
Generation of Tests

for Programming Challenge Tasks
Using Helper-Objectives

Arina Buzdalova, Maxim Buzdalov, and Vladimir Parfenov

St. Petersburg National Research University
of Information Technologies, Mechanics and Optics,

49 Kronverkskiy prosp., Saint-Petersburg, Russia, 197101
{abuzdalova,mbuzdalov}@gmail.com,

parfenov@mail.ifmo.ru

Abstract. Generation of performance tests for programming challenge
tasks is considered. A number of evolutionary approaches are compared
on two different solutions of an example problem. It is shown that us-
ing helper-objectives enhances evolutionary algorithms in the consid-
ered case. The general approach involves automated selection of such
objectives.

Keywords: test generation, programming challenges, multi-objective
evolutionary algorithms, multi-objectivization, helper-objectives.

1 Introduction

Programming challenge tasks are given at programming contests [1, 2]. Generally,
a task consists of a problem formulation, input data format and output data
format. Solutions are checked using pre-written tests. A test represents input
data. In order to pass the test, a solution should provide correct output data
within certain time and memory limits.

The goal of our research is to automatically generate performance tests. To
clarify what exactly a performance test in this paper is, we say that the aim
of performance test generation is to create such a test that running time of the
tested solution on this tests exceeds the time limit. In order to generate tests,
evolutionary algorithms [3] are used, as proposed in our previous work [4].

Although the running time is the objective to optimize, using it as a fitness
function is not efficient. We propose using some helper-objectives [5] instead of
or along with the running time objective. Such approach is inspired by multi-
objectivization and helper-objective optimization techniques [5–7].

The exclusive part of this paper is consideration of helper-objectives for two
different solutions and comparative analysis of 10 algorithms which were used
to generate tests against these solutions.

G. Ruhe and Y. Zhang (Eds.): SSBSE 2013, LNCS 8084, pp. 300–305, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Generation of Tests for Programming Challenge Tasks Using Helpers 301

2 Research Goal

The goal of the research is to explore different evolutionary approaches for per-
formance test generation. The approaches to be explored are listed in Section 3.
We generate performance tests against two different solutions of an example
programming challenge task. The task, its solutions and corresponding helper-
objectives are described below.

2.1 Programming Challenge Task

As in [4], we consider a programming challenge task “Ships. Version 2”. This
task is located at the Timus Online Judge [2] under the number 1394.

The task formulation is as follows. There are N ships, each of length si, and
M havens, each of length hj . It is needed to allocate ships to the havens, such
that the total length of all ships assigned to the j-th haven does not exceed hj .
It is guaranteed that the correct assignment always exists. The constraints are
N ≤ 99, 2 ≤ M ≤ 9, 1 ≤ si ≤ 100,

∑
si =

∑
hj. The time limit is one second,

and the memory limit is 64 megabytes.
Due to the fact that this problem is NP-hard [8] and the high limits on the

input data, it is very unlikely that every possible problem instance can be solved
under the specified time and memory limits. However, for the most sophisticated
solutions it is very difficult to construct a test which makes them exceed the time
limit.

2.2 Helper-Objectives

The target objective to be maximized is running time of a programming challenge
task solution. However, it is inefficient to use running time as a fitness function,
since it is platform-dependent, quantified and noisy [4]. In order to solve this
issue, we suggest including counters in the solution code. The counters can be
used as helper-objectives [5]. The pseudocodes of the Solution-1 and Solution-2
with the included helper-objectives are shown below.

Solution-1 with included helper-objectives: I, P, R

Read the input data

I := 0, P := 0, R := 0

while(solution not found)

Randomly shuffle ships

Call the recursive dynamic programming based ship arranging procedure

For each call to this procedure, R := R + 1

In each innermost loop, P := P + 1

if (solution is found)

Write the answer

else

I := I + 1

end if

end while



302 A. Buzdalova, M. Buzdalov, and V. Parfenov

Solution-2 with included helper-objectives: I, L, Q

Read the input data

I := 0, L := 0, last := 0

while (solution not found) do

Randomly shuffle ships and havens

last := 0

Call the recursive ship arranging procedure

For each call to this procedure, last := last + 1

if (solution is found) then

Write the answer

else

I := I + 1

L := L + last

last := 0

end if

end while

Q := 1000000000 * I + last

The main difference between the solutions is the implementation of the ship
arranging procedure. Unfortunately, we are not able to put more detailed code in
this article, because of the programming challenge rules that prevent publication
of solutions. However, it will be obvious from the experiment results that the
solutions have different performance.

