
Learning Finite-State Machines: Conserving Fitness
Function Evaluations by Marking Used Transitions

Daniil Chivilikhin
University ITMO

St. Petersburg, Russia
Kronverksky pr., 49

Email: chivdan@rain.ifmo.ru

Vladimir Ulyantsev
University ITMO

St. Petersburg, Russia
Kronverksky pr., 49

Email: ulyantsev@rain.ifmo.ru

Abstract—This paper is dedicated to the problem of learning
finite-state machines (FSMs), which plays a key role in automata-
based programming. Metaheuristic algorithms commonly applied
to this problem often use FSM mutations (small changes in the
FSM structure) for solution construction. Most of them do not
employ the specifics of FSMs in their work. We propose a new
simple method for improving performance of these algorithms.
The basic idea is to mark those transitions of FSMs that were
used during fitness evaluation. Then, if a FSM mutation changes
a transition that was not used in fitness evaluation, the fitness
function value need not be calculated for the mutated FSM. This
observation allows to conserve fitness evaluations, which often
have high computational costs. The proposed method has been
incorporated into several traditional and recent FSM learning
algorithms based on evolutionary strategies, genetic algorithms
and ant colony optimization. Experimental results are reported
showing that the new method significantly improves performance
of two methods based on evolutionary strategies and ant colony
optimization.

Keywords-automata, inference, machine learning, optimization

I. INTRODUCTION

In the paradigm of automata-based programming [1], [2]
finite-state machines are used to describe behavior of software
systems. A software system is described as a set of interacting
automated-controlled objects. Each automated-controlled ob-
ject consists of a controlled object and a finite-state machine.
The controlled object is characterized by events it can generate
and actions that control it. In response to events supplied
by the controlled object the FSM generates output actions,
which are relayed to the controlled object, calling its functions
or methods. Automata-based programming is particularly ef-
ficient for systems with complex behavior, i.e. systems that
may react differently to the same input events depending on
the history of interactions in the past. An example of such
a system is a rather simple alarm clock [1], [3]. The key
advantage of automata-based programming over traditional
programming paradigms is that automata-based programs can
be automatically verified [4] using model checking [5].

One of the major issues in automata-based programming
is inferring a FSM that would operate the controlled object
in a desired and proper way. Manual construction of FSMs
for automata-based programs is a hard task and may well be
impossible for systems with complex behavior. A possible

way to counter this problem is to use search optimization
techniques such as evolutionary computation to automatically
learn FSMs with proper behavior. When following the path of
learning FSMs with metaheuristic search algorithms, a fitness
function is introduced. The fitness function is usually a real-
valued function defined on the considered set of FSMs. Its
values are proportional to the closeness of the behavior of the
FSM to the desired one.

There are two major ways to define a fitness function: based
on comparing the FSM’s behavior to a standard recorded in
test examples [3], [6], [7] or based on modeling in some
environment [8], [9]. Both of these ways may lead to high
computational costs of a single fitness function evaluation,
which directly leads to an increased cost of building an optimal
FSM. That is why it is important to find ways to decrease
the number of needed fitness function evaluations as much as
possible.

In this work we propose a way to conserve fitness function
evaluations which is applicable to all FSM learning algorithms
that use FSM mutations. The method is based on taking into
account the specifics of FSMs in learning algorithms. An
example of a work in which information about FSM transitions
was used in the FSM learning algorithm is [10]. The proposed
method was incorporated into an evolution strategy, a genetic
algorithm and a recent FSM learning method MuACOsm [3],
[11] based on ant colony optimization [12]. Experimental
results describing the influence of the proposed method on
the algorithms’ performance are reported.

II. LEARNING FINITE-STATE MACHINES WITH
MUTATION-BASED METAHEURISTICS

In this paper we concentrate on Mealy finite-state ma-
chines. A Mealy FSM is formally defined as a six-tuple
(S, s0,Σ,Δ, δ, λ), where S is a set of states, s0 ∈ S is
the start state, Σ is a set of input events and Δ is a set of
output actions. δ : S × Σ→ S is the transitions function and
λ : S×Σ→ Δ is the actions function. An example of a FSM
with three states, Σ = {x, !x}, Δ = {z1, z2} is shown on
Fig. 1 (ignore transition colors for now). In our work we use
full transition and output tables to represent FSMs. A transition
table stores the next state for each combination of input events

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $26.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.111

90

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $31.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.111

90

and start states. An output table stores the output action for
all combinations of input events and start states.

