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INTRODUCTION

In recent years, automata�based programming has been widely used for the development of software
for systems with complex behavior. Within this approach, the behavior of computer programs is described
in terms of deterministic finite state machines (FSMs) [1]. In automata�based programming, it is pro�
posed to design programs as a set of automated control objects. Each object of this kind consists of a plant
(object under control) and a control system (a system of controlling FSMs). The FSM system gets variables
and events from the external environment and from the plant at its input. Based on these data, the control
system produces outputs (controls) used control the plant. The control paradigm based on a similar
approach is called automata�based control in [2]. For many problems, control FSMs can be designed heu�
ristically; however, there are problems in which this is impossible or difficult. These are, for example, the
problems Smart Ant [3–5], Smart Ant�3 [6], and control of a model of an unmanned aerial vehicle (UAV) [7].

There are several approaches to the last problem. One of them is to select a perfect trajectory among the
trajectories of several flights performed under human control, and then follow this trajectory. This
approach was considered in [8]. Another approach is to use an FSM for controlling an UAV and to design
such an FSM using genetic algorithms described in [9–13].

In [14], a genetic algorithm based on the use of the reduced table method for the representation of
FSMs was employed to generate an upper�level FSM controlling a model of an UAV. The computation of
the fitness function in this case is based on the simulation of the UAV behavior in the environment, which
is time consuming.

The purpose of this study is to develop a method for designing FSMs controlling plants with complex
behavior that is free from this drawback. This method is based on evolutionary programming. We propose
to design FSMs for the control of such plants separately for each mode of its operation using evolutionary
programming and training examples created for each mode. Specifying a large number of training exam�
ples, one can avoid, as in [8], errors committed by human operators in the course of control. This
approach may be considered as an elaboration of the approach proposed in [15], where plants controlled
only by discrete controls were considered.

In the present paper, this approach is generalized to the plants controlled not only by discrete but also
by continuous controls. As an example of a plant with complex behavior, we consider an aircraft model
executing a loop�the�loop maneuver. To combine the FSMs controlling the individual modes, an upper�
level FSM is designed using the method of reduced tables [14] or a heuristic method. Each state of this
FSM corresponds to a specific mode. As a result, a hierarchical system of interacting FSMs is formed. The
problem of designing the upper�level FSM is out of the scope of this paper. In addition to high perfor�
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Description of transitions of the best FSM

Arc Predicates
Discrete output controls Continuous output controls

magneto starter throttle ailerons elevation rudder rudder

0  0 not x0 0 0 1.00000 0.05239 0.01043 0.00000

not x2 0 0 0.00000 –0.01315 0.02117 0.00000

not x4 0 0 0.00000 0.00199 –0.09535 0.00000

not x6 0 0 0.00000 0.01336 –0.07833 0.00000

not x8 0 0 0.00000 0.00178 –0.10299 0.00000

not x11 3 0 0.00000 –0.00178 0.01466 0.00000

0  1 not x5 0 0 0.00000 –0.01119 0.09089 0.00000

x9 0 0 0.00000 –0.01622 0.20543 0.00000

not x9 0 0 0.00000 0.00000 0.00000 0.00000

0  2 x1 0 0 0.00000 0.00217 0.01965 0.00000

x3 0 0 0.00000 0.02432 0.01225 0.00000

x5 0 0 0.00000 0.00000 0.00000 0.00000

x6 0 0 0.00000 0.00000 0.00000 0.00000

not x12 3 0 0.00000 0.00018 –0.00087 0.00000

0  3 x4 0 0 0.00000 –0.01352 –0.08765 0.00000

not x7 0 0 0.00000 –0.00394 0.06189 0.00000

not x10 0 0 0.00000 –0.00688 0.05064 0.00000

1  0 not x0 0 0 1.00000 0.05239 0.01043 0.00000

x2 0 0 0.00000 –0.02552 –0.01522 0.00000

x4 0 0 0.00000 0.00000 0.00000 0.00000

x11 3 0 0.00000 0.00000 0.00000 0.00000

1  1 not x1 0 0 0.00000 –0.00132 0.00866 0.00000

not x2 0 0 0.00000 0.00000 0.00000 0.00000

x5 0 0 0.00000 –0.02809 –0.01434 0.00000

x7 0 0 0.00000 –0.00054 –0.00506 0.00000

not x12 3 0 0.00000 –0.01224 –0.03468 0.00000

1  2 x0 0 0 0.00000 –0.00161 –0.00478 0.00000

x3 0 0 0.00000 0.00000 0.00000 0.00000

not x3 0 0 0.00000 –0.00274 –0.00202 0.00000

x6 0 0 0.00000 –0.01154 –0.11022 0.00000

x8 0 0 0.00000 –0.01082 –0.06436 0.00000

not x9 0 0 0.00000 –0.00993 –0.06966 0.00000

1  3 not x5 0 0 0.00000 –0.03879 –0.09682 0.00000

not x10 0 0 0.00000 0.00172 0.03226 0.00000

x12 3 0 0.00000 0.00497 –0.01437 0.00000

2  0 not x1 0 0 0.00000 0.03000 0.06766 0.00000

not x3 0 0 0.00000 0.00000 0.00000 0.00000

x9 3 0 0.00000 0.01939 0.04064 0.00000

2  1 x0 0 0 0.00000 0.02731 0.02049 0.00000

not x0 0 0 0.00000 0.02047 –0.02413 0.00000

x4 0 0 0.00000 0.00110 –0.00006 0.00000

not x4 0 0 0.00000 0.00000 0.00000 0.00000

x8 0 0 0.00000 0.01159 0.06208 0.00000
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mance, the proposed method has one more advantage over the simulation�based computation of the fit�
ness function—this function does not need to be modified when the operation mode changes; neither is
it modified when the plant itself is replaced.

