparison we perform is still feasible because an S-
expression can be easily transformed into a finite-state
machine (Kim (2006)). Furthermore, we know of no ap-
proaches that would build FSMs for the Santa Fe trail
faster than the approach in (Christensen and Oppacher
(2007)).

In our experimental setup we varied both the number
of accessible states Nstates in the target FSM and the
maximum number of steps smax the artificial ant is allowed
to make. We used the following values of parameters:

4

2

3

F/M

!F/R F/M

1

!F/R

5
!F/R

!F/R

F/M

F/M

!F/M

Fig. 1. The Santa Fe trail (left) an FSM that allows the
ant to eat all food in 394 steps.

Nants = 5, ρ = 0.5, nstag = 50, Nstag = 100, Nmut = 20,
pnew = 0.6, α = β = 1.

The experiment was run 10,000 times for each case to
achieve statistically meaningful results. MuACOsm was
able to find an FSM capable of eating all pellets of food
in each run. Table 1 shows the mean number of fitness
evaluations for each number of FSM states and maximum
number of ant steps smax

Table 1. Mean fitness evaluations for the Santa
Fe trail

smax

Nstates 400 500 600

5 10975 9538 9087

6 9313 7722 7503

7 9221 7469 7203

8 9882 7668 7371

9 10665 8172 7625

10 11717 8785 8318

11 12832 9365 8598

12 14146 10215 9388

13 16000 10869 10075

14 17591 12047 11015

15 19775 13050 12174

16 21505 14362 13337

Results in Table 1 indicate that MuACOsm was able to
achieve a computational effort less than any other pub-
lished algorithm. In particular, the smallest computational
effort of 7203 mean fitness evaluations for smax = 600
was achieved for target FSMs with seven states. It is
approximately three times less than the mean effort of
20,696 published in (Christensen and Oppacher (2007)).
A state diagram of one of the found FSM with five states
is shown on Fig. 1. The start state in all diagrams in this
paper is always state “1”.

5.2 John Muir Trail

The John Muir trail is the original trail used in Jefferson
et al. (1991). It has a total length of 121, contains 89
food pellets and 33 turns. For the John Muir trail we
compare our results with those achived with GA in (Tsarev
and Shalyto (2007)). Both the MuACOsm and the GA
were run 100 times until completion. The number of FSM
states Nstates was varied from 7 to 16. FSMs with less then
seven states were not considered due to the fact that no
FSM with less then seven states can solve the problem in
smax = 200 steps as it was proven in (Tsarev and Shalyto
(2007)).

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

1046



We used the same parameter values as for the Santa
Fe trail, except for setting Nants = 10, Nstag = 200,
Nmut = 60.

1

4

7

3

6

5

2

!F/R

F/M

!F/R

!F/M

F/M

!F/L

F/M

!F/M

F/M

!F/M

!F/M
F/M

!F/R

F/M

Fig. 2. The John Muir trail (left) and an FSM that allows
the ant to eat all food in 189 time steps

Results presented in Table 2 state that MuACOsm is
always several times better than GA and, in particular,
60 times better on minimal FSMs with seven states. One
of the generated FSMs with seven states is shown on
Fig. 2. Another result was acquired with the use of a
(1+1)-ES provided by our colleague. The ES was restarted
every 10,000 fitness evaluations regardless of the progress.
The ES was launched for target FSMs with seven states
and achieved an average effort of 46.961 × 106 fitness
evaluations which is close to the best effort achieved by
our algorithm.

Table 2. Mean fitness evaluations (×106) for
the John Muir trail

Algorithm

Nstates MuACOsm GA

7 31.826 1799.630

8 2.978 45.785

9 0.989 8.503

10 0.864 2.626

11 0.800 2.173

12 0.776 2.666

13 0.628 2.273

14 0.654 5.431

15 0.703 4.061

16 0.736 4.200

5.3 Los Altos Hills Trail

The Los Altos Hills trail shown on Fig. 3 has a total length
of 221, contains 157 food pellets and 29 turns. This is
probably the hardest common instance for the Artificial
Ant problem. This trail has been tackled by quite a few
researchers.