A general statement of the FSM learning problem follows.
Let Nstates = |S| be the number of states, Σ be the set of
input events and Δ be the set of output actions of the target
FSM. Let XNstates,Σ,Δ be the set of all FSMs with parameters
(Nstates,Σ,Δ). The fitness function f : XNstates,Σ,Δ → R is de-
fined on the considered set of FSMs. Its values are proportional
to the proximity of the FSM’s behavior to the desired one.
Then, the goal is to find an FSM A ∈ XNstates,Σ,Δ such that its
fitness function value f(A) is greater than or equal to some
predefined boundary value.

Mutation-based metaheuristics for learning FSMs, e.g. ge-
netic algorithms and evolution strategies, use FSM mutations
for solution construction. An FSM mutation is a small change
in the FSM structure. The mutation operators we use work as
follows.

First, a state s and an input event e are selected uniformly
randomly from the sets of all states S and input events Σ,
respectively. The first mutation operator changes the target
state the transition (s, e) leads to. The new end state is
selected uniformly randomly from the set of all states not
including the old end state. The second mutation operator
works similarly, but changes the output action performed on
the selected transition.

III. CONSERVING FITNESS EVALUATIONS

The proposed procedure for conserving fitness function
evaluations is incorporated into the process of fitness eval-
uation itself and consists of two parts. First, when the fitness
value of an FSM A is evaluated the set of transitions T (A)
used in this process is memorized. Next, when the FSM A
is mutated, one of its transitions t is replaced by another
transition. Let the mutated FSM be A′. Logically, if transition
t was not used during fitness evaluation of FSM A, then
t /∈ T (A). Therefore, if t /∈ T (A), then the modification of this
transition will not change the FSM’s behavior. Consequently,
the fitness function value f(A′) of the modified FSM A′ will
be equal to the fitness value f(A) of the original FSM A.
This means that by simply assigning A′ the fitness value f(A)
instead of calculating f(A′) from scratch we will be saving
computational resources.

For example, consider the FSM on Fig. 1. Let the start state
of the FSM be state “1”. Transitions that were made after
receiving the sequence of events (x, !x, !x, x) are marked red
and bold. The transition that is marked blue and dashed is the
one changed by a mutation. The mutated FSM is shown on
Fig. 2. If supplied with the same sequence of events, it will
use the same transitions as the original FSM.

The theoretical limitations of the proposed idea are straight-
forward. First, the idea may prove helpful only when muta-
tions cause small changes in the FSM structure. Second, the
proposed approach is only applicable for deterministic fitness
functions. That is, we cannot use it for fitness functions that
use randomization because the fitness function value of the
same FSM may differ from one calculation to another.

1 2

 x/z1

3 !x/z2

 x/z2

 !x/z1

 x/z1
 !x/z2

Fig. 1. An example of a FSM. Transitions used during fitness evaluations
are marked red and bold, the mutated transition is marked blue and dashed

1

2

 x/z1

3

 !x/z2 x/z2

 !x/z1

 x/z1 !x/z2

Fig. 2. An example of a mutated FSM. Transitions used during fitness
evaluations are marked red and bold, the mutated transition is marked blue
and dashed

IV. EXAMPLE PROBLEMS

A. Artificial Ant Problem

The goal in the Artificial Ant problem [9] is to induce a
FSM that would optimally control an agent in a certain game.
The game is performed on a square toroidal field 32 × 32
cells. Some cells of the field contain pieces of “food” which
are distributed along a certain trail. The trail contains turns and
gaps – cells that do not contain food. The Santa Fe trail we
use is shown on Fig. 3. This trail contains a total of 89 pieces
of food. The Artificial Ant is initially located in the upper left

Fig. 3. The Santa Fe trail

cell of the field and is “looking” east. The ant can determine
whether the next cell contains a piece of food or not. In our
problem statement the ant is given at most 400 steps. On each
step it can turn left, turn right of move forward. If the cell to
which the ant moves contains a piece of food, the ant “eats”
it. The objective is to find a FSM that will allow the ant to
eat all 89 pieces of food in the allotted amount of steps. The
fitness function has the form:

f = nfood +
400− slast − 1

400
,

9191

where nfood is the number of food pieces eaten by the ant and
slast is the number of the step on which the last piece of food
has been eaten.

