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Abstract—In this paper a method of adaptive selection of
helper-objectives in evolutionary algorithms, which was previ-
ously applied to model problems only, is applied to generation
of test cases for programming challenge tasks. The method is
based on reinforcement learning. Experiments show that the
proposed method performs equally well compared to the best
helper-objectives selected by hand.

I. INTRODUCTION

Single-objective optimization can be enhanced by adding
helper-objectives, or helpers [1], but how should we choose
the most efficient ones, and when should we use the particular
helper? A method designed to solve these issues was proposed
in the previous works [2]–[5]. The method is called EA + RL.
It turned to be successful in solving some model problems.
In the current work it is applied to a practically important
problem of software testing, namely, generation of test cases
for programming challenge tasks.

The paper is structured as follows. In Section I-A the details
of the helper-objective approach are given. In Section I-B there
is some basic information on programming challenge tasks.
Section II describes a problem of test case generation, and
Section III gives an overview on the method of its solving.
In Section IV the experiment results are presented. Section V
concludes.

A. Helper-Objective Approach

There are several techniques that involve some additional
objectives in order to enhance performance of evolutionary
algorithms (EAs). In multiobjectivization technique [6] all
the objectives are optimized simultaneously by some multi-
objective algorithms (MOEAs) [7], [8]. In this technique the
objectives should be specially developed in order to increase
the optimization performance. It was shown that adding an
inefficient objective leads MOEAs to fail on the considered
model problems [4].

Helper-objective approach also involves using MOEAs, but
it requires a strategy of choosing the helper to be optimized at
the current population [1]. The strategy can be either random,
or ad-hoc [9]. The random one is general, but it does not take
advantage of problem characteristics. At the same time, ad-hoc
strategies can be efficient, but they lack generality.

Previously proposed EA+RL method incorporates helper-
objectives into single-objective EA. It requires less computa-
tional effort than MOEA-based methods, which makes it more
applicable to such resource-consuming problems as test case
generation.

EA + RL provides an adaptive strategy of helper selection
based on reinforcement learning [10]–[12]. Reinforcement
learning is used to select the most efficient helper to be opti-
mized in the current population of the evolutionary algorithm.
It was shown that reinforcement learning algorithms manage to
choose efficient objectives and to ignore the inefficent ones [4].
The selection strategy used in EA + RL is problem independent
and it allows to learn some features of the problem as well, thus
the method seems to increase both efficiency and generality of
the helper-objective approach.

There are several works that investigate using reinforce-
ment learning for adjustment of EAs. In some of them
tuning of numerical parameters such as mutation probability
and population size is considered [13], [14], in other papers
evolutionary operators selection [15], [16] is investigated.
Using reinforcement learning as a strategy of choosing helper-
objectives in EAs was proposed in EA + RL method for the
first time.

B. Programming Challenge Tasks

A programming challenge [17]–[20] is a competition where
participants compete in writing computer programs which
solve certain problems. A programming challenge task in-
cludes the formulation of the problem, the format of the input
and output data, the constraints on the input data, the output
data correctness criteria and the time and memory limits, which
the solutions should admit to.

In most types of programming challenges the correctness
of solutions is checked by running them on a number of pre-
written test cases and then checking the answer they give. If
a solution produces a correct answer for each test case while
not exceeding time and memory limits, it is considered to be
correct.

It is assumed that if for a certain task there exists an algo-
rithm or its implementation which may produce an incorrect
answer (e.g. greedy algorithm, or bugs in implementation, or
incomplete case analysis) or may exceed the time or memory
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TABLE I. PROCESS TIME MEASUREMENT: LINUX, CONFIG_HZ = 100

Program No Execution time, ms

1 0 10 10 10 10 10

10 10 10 10 10 10

2 60 50 60 60 60 60

60 60 60 50 60 60

3 200 200 200 200 200 200

200 200 200 200 210 200

4 470 480 470 470 470 470

470 470 470 470 480 470

5 930 920 930 920 930 920

920 930 920 920 920 920

6 1630 1620 1640 1620 1610 1640

1600 1600 1600 1610 1620 1630

limit on some test cases, then at least one such test case exists
in the testset of the task.