3 Approach

In this section different evolutionary approaches of test generation are described.
Evolutionary algorithms can be used to optimize either a single objective or
several ones. The objective can stay the same during the evolutionary algorithm
run (a fixed objective), or we can select the objective to be optimized at each stage
of the optimization process (a dynamic objective). The evolutionary algorithms,
as well as helper-objective selection strategies are described below.

3.1 Evolutionary Algorithms

Single-Objective Genetic Algorithm (GA). The single-objective evolu-
tionary algorithm is a genetic algorithm (GA) with the population size of 200.
To create a new population a tournament selection with tournament size of 2
and the probability of selecting a better individual of 0.9 is used. After that,
the crossover and mutation operators similar to [4] are applied with the prob-
ability of 1.0. To form a new population, the elitist strategy is used with the
elite size of five individuals. If for 1000 generations the best fitness value does
not change, then the current population is cleared and initialized with newly
created individuals.



Generation of Tests for Programming Challenge Tasks Using Helpers 303

Multi-Objective Evolutionary Algorithm (NSGA-II). For optimization
of more than one objective, a fast variant of the NSGA-II algorithm [9] proposed
in [10] is used. Except for the version of tournament selection and nondominated
sorting based selection strategy, which is traditionally used in NGSA-II algo-
rithms, the evolutionary operation pipeline is the same as in the single-objective
case.

3.2 Helper-Objective Selection

Selection by M. T. Jensen. We consider two selection methods. The first one
was proposed by M. T. Jensen [5]. According to this method, a helper-objective
is chosen randomly from the set of helper-objectives and is being optimized for
a fixed number of populations. Then the next helper-objective is chosen, and so
on. This method implies using two-objective evolutionary algorithm, where the
first objective is the running time and the second one is a helper-objective.

Reinforcement Learning Selection (RL). The other selection method is
EA + RL method [7]. The fitness function is chosen with reinforcement learning
from a set that includes the target objective and the helper ones. The choice is in-
fluenced by a reward that depends on the target objective (running time) growth.
So the target objective is already taken into account and a single-objective evo-
lutionary algorithm can be used.

In this work, delayed Q-learning algorithm [11] is used. It is restarted every 50
generations, which aims at preventing stagnation. The update period is m = 5,
the bonus reward is ε = 0.001 and discount factor is γ = 0.1. The discount
parameter used to calculate the reward is set to k = 0.5. All the parameter
values are set on the basis of preliminary experiment results.

4 Experiment

Tests for each considered solution were generated using all the considered algo-
rithms with each compatible objective. Each algorithm was run for 100 times,
then the results were averaged. The termination condition was either evolving
of a test that made the solution to exceed the time limit (a successful run), or
reaching the population number limit, which was 10000 populations.

The results for the Solution-1 are shown in the Table 1. T denotes the run-
ning time of the solution, σ is the diversity of the population number in a run.
Populations refer to the mean number of populations needed to exceed the time
limit, the smaller it is the more efficient the corresponding algorithm is. Note
that using running time as a fitness function is inefficient, as was expected.

In the fixed objective case, multi-objective optimization significantly outper-
forms single-objective one, no matter what helper-objective is used. In the dy-
namic objective case, multi-objective optimization is also good enough. Although
in this example NSGA-II with a fixed objective outperforms all the other ap-
proaches, using dynamic objective can be more preferable in general, as shown
below.