In this problem the set of input events Σ consists of two
elements: F (the next cell contains a piece of food) and !F
(the next cell does not contain a piece of food). There are
three possible output actions: L (turn left), R (turn right) and
M (move one cell forward).

B. Test-based EFSM induction
An extended finite-state machine (EFSM) is defined as a

seven-tuple (S, s0, Z,Σ,Δ, δ, λ), where S is a set of states,
s0 ∈ S is the start state, Z is a set of Boolean input variables,
Σ is a set of input events, Δ is a set of output actions, δ : S×
Σ× 2Z → S is the transitions function and λ : S×Σ× 2Z →
Δ∗ is the actions function. An example of an EFSM is shown
on Fig. 4.

1

2

T[x]/z2,z1

T[!x]/z2,z1

A[1]/z1,z1T[1]/z1

A[x]/

A[!x]/z2

Fig. 4. An example of an extended finite-state machine

The goal in this problem is to build an EFSM with
predefined behavior, which is determined by a set of test
examples, or tests, T . Each i-th test example consists of an
input sequence In[i] and a corresponding output sequence
Ans[i]. Input sequences In[i] consist of pairs of an input
event from Σ and a Boolean formula, output sequences Ans[i]
consist of elements from the set of outputs Δ.

An EFSM is said to be consistent with test Ti =
{In[i], Ans[i]} if the EFSM produces the sequence Ans[i] on
its output if given the sequence In[i] as input. The problem
is to find an EFSM with a preset number of states consistent
with all test examples from T .

In this problem we treat EFSMs as plain FSMs, which
is made possible by utilizing the smart transition labeling
algorithm desribed in [13] and also by treating combinations of
event and Boolean formula as simply an event. The main idea
of the labeling algorithm consists in using EFSM skeletons –
EFSMs, in which transitions are marked with the numbers
of necessary output actions instead of the output actions
themselves. An EFSM skeleton of the EFSM from Fig. 4 is
shown on Fig. 5. The smart transition labeling algorithm takes
an EFSM skeleton and the set of test examples as input and
produces an EFSM in which transitions marked with output
actions in an optimal way with respect to tests T .

The fitness function in this problem is based on Levenshtein
string distance [14] or edit distance and is calculated in the
following way [13]. First, the EFSM skeleton and the test
set T are passed to the smart transition labeling algorithm

1

2

T[x]/2

T[!x]/2

A[1]/2T[1]/1

A[x]/0

A[!x]/1

Fig. 5. An example of an EFSM skeleton.

and the optimally labeled EFSM is acquired. Next, each input
sequence In[i] is passed to the EFSM and the resulting
output sequence Out[i] is memorized. This output sequence is
compared with the reference sequence Ans[i] by calculating
the following value:

f1 =
1

|T |

|T |∑
i=1

(
1−

ED (Out[i], Ans[i])

max (len (Out[i]) , len (Ans[i]))

)
, (1)

where |T | denotes the number of test examples, len(s) denotes
the length of sequence s and ED (s1, s2) is the edit distance
between sequences s1 and s2. The final expression for the
fitness function takes into account the number of used EFSM
transitions ntransitions:

f =

⎧⎪⎨
⎪⎩

10 · f1 +
1

M
(M − ntransitions) , if f1 < 1

20 +
1

M
(M − ntransitions) , if f1 = 1,

(2)

where M is a constant which is guaranteed to be greater than
the maximum possible number of EFSM transitions. In our
experiments we set M = 100. The values of this fitness
function are greater for EFSMs that are consistent with all
tests and have less transitions and smaller for EFSMs that are
not consistent with all tests and have more transitions.