Test cases for programming challenge tasks, except for the
most trivial cases, are generated either by hand, for small-sized
cases, or by programs written by jury members that create test
cases according to some predetermined patterns or at random.
Thus, generation of such test cases requires deep knowledge
of the programming task and its possible solutions, and the
quality of the test cases highly depends on the human factor.

One of the ways to deal with these issues is to automate the
process of test case creation as deep as possible. In this work,
test case generation is performed using evolution algorithms.
The use of evolution algorithms is ideologically inspired by a
number of works on unit test generation [21], [22]. The pre-
vious works on this topic show that the evolutionary approach
is suitable for generation of tricky test cases that are unlikely
for a human to come up with [23], [24].

II. PROBLEM DESCRIPTION

In this paper generation of test cases for solutions of a
particular programming challenge task is described. In par-
ticular, generation of test cases against inefficient solutions
is addressed. In [23] it is shown that the running time of a
program is often a bad objective to optimize for two reasons.
First, it is noisy because of operation system scheduling
algorithms and hardware events. Second, the measured time
intervals are quantized.

In tables I and II the process time measurements for 12
runs of six different test programs are provided. Two different
computers were used, one with Linux and another one with
Windows. It can be seen that time intervals on Linux with
CONFIG_HZ kernel option set to 100 are multiples of 10
milliseconds, while on Windows Vista the quant size is be-
tween 15 and 16 milliseconds. Both of these values constitute
a significant part of a typical time limit of two seconds used
in programming challenges.

From the above it can be concluded that the running time
of a program is a noisy function with relatively small number
of discrete values, which makes it hard to optimize.

An approach to address this problem is proposed in [23]
and later extended in [24]. The idea of this approach is to
integrate one or more counters to the source code of the
program. When a solution finished working with a test, the
values of these counters can be used as fitness functions.

TABLE II. PROCESS TIME MEASUREMENT: WINDOWS VISTA SP1

Program No Execution time, ms

1 15 0 0 15 0 0

15 0 0 15 15 0

2 31 46 31 46 31 31

46 31 46 31 46 46

3 140 140 140 171 156 171

156 156 125 125 171 140

4 296 359 375 421 406 312

265 312 296 265 281 375

5 656 656 609 453 625 640

640 500 593 593 578 656

6 1125 968 1078 1093 1109 1125

1140 1140 1031 1125 1156 1093

Given a certain solution to a programming challenge task
and the counters integrated into its source code, the question
of what counters should be optimized to generate test cases
more efficiently is open. In [23], [24] this question was solved
by trial and error. The goal of this research is to automate
the selection of the most efficient fitness functions using
reinforcement learning.

III. METHOD DESCRIPTION

EA + RL method is based on guiding an evolutionary
algorithm with reinforcement learning. According to [3], [4]
the principal scheme of the method is as follows. The rein-
forcement learning agent interacts with the environment asso-
ciated with the evolutionary algorithm. It chooses the fitness
function to be used in the next population. The fitness function
is selected from a set of all given objectives, which includes
the helper objectives and the objective to be optimized, or the
target objective, as well. Then the agent gets a reward based on
the difference of the target fitness in two sequential populations
as well as a state mapped from the newly evolved population
and the process repeats. The agent uses a reinforcement
learning algorithm that maximizes the total reward. The higher
is the reward, the bigger is the increase of the target fitness,
so good choices of the agent lead to the better performance of
the optimization algorithm.

Let us describe the interaction between reinforcement
learning agent and the EA more formally. The basis of this
formalization was originally proposed in [3] and developed
in [4].

In order to set the reinforcement learning task [10], we
should define the set of actions A, a definition of the environ-
ment states z ∈ Z and the reward function R : Z × A → R.
Let x be an individual evolved by the evolutionary algorithm.
Denote the i-th population by Gi. The set of actions A
corresponds to the set of all objectives, consisting of t — the
target objective and the elements of H — the set of helper-
objectives: A = H ∪ {t}. Taking an action means choosing
some objective fi ∈ A as the fitness function that is used in
the population Gi.

