
Search-Based Construction of Finite-State Machines with
Real-Valued Actions: New Representation Model

Igor Buzhinsky
St. Petersburg National
Research University of

Information Technologies,
Mechanics and Optics

Kronverksky pr., 49
St. Petersburg, Russia

buzhinsky@rain.ifmo.ru

Vladimir Ulyantsev,
Fedor Tsarev

St. Petersburg National
Research University of

Information Technologies,
Mechanics and Optics

Kronverksky pr., 49
St. Petersburg, Russia

{ulyantsev,
tsarev}@rain.ifmo.ru

Anatoly Shalyto
St. Petersburg National
Research University of

Information Technologies,
Mechanics and Optics

Kronverksky pr., 49
St. Petersburg, Russia

shalyto@mail.ifmo.ru

ABSTRACT
In this paper a search-based method for constructing finite-
state machines (FSMs) with continuous (real-valued) output
actions is improved. A more flexible FSM representation
model is presented and compared with the previous one on
the problem of unmanned aircraft control.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis

Keywords
Finite-State Machine; Finite-State Machine Construction;
Genetic Algorithms; Ant Colony Optimization

1. INTRODUCTION
Finite-state machines (FSMs) are widely used in the de-

velopment of reactive systems [3, 4, 6]. In this paper we deal
with the problem of FSM construction using tests [7]. Specif-
ically, we use the unmanned aircraft model as an example of
a controlled object. A recently proposed method [1] which
exploited genetic algorithms and allowed to learn FSMs with
continuous output actions is improved by the introduction
of a new, more flexible FSM representation model.

2. PROBLEM STATEMENT
An FSM is a sextuple (S, s0, E,A, δ, λ) where S is a finite

set of states, s0 ∈ S is a start state, E is a set of input events,
A is a set of output actions, δ : S × E → S is a transition
function, and λ : S × E → A is an output function. On
each time step the FSM receives an input event, generates
an output action according to λ and changes its active state
according to δ.

Consider a set of N tests which describe the proper be-
havior of a controlled object. A test consists of the in-
put data describing the object’s state in different moments
and the output data which shows how the object should

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

Table 1: An example of a test (len[i] = 235).
Values Description t = 1 ... t = 235

in[i][t][1] Pitch angle (◦) 3.078 ... 2.412
in[i][t][2] Roll angle (◦) −0.076 ... 1.759
in[i][t][3] Yaw angle (◦) 198.03 ... 205.64
in[i][t][4] Airspeed (knots) 251.42 ... 289.40

out[i][t][1] Aileron position 0.000 ... −0.003
out[i][t][2] Rudder position 0.000 ... −0.001
out[i][t][3] Elevator position −0.035 ... −0.011

be controlled. Formally, a test is formed by two sequences:

in[i] = (in[i][t])
len[i]
t=1 , a sequence of input tuples, and out[i] =

(out[i][t])
len[i]
t=1 , a sequence of output tuples, where len[i] is the

test length. An example of a test is shown in Table 1. We
consider the problem of learning FSMs which control the
object in an appropriate way.

Tests can be obtained from a human expert. We used the
FlightGear flight simulator to record the aircraft’s flight data
while it was performing aerobatic figures. The input parts of
our tests consist of flight parameters: altitude, pitch angle,
etc., whereas the output parts are formed by aircraft con-
trol (elevator, ailerons, etc.) positions characterized by real
numbers (the values of j-th control positions are bounded
with cmin

j and cmax
j ).

3. FSM REPRESENTATION
In the FSM representation model used in [1] there were

2m transitions from each state, where m is the number of
predicates – Boolean functions of flight parameters. Each
time step consisted of m transitions executed according to
the values of different predicates. The resulting output tuple
on the time step was the element-wise sum of all output
tuples of transitions executed during it.

One of the problems of this representation is the complex-
ity of the transition function: the number of values stored
for its representation becomes huge with the increase of the
number of predicates. Besides, there is no way to take into
account the real-valued data provided in the input tuples
fully as predicates have Boolean values.

In the approach proposed in this paper, only one transi-

199



tion is executed during the FSM time step. The transition
function δ and output function λ are stored independently.
For transition function representation we use the reduced
table method proposed in [5]: a predicate significance mask,
which defines the predicates on which the transition function
values depend, is stored in each state. For each combination
of significant (marked with 1 in the mask) predicate values,
a value of the transition function is stored in the same state.
The output actions are formed for different controls as linear
combinations of variable values. Variables, like predicates,
are functions of controlled object parameters, but are real-
valued. A mask of significant variables is stored for each
state and control.