V. CONSIDERED METAHEURISTIC ALGORITHMS

A. (1, λ)-Evolutionary Strategy
In (1, λ)-ES the population consists of a single individual.

On each iteration the algorithm performs λ random mutations
of the current solution resulting in λ modified FSMs. The type
of mutation is selected uniformly randomly from the set of two
possible mutation types. The current solution is replaced with
the best newly constructed solution.

B. Genetic Algorithm
We use a classical genetic algorithm with a fixed population

size npop. In addition to the already described mutation oper-
ators, in the Artificial Ant problem the genetic algorithm uses
a problem-specific crossover operator proposed in [15]. An
elitist selection rule is used – the best nelit % individuals of the
current generation directly pass to the next generation. Then,
the next generation is filled as follows. Two parent individuals
are randomly selected from the current generation. Either a
mutation or a crossover operator is applied to the selected

9292

individuals. The two resulting individuals are added to the
next generation.

Two additional mechanisms are used to prevent stagnation:
small and large population mutation. In the small population
mutation all individuals apart from the best 10 % are mutated.
In the large population mutation each individual is either
mutated or replaced by a randomly generated one. Small
and large population mutations are executed when the best
fitness value does not increase during nstag,small and nstag,large
generations, respectively.

The proposed method here is applied only after mutations.
That is, we assume that crossover will most likely affect used
FSM transitions, so there is no point in using our method here.

C. Ant Colony Optimization
Another algorithm we consider is the recently proposed

FSM learning method [3], [11], [16] called MuACOsm, which
is based on ant colony optimization [12]. The main idea of
the method is to represent the search space in the form of a
directed graph. The nodes of the graph are associated with
FSMs while edges correspond to FSM mutations. The method
uses a new type of an ant colony optimization algorithm to
find solutions in this graph.

Let u and v be two nodes of the graph, which is called
the construction graph. Each edge (u, v) of this graph has an
associated pheromone value τuv and a heuristic information
value ηuv . The heuristic information is calculated as the
absolute difference of fitness values of the start and the end
nodes of an edge. Pheromone values are modified by the ants
in the process of solution construction.

The algorithm starts off with an empty graph. A random
FSM is generated and added to the graph. Then, on each
iteration a colony of Nants ants builds solutions. Each ant has a
fixed number of nstag steps it can make without an increase in
its best fitness value. On each step it selects the next node of
the graph to visit. Ants use two rules to select the next node.

Let the ant be located in node u. According to the first
rule, which is applied with a certain probability pnew, the ant
generates a fixed number of Nmut mutations of the current
solution. The ant then selects the best newly constructed node
(associated with the FSM with the largest fitness value) and
moves to that node. According to the second rule, which
is used with a probability of 1 − pnew, the next node v is
selected from the set of adjacent nodes Nu with a probability
pv calculated according to the formula:

pv =
ταuv · η

β
uv∑

w∈Nu

ταuw · η
β
uw

, (3)

where ηuv = max (ηmin, f(v)− f(u)) and α, β ∈ (0,+∞)
are parameters representing the significance of pheromone
values and heuristic information, respectively. ηmin = 10−3 is
a constant parameter used to ensure that heuristic information
values are always positive.

After all ants have finished building solutions, pheromone
values are updated for all graph edges using the following

specialized elitist update rule. For each graph edge (u, v) we
store τ best

uv – the best pheromone value that any ant has ever
deposited on this edge. First, for each ant path we select a
sub-path that spans from the start to the best node in the path
and update values of τ best

uv on its edges with the fitness value
of the best node in the path. Then, for each graph edge (u, v)
pheromone values are updated according to the formula:

τuv = (1− ρ)τuv + τ best
uv . (4)

To prevent stagnation, the whole ant colony is given a
maximum of Nstag iterations which it can make without an
increase in its best fitness value before the algorithm is
restarted. For more detailed information about MuACOsm
and its comparison with different evolutionary computation
techniques see [16].