Let us define the reward function R : Z×A→ R, which is
calculated after choosing the criterion fi in the state zi−1 and
generating Gi. It depends on the difference between fitness of
individuals at sequential populations and is the highest when
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fitness increases:

R(zi−1, fi) =

∑

x∈Gi
t(x) −

∑

x∈Gi−1
t(x)

∑

x∈Gi
t(x)

+

+ k
∑

f∈H

∑

x∈Gi
f(x)−

∑

x∈Gi−1
f(x)

∑

x∈Gi
f(x)

,

where k is a discount parameter.

This reward takes into account all individuals in a popu-
lation. In previous works the reward depended on the target
fitness of the best individual only [3], [4]. It was revealed
from preliminary experiments that the new reward definition is
more efficient, at least for test case generation. The preliminary
experiments also showed that using a single state z is efficient.

Despite new reward and state definitions, the principle
scheme of the EA + RL method did not change since [3].
The pseudocode of the method is cited in Listing 1.

Listing 1 The EA + RL method.

1: Initialize the RL agent
2: Set the number of the current population: i← 0
3: Generate the initial population G0

4: while (EA termination condition is not reached) do
5: Evaluate the state zi and pass it to the RL agent
6: Get the FF for the next population fi+1 from the RL

agent
7: Evolve the next population Gi+1

8: Calculate the reward: r← R(zi, fi+1) and pass it to the
RL agent

9: Increase the number of evolved populations: i← i+ 1
10: end while

IV. EXPERIMENT

During the experiment, test cases for a sample solution
were generated using a single-objective evolutionary algo-
rithm, EA + RL and a MOEA. 100 runs of each algorithm
were performed. The aim of the experiment was to confirm
that EA + RL performs well enough to replace manual
choosing between helpers and to compare it with the MOEA-
based method proposed in [1]. The detailed description of the
experiment and analysis of the results are presented in the
following subsections.

A. Task Statement

As in [23], we consider a programming challenge task
“Ships. Version 2”. This task is located at the Timus Online
Judge [25] under the number 1394 [26].

The task formulation is as follows. There are N ships, each
of length si, and M havens, each of length hj . It is needed
to allocate ships to the havens, such that the total length of
all ships assigned to the j-th haven does not exceed hj . It
is guaranteed that the correct assignment always exists. The
constraints are as follows:

• N ≤ 99, 2 ≤M ≤ 9, 1 ≤ si ≤ 100;

•
∑

si =
∑

hj;

• time limit is 1 second;

• memory limit is 64 megabytes.

This problem is a special case of the multiple knapsack
problem, which is known to be NP-hard in strong sense [27]
(i.e. no solutions are known which have a running time
polynomial of any numbers in the input). Due to this fact and
high limits on the input data, it is very unlikely that every
possible problem instance can be solved under the specified
time and memory limits. However, for the most sophisticated
solutions it is very difficult to construct a test case which makes
them exceed the time limit.

B. Sample Solution

For this problem all known solutions implement branch-
and-bound algorithms with different initial approximations and
various heuristics. We chose one of these solutions which is
generally quite fast, but its running time increases drastically
as the complexity of the test case grows. This behaviour allows
to perform many experiments in a short amount of time.

The structure of the solution is given in Listing 2. Accord-
ing to the approach from [23], we introduced three counters:
“iterations”, “length”, and “tuple”. The initialization algo-
rithms for these counters are included in the above mentioned
listing.

Listing 2 Scheme of a sample solution

1: Read the input data
2: iterations← 0, length← 0, last← 0
3: while (solution not found) do
4: Randomly shuffle ships and havens
5: last← 0
6: Call the recursive ship arranging procedure
7: For each call to this procedure, last← last+ 1
8: if (solution is found) then
9: Write the answer

10: else
11: iterations← iterations+ 1
12: length← length+ last
13: last← 0
14: end if
15: end while
16: tuple← 109 · iterations+ last

Another counter, “time”, which equals the running time in
milliseconds of the solution on the test case is added by the
testing framework.

C. Genetic Algorithms

In this section, individual encoding, evolutionary operators
and genetic algorithms used in the paper are described.