304 A. Buzdalova, M. Buzdalov, and V. Parfenov

Table 1. Results of test generation for the Solution-1

Algorithm Fitness functions Successful runs, %
Populations
Mean σ

Fixed objective

GA I 99 2999 1986
GA R 93 3153 3742
GA P 54 12621 12770
GA T 0 – –
NSGA-II T, I 100 203 119
NSGA-II T, R 100 440 381
NSGA-II T, P 100 448 360

Dynamic objective

GA + RL all 65 9636 9538
NSGA-II + RL all 99 895 1215
NSGA-II + Jensen all 100 882 786

The results for the Solution-2 are shown in the Table 2. In the fixed objective
case, only the objective Q is efficient. Although this objective provides the best
performance, we usually do not know this in advance and should perform runs
with each helper-objective.

At the same time, all the dynamic objective methods are efficient. In dynamic
objective approach one run is enough, the most efficient objective is chosen
automatically. So the dynamic helper objective approach is both general and
efficient one.

Table 2. Results of test generation for the Solution-2

Algorithm Fitness functions Successful runs, %
Generations
Mean σ

Fixed objective

GA Q 95 3815 3466
GA I 54 12669 12873
GA L 51 13755 14082
GA T 0 – –
NSGA-II T, Q 95 2217 3136
NSGA-II T, I 45 15861 16723
NSGA-II T, L 20 41330 44768

Dynamic objective

GA + RL all 80 5817 6160
NSGA-II + RL all 72 6679 7764
NSGA-II+Jensen all 75 6103 7076



Generation of Tests for Programming Challenge Tasks Using Helpers 305

5 Conclusion

A number of approaches for generation of performance tests against program-
ming challenge solutions were compared. It was shown that using helper-
objectives significantly improves the optimization process. We suggest using
multi-objective evolutionary algorithms with dynamic helper-objectives, which
is a general and efficient method. Further work involves formalization of a class
of problems that can be efficiently solved using the proposed approach. Another
future goal is implementation of automated insertion of helper-objectives in the
solution code, since currently such insertion is made manually.

References

1. ACM International Collegiate Programming Contest,
http://cm.baylor.edu/welcome.icpc

2. Timus Online Judge. The Problem Archive with Online Judge System,
http://acm.timus.ru

3. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)
4. Buzdalov, M.: Generation of Tests for Programming Challenge Tasks Using Evolu-

tion Algorithms. In: GECCO Conference Companion on Genetic and Evolutionary
Computation, pp. 763–766. ACM, New York (2011)

5. Jensen, M.T.: Helper-Objectives: Using Multi-Objective Evolutionary Algorithms
for Single-Objective Optimisation. Journal of Mathematical Modelling and Algo-
rithms 3(4), 323–347 (2004)

6. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing Local Optima in Single-
Objective Problems by Multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L.,
Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283.
Springer, Heidelberg (2001)

7. Buzdalova, A., Buzdalov, M.: Increasing Efficiency of Evolutionary Algorithms by
Choosing between Auxiliary Fitness Functions with Reinforcement Learning. In:
11th International Conference on Machine Learning and Applications, pp. 150–155.
IEEE (2012)

8. Pisinger, D.: Algorithms for Knapsack Problems. PhD Thesis, University of Copen-
hagen (1995)

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II. Transactions on Evolutionary Computation 6(2),
182–197 (2002)

10. D’Souza, Rio G. L., Chandra Sekaran, K., Kandasamy, A.: Improved NSGA-
II Based on a Novel Ranking Scheme. Computing Research Repository. ID:
abs/1002.4005 (2010)

11. Strehl, A.L., Li, L., Wiewora, E., Langford, J., Littman, M.L.: PAC model-free
reinforcement learning. In: 23rd International Conference on Machine Learning,
pp. 881–888 (2006)

http://cm.baylor.edu/welcome.icpc
http://acm.timus.ru

	Generation of Tests for Programming Challenge Tasks Using Helper-Objectives
	1 Introduction
	2 Research Goal
	2.1 Programming Challenge Task
	2.2 Helper-Objectives

	3 Approach
	3.1 Evolutionary Algorithms
	3.2 Helper-Objective Selection

	4 Experiment
	5 Conclusion
	References