VI. TUNING ALGORITHM PARAMETERS

To perform a fair comparison of the considered algorithms
we tuned the algorithms’ parameters using a full factorial
design of experiment. For each parameter of each algorithm
we empirically selected minimum and maximum levels of
parameter values. Each algorithm was allotted a maximum of
ttune = 10 hours of tuning time for the Artificial Ant problem
and ttune = 20 hours for the test-based EFSM induction
problem. Tuning was executed on an Intel i7 3.4 GHz personal
computer. For the Artificial Ant problem the algorithms were
tuned on a problem instance with Nstates = 5. Each run of each
algorithm was limited to 10000 fitness evaluations. For the
test-based EFSM induction problem we used a test set for the
alarm clock problem consisting of 38 tests with a total length
of input sequences equal to 242 and total length of output
sequences equal to 195, where the goal is to find an EFSM
with Nstates = 4 and exactly 14 transitions. Here, algorithms
were given at most 30000 fitness evaluation for each run.

The tuning process is as follows. The tuning system first
evaluates the approximate running time trun of an algorithm run
by performing ten runs and calculating the average execution
time over these runs. The approximate number of runs nruns
that will be executed is then calculated as nruns = ttune

trun
. We

assume that each of the nparams parameters of an algorithm
will have nlevels value levels. Next, to acquire a reasonable
assessment for each algorithm configuration (i.e. parameter
set) we will have to perform at least nrepeats experiments
for this configuration. This leads us to the equation nruns =
n
nparams
levels ·nrepeats and, consequently, we can calculate the number

of levels for each parameter as:

nlevels = exp

(
ln nruns

nrepeats

nparams

)
.

Knowing the minimum and maximum parameter values for
each parameter we can then create and execute the full factorial
experiment design. In order to select the best found configura-
tion, we recorded the mean number of fitness evaluations over
all runs for this configuration and the success rate. The success
rate is defined as the percentage of runs in which the optimal

9393

solution was found. Configurations were first sorted by success
rate. If several configurations had a 100 % success rates we
selected the configuration with the lowest mean number of
fitness evaluations.

All scripts, binaries and data that were used for tuning
algorithms in this paper are available online at http://rain.ifmo.
ru/∼chivdan/icmla-2013/tuning.tar.gz.

VII. EXPERIMENTAL STUDY

A. Results: Artificial Ant Problem
The following experimental setup was used. The number

of states Nstates of the target FSMs was varied from 5 to
20. Each algorithm was run either until finding an optimal
solution with a fitness value greater than or equal to 89, or until
the algorithm exceeded the alloted number of 30000 fitness
evaluations. For each number of states each algorithm was run
with and without the fitness evaluation conserving procedure
(used transition marking). Each experiment was repeated 1000
times and the success rate (percentage of runs in which
an optimal solution was found) was recorded. Experimental
results in the form of success rate plots are presented on Fig. 6.
Solid lines depict the success rates of algorithms combined
with the proposed fitness evaluation conserving method, while
dashed lines show success rates of algorithms without the
proposed method.

4 6 8 10 12 14 16 18 20

Number of FSM states

40

50

60

70

80

90

100

Im
pa

ct
of

tr
an

si
ti

on
m

ar
ki

n
g,

%

(1,λ)-ES
(1,λ)-ES+marking

GA
GA+marking

MuACOsm
MuACOsm+marking

Fig. 6. Success rates of ES, GA and MuACOsm, %

The impact of the proposed method of conserving fitness
evaluations on algorithm performance is described by the
increase of the success rate for each FSM size, which is plotted
on Fig 7. One can see that the use of the proposed transition
marking technique boosts MuACOsm and ES up to 35 %,
while results for GA are worse – a maximum of only about
20 %.

To assess the statistical significance of the presented re-
sults we applied the ANOVA [17] statistical test. The p-
values calculated with ANOVA for fitness distributions of
MuACOsm, ES and GA are given in Table I. If the p-value
for an algorithm is less than 0.05 then the use of transition
marking yields a significantly different fitness distribution for

4 6 8 10 12 14 16 18 20

Number of FSM states

−5

0

5

10

15

20

25

30

35

40

Im
pa

ct
of

tr
an

si
ti

on
m

ar
ki

n
g,

% (1,λ)-ES MuACOsm GA

Fig. 7. Impact of using transition marking on ES, GA and MuACOsm success
rates, %

this algorithm. The provided data indicates that transition
marking has a significant impact on MuACOsm and ES for
all FSM sizes. On the other hand, unfortunately, in most cases
the impact of transition marking on the performance of GA
is insignificant. Formally speaking, some exclusions from this
are for Nstates = 11, 14, 19 and 20. This was probably caused
by the fact that GA uses crossover that changes a lot in the
FSMs making it pointless to apply the proposed method of
conserving fitness evaluations.