Individual encoding. To reduce the search space by sat-
isfying a number of constraints imposed on a valid test in
Section IV-A, we use a special test encoding scheme similar to
one proposed in [23]. The individual is a list of integer numbers
from 0 to 100. Each positive integer in this list produces a ship,
and each interval of consecutive positive integers produces a
haven (see Fig. 1).
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Individual: 0, 3, 7, 5
︸ ︷︷ ︸

15

, 0, 1, 2
︸︷︷︸

3

, 0, 4, 7, 6
︸ ︷︷ ︸

17

, 0, 0, 1, 3, 8
︸ ︷︷ ︸

12

Ships: 3, 7, 5, 1, 2, 4, 7, 6, 1, 3, 8

Havens: 15, 3, 17, 12

Fig. 1. Ships and havens generated from an individual

Let S1, . . . , SN be a sequence of ships generated from an
individual, and H1, . . . , HK be a sequence of havens. A test
case which is generated from these sequences has the first and
the last ships swapped, e.g. SN , S2, . . . , SN−1, S1, so that the
solutions can not solve the problem too easily by assigning
ships to havens greedily.

This kind of test case encoding satisfies two most difficult
conditions from Section IV-A: first, the sum of lengths of
ships is equal to the sum of lengths of havens, and second,
the solution always exists. Note that, for a test case generated
at random rather than using the described encoding, checking
the latter condition is at least as hard as solving the problem.
Some other conditions may be violated (e.g. the number of
havens may be out of bounds), but the probability of this event
is relatively small, and if such a test case is ever generated,
all fitness values are set to zero without running a solution on
this test case.

Evolutionary operators. A new individual is generated
by putting L = 50 randomly generated integers to a list.
The integers are generated as follows: zero is selected with
the probability of 1/5, otherwise a positive value is selected
equiprobably from a range of [1; 100]. The size of list 50 is
chosen experimentally, and, despite the fact not every test case
can be produced, the results are good nevertheless.

The mutation operator replaces every integer in the indi-
vidual with a probability of 1/L with an integer generated
randomly as above.

The following variation of two-point crossover operator is
used. Assume that the elements of the individual are indexed
from 1 to L. First, an exchange length X is selected randomly
from a range of [1;L]. Second, an offset F1 in the first individ-
ual is selected randomly from the range of [1;L−X+1]. Third,
an offset F2 in the second individual is selected randomly from
the same range independently of F1. Last, the list subranges
[F1, F1+X−1] and [F2, F2+X−1] from the first and second
individuals respectively are exchanged.

Single-objective algorithm. A single-objective genetic
algorithm is used for optimization of each single objective
and for working with reinforcement learning. The size of the
population is 200. To create a new population, a tournament
selection with tournament size of two and the probability
of selecting a better individual of 0.9 is used. After that,
the crossover and mutation operators are applied with the
probability of 1.0. To form a new population, the elitist strategy
is used with the elite size of five individuals. The genetic
algorithm is terminated either when an individual, for which
the running time of the tested solution exceeds five seconds,
is evolved, or 10000 populations are processed.

For optimization of single objectives, an additional heuris-
tic is applied. If for 1000 populations the best fitness value
does not change, then the current population is cleared and
initialized with newly created individuals.

Multi-objective algorithm. The proposed method is com-
pared with the MOEA-based method proposed in [1]. For
optimization of more than one objective, a fast variant of
the NSGA-II algorithm [28] proposed in [29] is used. The
population size of 200 is used. Except for the version of
tournament selection and nondominated sorting based selection
strategy, which is traditionally used in NGSA-II algorithms, the
evolutionary operation pipeline is the same as in the single-
objective case. The termination criterion is also the same as
in the previous section. The objectives being optimized are
the target objective and a helper one, thus the optimization
is two-objective. Such algorithm is claimed to be the best in
average [1].

D. Reinforcement Settings

Two different reinforcement learning algorithms were im-
plemented: Q-learning [10] and Delayed Q-learning [30]. In
Q-learning algorithm the ε-greedy strategy with ε = 0.3 was
used. The learning speed and the discount factor were α = 0.4
and γ = 0.001 respectively.

Delayed Q-learning was restarted every 50 populations to
prevent stagnation. The update period was m = 5, the bonus
reward ε = 0.001 and discount factor γ = 0.1.

The discount parameter used to calculate the reward was
set to k = 0.5. All the parameter values were set on the basis
of preliminary experiment results.

E. Mean and Diversity Recalculation

As described in Section IV-C, for performance reasons, the
number of populations in the experiment is limited to 10000.
This means that for some runs the goal of the optimization
(evolving a good test case) may not be reached, and it is im-
possible to calculate the average of the number of populations
to finish the optimization.