Koza’s original GP (Koza (1992)) generated a solution
that achieved the perfect score using 1808 ant steps.
A variation of Grammatical Evolution was developed
in (Karim and Ryan (2012)) that was able to solve the
Santa Fe trail, but never solved the Los Altos Hills trail –
the best evolved programs achieved a mean fitness of only
about 139 out of 157. The authors of (Mesot et al. (2002))
acquired a Moore FSM that achieved a perfect fitness value
of 157 in 679 steps with the use of a hybrid algorithm based
on reinforcement learning, adaptive reward and evolution.
However, since no statistical data was provided it is not
clear if the presented approach performs well on average.
Furthermore, to our knowledge there are no published

Fig. 3. The Los Altos Hills trail – a 69×50 upper left part
of the whole 100× 100 field.

results on learning Mealy FSMs for the Los Altos Hills
problem.

Our experimental setup allowed the ant to make a maxi-
mum of smax = 800 steps. Results of experimental launches
with Nstates varied from 7 to 16 are presented in Table 3.
We used the same parameter values as for the John Muir
trail. Experiments for each number of FSM states were
performed 50 times. It is interesting that the best mean
slast was reached for the smallest FSMs with seven states
while the best minimal slast=397 was reached for FSMs
with twelve states.

Table 3. Experimental results for the Los Altos
Hills trail with smax

Nstates Mean evaluations Mean slast Min slast

7 10.026 × 106 606.2 517

8 3.184 × 106 657.4 504

9 2.818 × 10
6

661 517

10 2.337 × 10
6

651.8 471

11 1.984 × 10
6

667 493

12 2.304 × 106 668.6 397

13 2.000 × 106 668.6 484

14 2.093 × 106 661.4 497

15 1.821 × 10
6

659.8 404

16 1.686 × 10
6

624.6 460

5.4 Auxiliary Trails

The auxiliary trails that are shown on Fig. 4 were intro-
duced by our colleague during his research and proved to
be on par with the common trails in terms of required
computational effort. Both trails are located on 20 × 20
toroidal fields. The first trail has a total length of 119,
contains 91 food pellets and 45 turns. We searched for
target FSMs with six states and limited the number of ant
steps to smax = 283. The second trail has a total length
of 104, contains 69 food pellets and 33 turns. The target
FSMs also contained six nominal states and the number
of ant steps was limited to smax = 266. Each experiment
was repeated 100 times. The same parameter values as for
the Santa Fe trail were used.

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

1047



Fig. 4. First (on the left) and second (on the right)
auxiliary trails

For the first trail MuACOsm achieved a mean of 107.33×
106 while the ES scored 500.23 × 106. For the second
trail MuACOsm scored 29.78 × 106 and the ES scored
187.14× 106. These experimental results indicate that on
average MuACOsm is about five times faster than the ES
on these trails.

6. CONCLUSION

Experimental results presented in the previous section
indicate that the new MuACOsm algorithm significantly
outperforms all other published algorithms on five pre-
sented instances of the Artificial Ant problem, including
GA, (1+1)-ES, reinforcement learning and a GP-related
approach.

One direction of our current work is generalization of
the presented MuACOsm algorithm for applying it to
learning other automata types as well as solving other
combinatorial optimization problems apart from learning
automata.

7. ACKNOWLEDGEMENTS

We are grateful to Maxim Buzdalov from St. Petersburg
National Research University of ITMO for providing the
auxilary ant trails and results of the (1+1)-ES.

REFERENCES

Buzhinsky, I. and Ulyantsev, V. (2012). Use of ant colony
optimization for inducing finite-state machines from
tests for controlling systems with complex behavior. In
Proceedings of the XV International conference on soft
computations and measurements (SCM’12), volume 1,
250–253. In Russian.