TABLE I
P-VALUES OF SIGNIFICANCE CALCULATED WITH ANOVA

Nstates MuACOsm GA (1, λ)-ES
5 9.921 · 10−10 0.311 1.724 · 10−5

6 1.986 · 10−8 0.296 0.005267
7 6.329 · 10−4 0.868 1.217 · 10−7

8 3.047 · 10−6 0.841 0.0001253
9 1.492 · 10−7 0.603 1.838 · 10−9

10 6.006 · 10−8 0.239 7.074 · 10−7

11 8.303 · 10−12 0.001 4.302 · 10−9

12 < 2.2 · 10−16 0.722 5.666 · 10−8

13 < 2.2 · 10−16 0.249 5.057 · 10−12

14 < 2.2 · 10−16 0.043 5.849 · 10−10

15 < 2.2 · 10−16 0.030 2.607 · 10−10

16 < 2.2 · 10−16 0.141 1.118 · 10−12

17 < 2.2 · 10−16 0.069 8.358 · 10−9

18 < 2.2 · 10−16 0.563 < 2.2 · 10−16

19 < 2.2 · 10−16 0.004 5.759 · 10−11

20 < 2.2 · 10−16 0.017 4.662 · 10−12

B. Results: Test-Based EFSM Induction
In the experiments on test-based EFSM induction we only

studied the impact of the proposed method on the MuACOsm
algorithm. The experimental setup is as follows. The number
of EFSM states Nstates was varied from 4 to 10. For each
value of Nstates 1000 runs were performed. In each run we
first generated a random EFSM with two input events, two
output actions, two input variables, 4×Nstates transitions and
with a length of output sequences no more than two. For each
randomly generated EFSM a random test set with a total length
of 150 × Nstates was generated. Algorithms were run until
acquiring an EFSM consistent with all tests or until 50000
fitness evaluations. Experimental results here are in the form
of a success rate plot given on Fig. 8 and a plot of transition
marking impact on success rate given on Fig. 9.

9494

4 5 6 7 8 9 10

Number of FSM states

10

20

30

40

50

60

70

80

90

100

S
u

cc
es

s
ra

te
,%

MuACOsm MuACOsm+marking

Fig. 8. Success rates of MuACOsm on test-based EFSM induction, %

4 5 6 7 8 9 10

Number of FSM states

0

10

20

30

40

50

60

70

Im
pa

ct
of

tr
an

si
ti

on
m

ar
ki

n
g,

% MuACOsm impact

Fig. 9. Impact of using transition marking on MuACOsm success rates for
test-based EFSM induction, %

As one can see from Fig. 9 the impact of the proposed
method on the performance of MuACOsm is significant and
increases with the growth of Nstates reaching 60 %. The
significance of the differences in performance here was also
tested using the ANOVA statistical test. Calculated p-values
are given in Table II. These values indicate that the impact
of transition marking on the performance of MuACOsm is
significant.

TABLE II
p-VALUES OF SIGNIFICANCE CALCULATED WITH ANOVA FOR

TEST-BASED EFSM INDUCTION

Nstates p-value
4 0.019
5 4.596 · 10−8

6 5.329 · 10−9

7 6.075 · 10−13

8 4.133 · 10−15

9 1.938 · 10−7

10 3.383 · 10−5

VIII. CONCLUSION

A method for conserving fitness evaluations in mutation-
based metaheuristic FSM learning algorithms was presented.
The proposed method was shown to improve performance
of an evolutionary strategy and an ACO-based algorithm
MuACOsm. Statistical significance of results was evaluated.

Future work includes using MuACOsm and other meta-
heuristics together with the proposed method of conserving
fitness evaluations to solve the problem of inducing EFSMs
from test examples and temporal logic formulae as in [13].

Results presented in this work indicate that the proposed
method of conserving fitness evaluations will most likely
significantly increase performance of metaheuristics applied
to this problem.