However, it is possible to estimate this value, if we assume
that the algorithm is restarted when the number of populations
reaches 10000 and the goal of optimization is not reached. Let
ES be the average of the number of populations for successful
runs1, R be the ratio of successful runs, G be the maximum
number of populations until restart. Then the expectation of
the number of populations until success E can be estimated
by the equation:

E = ES ·R + (G+ E) · (1−R),

which, after solving this equation, transforms to

E = ES +
1−R

R
G. (1)

To find a similar formula for the standard deviation, we
need first to compute the expectation for the squared number

1A run is considered to be successful if the goal of optimization is reached:
a test case is generated such that the solution executed on this test case exceeds
the time limit.
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TABLE III. EXPERIMENT RESULTS

Algorithm Fitness

functions

Successful

runs, %

Average popu-

lations number

σ

GA + Delayed Q-learning all 90 4411 4352

GA tuple 89 4497 4716

GA + Q-learning all 85 4580 5186

NSGA-II + Random all 82 4820 5598

GA + Random all 76 6074 6788

GA iterations 74 8182 7459

GA length 51 15030 13969

GA time 1 990319 994987

of populations to success Q. Let QS be this value for the
succeeded runs under G populations, then:

Q = QS ·R + (Q+ 2GE +G2) · (1−R),

and, after solving the equation:

Q = QS +
1−R

R
(G2 + 2GE). (2)

Let the standard deviation of the number of populations for
the successful runs be DS and the standard deviation of the
number of populations until success be D. By their definitions,
D2

S = QS − E2
S and D2 = Q − E2. In latter, substitute Q

from (2):

D2 = QS +
1−R

R
(G2 + 2GE)− E2.

Replacing QS by D2
S +E2

S and extracting the square root, we
get the final formula for D:

D =

√

E2
S − E2 +D2

S +
1−R

R
(G2 + 2GE). (3)

F. Results

The results of the runs are presented in Table III. The
algorithms are sorted by the increase of the mean number of
populations needed to evolve a “good” test case. The mean
and the diversity were calculated using the formulae 1 and 3
respectively. A test case is considered to be“good” if it makes
the solution exceed the time limit. Successful runs are the runs
in which a good test case was evolved.

GA corresponds to the single-objective genetic algorithm.
GA + Delayed Q-learning and GA + Q-learning are imple-
mentations of the EA + RL method using the corresponding
reinforcement learning algorithms. NSGA-II + Random cor-
responds to the algorithm from [1]. In GA + Random fitness
function is randomly chosen from all the objectives at the each
population of the single-objective genetic algorithm.

We can see that, among the fixed objectives, the “tu-
ple” function is the best one, followed by “iterations”, then
“length”, then “time”. As it was mentioned in Section II, the
running time is indeed a bad objective to optimize. Results for
all these functions are clearly distinguishable, and p-value for
all of them, which was calculated using the ANOVA test [31],
is far less than 10−3.

The top four results produced by the delayed Q-learning,
the “tuple” function, the ε-greedy Q-learning and the NSGA-II
algorithm form a statistically indistinguishable group with their
total p-value of 0.945. The results of the GA + Random seem

to be more or less different from the top group: the pairwise
p-values between the GA + Random and the members of the
top group are 0.04, 0.058, 0.082, and 0.156, respectively. In
general, it can be said that using reinforcement learning is in
average more efficient than choosing random objectives.

V. CONCLUSION

A previously proposed method of adaptive helper selection
was applied to a practically significant problem of generation
test cases for programming challenge tasks. The features of
this object domain were described in detail. Particularly, it
was shown that the running time fitness function is inefficient
and should be replaced by some helpers. Mean and diversity
recalculation was proposed. It may be useful in experiments
when an optimal solution could not be found steadily by an
evolutionary algorithm.

It was shown that the proposed reinforcement learning
based method is efficient enough to replace manual selection
of helper-objectives. The method was also compared with
the NSGA-II-based selection strategy from [1]. The proposed
method is at least as efficient as the NSGA-II-based one. The
statistically significant difference can possibly be obtained with
more algorithm runs.
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