To reduce the search space during search optimization, we
use FSM skeletons (FSMs with only transition function and
significance masks defined) as individuals.

4. FSM CONSTRUCTION METHOD
A genetic algorithm (as in [1]) and the ACO-based algo-

rithm [2] are used for searching FSMs with the fitness value
high enough to perform an aerobatic figure described in a

test set. Let ans[i] = (ans[i][t])
len[i]
t=1 be the output sequence

produced by an FSM in response to in[i]. A slightly modified
version of the fitness function from [1] is used:

f =

1 −

√√√√√ 1

N

N∑
i=1

1

len[i]

len[i]∑
t=1

1

C

C∑
j=1

(
∆[i][t][j]

cmax
j − cmin

j

)2
− Pτ ,

where ∆[i][t][j] = ans[i][t][j]−out[i][t][j], C is the output tu-
ple dimension and Pτ is an additional penalty for the number
of times the FSM changes its state during execution on tests.

Having an FSM skeleton, it is possible to maximize [1] the
fitness function by assigning the values required to define
the output function. The output derivation procedure can
be generalized to handle the new FSM representation model.
It is executed before each fitness function evaluation.

5. EXPERIMENTAL EVALUATION
A comparison between the former and the new models of

FSM representation was performed on two test sets which
describe the barrel roll aerobatic figure and a 180◦ turn in
the horizontal plane. Both test sets were recorded using the
model of the Gloster Meteor jet fighter.

Using the previously developed FSM representation model
we have found a predicate set sufficient for the appropriate
aircraft control during the barrel roll, but we did not manage
to find a proper predicate set for the turn, whereas finding
proper predicate and variable sets for the new representa-
tion model was not a problem. Table 2 shows the results of
running optimization algorithms 50 times on three problem
instances: barrel roll with the former model (1), barrel roll
with the new model (2), turn with the new model (3). We
used Intel Core 2 Quad Q9400 processor for computational
experiments and searched for FSMs with four states.

The quality of some FSMs generated by the search op-
timization algorithms was examined in computer simula-
tion. After simulating a number of FSMs with different
fitness values, FSMs performing both aerobatic figures were
found. However, the quality of FSMs with the new repre-
sentation model was better: the best FSMs with the for-
mer representation model were not perfect at the end of the

Table 2: Results of running the genetic algorithm
(GA) and the ACO-based algorithm (ACO) on dif-
ferent problem instances.

Problem instance (1) (2) (3)
Number of fitness eval-
uations in a run

40000 20000 20000

Average fitness at the
end of run, GA / ACO

0.9850 /
0.9858

0.9859 /
0.9862

0.9899 /
0.9899

Average run time,
GA / ACO, minutes

11 / 14 10 / 10 16 / 15

barrel roll. A video record of a flight of the Gloster Me-
teor performing the barrel roll under control of one of the
FSMs with the new representation model is available at
http://youtu.be/g5P3UsB0CWI.

6. CONCLUSION
The new model of FSM representation has been devel-

oped. It allows to use real-valued variables to form the out-
put actions of FSMs. The new model was compared with
the former one on the unmanned aircraft control problem.
The former model did not work on one of the two test sets.
The use of the new model for the second test set improved
the quality of generated FSMs.

7. REFERENCES
[1] A. Alexandrov, A. Sergushichev, S. Kazakov, and

F. Tsarev. Genetic algorithm for induction of finite
automata with continuous and discrete output actions.
In Proceedings of the 13th annual conference companion
on Genetic and evolutionary computation
(GECCO ’11), pages 775–778. ACM, 2011.

[2] D. Chivilikhin and V. Ulyantsev. Learning finite-state
machines with ant colony optimization. In Lecture
Notes in Computer Science, volume 7461/2012, pages
268–275. Springer, September 2012.

[3] D. Harel and A. Pnueli. On the development of reactive
systems. Logic and Models of Concurrent Systems,
pages 477–498, 1985.

[4] D. Harel and M. Politi. Modeling Reactive Systems with
Statechart. The Statemate Approach. McGraw-Hill, NY,
1998.

[5] N. Polikarpova, V. Tochilin, and A. Shalyto. Method of
reduced tables for generation of automata with a large
number of input variables based on genetic
programming. Journal of Computer and Systems
Sciences International, 49(2):265–282, 2010.

[6] A. Shalyto. Logic control and reactive systems:
Algorithmization and programming. Automation and
Remote Control, 62(1):1–29, 2001.

[7] F. Tsarev. Method of finite state machine induction
from tests with genetic programming. Information and
Control Systems (Informatsionno-upravljajuschie
sistemy, in Russian), (5):31–36, 2010.

200