ACKNOWLEDGEMENTS

Research was supported by the Ministry of Education and
Science of Russian Federation in the framework of the federal
program “Scientific and scientific-pedagogical personnel of
innovative Russia in 2009-2013” (contract 16.740.11.0455,
agreement 14.B37.21.0397), University ITMO development
program in 2012-2018 and by the University ITMO research
project 610455.

REFERENCES

[1] N. Polykarpova and A. Shalyto, Automata-based programming. Piter.,
2009, in Russian.

[2] A. Shalyto and N. Tukkel’, “Switch technology: An automated approach
to developing software for reactive systems,” Programming and Com-
puter Software, vol. 27, no. 5, 2001.

[3] D. Chivilikhin, V. Ulyantsev, and F. Tsarev, “Test-based extended finite-
state machines induction with evolutionary algorithms and ant colony
optimization,” in Proceedings of the fourteenth international conference
on Genetic and evolutionary computation conference companion, ser.
GECCO Companion ’12, 2012, pp. 603–606.

[4] S. E. Velder, M. A. Lukin, A. A. Shalyto, and B. R. Yaminov, Verification
of automata-based programs (Verificatsiya avtomatnykh programm).
Nauka, 2011, in Russian.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. MIT
press, 1999.

[6] S. Lucas and J. Reynolds, “Learning finite state transducers: Evolution
versus heuristic state merging,” IEEE Transactions on Evolutionary
Computation., vol. 11, no. 3, pp. 308–325, 2007.

[7] A. Alexandrov, A. Sergushichev, S. Kazakov, and F. Tsarev, “Genetic
algorithm for induction of finite automata with continuous and discrete
output actions,” in Proceedings of the 13th annual conference companion
on Genetic and evolutionary computation, ser. GECCO ’11, 2011, pp.
775–778.

[8] W. M. Spears and D. F. Gordon, “Evolving finite-state machine strategies
for protecting resources,” in Proceedings of the 12th International
Symposium on Foundations of Intelligent Systems, ser. ISMIS ’00.
London, UK, UK: Springer-Verlag, 2000, pp. 166–175.

[9] D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. Flowers, R. Korf,
C. Taylor, and A. Wang, “Evolution as a theme in artificial life,” Artificial
Life II, 1991.

[10] S. Lucas and T. Reynolds, “Learning dfa: evolution versus evidence
driven state merging,” in Proceedings of the 2003 Congress on Evolu-
tionary Computation. CEC ’03, vol. 1, 2003, pp. 351–358.

[11] D. Chivilikhin and V. Ulyantsev, “Learning finite-state machines with ant
colony optimization,” in Proceedings of the 8th international conference
on Swarm Intelligence, ser. ANTS’12, 2012, pp. 268–275.

[12] M. Dorigo and T. Stützle, Ant Colony Optimization. MIT Press, 2004.
[13] F. Tsarev and K. Egorov, “Finite state machine induction using genetic

algorithm based on testing and model checking,” in Proceedings of
the 13th annual conference companion on Genetic and evolutionary
computation, ser. GECCO ’11. New York, NY, USA: ACM, 2011, pp.
759–762.

[14] V. Levenshtein, “Binary Codes Capable of Correcting Deletions, Inser-
tions and Reversals,” Soviet Physics Doklady, vol. 10, p. 707, 1966.

[15] F. Tsarev and A. Shalyto, “Constructing minimal finite-state machines
for the artificial ant problem,” in Proceedings of the 10th International
conference on soft calculation and measurement, ser. SCM’07, vol. 2,
2007, pp. 88–91.

[16] D. Chivilikhin and V. Ulyantsev, “Muacosm: a new mutation-based ant
colony optimization algorithm for learning finite-state machines,” in Pro-
ceeding of the fifteenth annual conference on Genetic and evolutionary
computation conference, ser. GECCO ’13, 2013, pp. 511–518.

[17] R. G. Miller, Beyond ANOVA: Basics of Applied Statistics (Texts in
Statistical Science Series). Chapman & Hall/CRC, Jan. 1997. [Online].

Available: http://www.worldcat.org/isbn/0412070111

9595