Chellapilla, K. (1997). Evolutionary programming with
tree mutations: Evolving computer programs without
crossover. In Koza, J.R. et al., eds., Genetic Program-
ming 1997: Proceedings of the Second Annual Confer-
ence. Morgan Kaufmann.

Chivilikhin, D. and Ulyantsev, V. (2012). Learning finite-
state machines with ant colony optimization. In Proceed-
ings of the 8th international conference on Swarm In-
telligence, ANTS’12, 268–275. Springer-Verlag, Berlin,
Heidelberg.

Christensen, S. and Oppacher, F. (2007). Solving the
artificial ant on the santa fe trail problem in 20,696
fitness evaluations. In Proceedings of the 9th annual
conference on Genetic and evolutionary computation,
GECCO ’07, 1574–1579. ACM, New York, NY, USA.

Dorigo, M. (1992). Optimization, learning and natural
algorithms. PhD thesis.

Dorigo, M. and Gambardella, L. (1997). Ant colony
system: a cooperative learning approach to the traveling
salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1), 53–66.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant
system: optimization by a colony of cooperating agents.
IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, 26(1), 29–41.

Janikow, C.Z. and Mann, C.J. (2005). Cgp visits the
santa fe trail: effects of heuristics on gp. In Proceedings
of the 2005 conference on Genetic and evolutionary
computation, GECCO ’05, 1697–1704. ACM, New York,
NY, USA.

Jefferson, D., Collins, R., Cooper, C., Dyer, M., Flowers,
M., Korf, R., Taylor, C., andWang, A. (1991). Evolution
as a theme in artificial life. Artificial Life II.

Karim, M.R. and Ryan, C. (2012). Sensitive ants are sen-
sible ants. In Proceedings of the fourteenth international
conference on Genetic and evolutionary computation
conference, GECCO ’12, 775–782. ACM, New York, NY,
USA.

Kim, D. (2006). Memory analysis and significance test
for agent behaviours. In Proceedings of the 8th annual
conference on Genetic and evolutionary computation,
GECCO ’06, 151–158. ACM, New York, NY, USA.

Koza, J. (1992). Genetic Programming: On the Program-
ming of Computers by Natural Selection. MIT Press.
Cambridge, MA, USA.

Lucas, S.M. and Reynolds, T.J. (2007). Learning finite-
state transducers: Evolution versus heuristic state merg-
ing. IEEE Transactions on Evolutionary Computation,
11(3), 308–325.

Mesot, B., Sanchez, E., Pena, C., and Perez-Uribe, A.
(2002). SOS++: Finding Smart Behaviors Using Learn-
ing and Evolution. In Artificial Life 8, 264–273.

Polykarpova, N. and Shalyto, A. (2009). Automata-based
programming. Piter. In Russian.

Precup, R., David, R.C., Petriu, E., Preitl, S., and Radac,
M. (2012). Fuzzy control systems with reduced paramet-
ric sensitivity based on simulated annealing. Industrial
Electronics, IEEE Transactions on, 59(8), 3049–3061.

Spears, W.M. and Gordon, D.F. (2000). Evolving finite-
state machine strategies for protecting resources. In
Proceedings of the 12th International Symposium on
Foundations of Intelligent Systems, ISMIS ’00, 166–175.
Springer-Verlag, London, UK, UK.

Stützle, T. and Hoos, H.H. (2000). Max-min ant system.
Future Generation Computer Systems, 16(9), 889–914.

Tsarev, F. and Shalyto, A. (2007). Use of genetic pro-
gramming for finite-state machine generation in the
smart ant problem. Proceedings of the IV International
Scientific-practical conference “Integrated models and
soft calculations in artificial intelligence”., (2), 590–597.
In Russian.

Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S.,
and Nakanishi, Y. (2000). A particle swarm optimiza-
tion for reactive power and voltage control consider-
ing voltage security assessment. Power Systems, IEEE
Transactions on, 15(4), 1232–1239.

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

1048