1. PROBLEM STATEMENT

Figure 1 shows a block diagram of designing the control FSM.
The source data for designing the control FSM is the collection of training examples (tests); their struc�

ture is described below in more detail. The tests specifying the reference behavior are created by human
operators. The aim of the evolutionary programming algorithm is to construct an FSM that controls the
plant such that its behavior is as close to the reference behavior as possible. If a sufficiently large number
of tests are used, it is additionally possible to get rid of small errors committed by human operators when
controlling the plant.

Table.  (Contd)

Arc Predicates
Discrete output controls Continuous output controls

magneto starter throttle ailerons elevation rudder rudder

2  2 x2 0 0 0.00000 0.01880 0.00322 0.00000

x6 0 0 0.00000 –0.02062 –0.01551 0.00000

not x7 0 0 0.00000 0.00309 0.05025 0.00000

not x10 0 0 0.00000 –0.00054 –0.01195 0.00000

not x11 3 0 0.00000 0.01573 0.06745 0.00000

not x12 3 0 0.00000 –0.00140 –0.00006 0.00000

2  3 not x3 0 0 0.00000 –0.00889 –0.04245 0.00000

x5 0 0 0.00000 0.00000 0.00000 0.00000

x7 0 0 0.00000 0.00239 0.03443 0.00000

x11 0 0 0.00000 0.00000 0.00000 0.00000

3  0 x1 0 0 0.00000 0.00661 –0.00695 0.00000

not x10 0 0 0.00000 0.01817 0.04933 0.00000

3  1 x3 0 0 0.00000 0.02187 0.03925 0.00000

x5 0 0 0.00000 0.00905 0.09217 0.00000

not x6 0 0 0.00000 0.00664 0.08602 0.00000

not x12 3 0 0.00000 0.00556 –0.07512 0.00000

3  2 x4 0 0 0.00000 –0.01550 –0.09491 0.00000

x8 0 0 0.00000 –0.00498 0.01483 0.00000

x10 0 0 0.00000 0.00000 0.00000 0.00000

not x11 3 0 0.00000 0.00177 –0.03823 0.00000

3  3 not x0 0 0 1.00000 0.04394 0.11148 0.00000

not x2 0 0 0.00000 –0.02054 –0.17037 0.00000

not x7 0 0 0.00000 –0.00315 0.00256 0.00000

not x9 0 0 0.00000 –0.01064 0.00960 0.00000

x12 3 0 0.00000 0.00757 0.00196 0.00000

Genetic
Training Control
examples

programming
algorithm

FSM

Fig. 1. Block diagram of the control FSM.
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1.1. Control Devices

The plant has a set of control devices, and one can control the plant by acting upon these devices.
The parameters corresponding to the control devices are called control parameters. The parameters of
some control devices can take only a finite set of values—such devices are said to be discrete. The param�
eters of other control devices take real values—such devices are said to be continuous. We also call the
parameters acting upon continuous control devices continuous controls and the parameters acting upon
discrete control devices, discrete controls.

The approach proposed in this paper suits for controlling plants with both discrete and continuous
control devices. If all the control devices are discrete, it is recommended to use the approach described in
[15]. A continuous control changes the corresponding control device parameter by a real magnitude; a
discrete control sets the corresponding control device to a certain state. A sequence of controls applied to
a control device is equivalent to the sum of these controls if the control is continuous and to the last control
if it is discrete.

For example, the deflection of the aircraft steering wheel is a continuous control parameter. The con�
tinuous control of this device is the change of its deflection by a certain value. Then, the sequence of
deflections by x and y degrees is equivalent to the wheel deflection by x + y degrees. The starter is an exam�
ple of a discrete control device. In this case, the discrete control is switching the starter on or off. The
sequence of switchings of the starter on or off is equivalent to the last action.

1.2. Test Structure

The block diagram representing the test structure is shown in Fig. 2.
The test  consists of two parts—  and . Each of them is a sequence of length ; the first part con�

sists of the values of the input parameters, and the second part consists of the corresponding reference val�
ues of the control parameters that are registered in the course of experiments when the aircraft is con�
trolled by a human operator. Each element  of the sequence of input parameters consists of p num�
bers—the values of these parameters at the time t. Each element  consists of two sets—  and . The
sequence  consists of d discrete parameters, and  consists of c continuous parameters. Thus,  con�
sists of d + c components. The elements of these sets are denoted by  and , respectively. We denote

by  the set of control parameters produced by the FSM on the test . The structure of  coincides with
the structure of . The corresponding elements are denoted by , , , and , respectively.

2. EVOLUTIONARY PROGRAMMING ALGORITHM

The classical evolutionary programming algorithm involves the following steps: (1) creation of the initial
population, (2) evaluation of the fitness function, (3) selection of individuals for crossover, (4) crossover, (5)
mutation. The generation obtained after step (5) becomes the current generation, and steps (2)–(5) are
repeated until the stopping condition is fulfilled.
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Fig. 2. Framework of a training sample.
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The proposed algorithm differs from the classical one in an additional step executed before step (2)
maximizing the fitness function; at the additional step, output controls are assigned to the transitions of
the FSM framework. By the framework, we mean an FSM in which the values of the output controls will
be determined later. The framework is specified by a complete table of transitions for each state and each
truth and falsity conditions of the input variable. There are two types of transitions in the framework. The
transitions of the first type have no output controls, and the transitions of the second type have output con�
trols. Below, we describe the proposed algorithm in the order that facilitates its understanding.

2.1. Individual in the Evolutionary Programming Algorithm

In the proposed algorithm, the FSM is represented by an object that contains the descriptions of tran�
sitions from each state and the index of the initial state; the number of states is fixed, and it is a parameter
of the algorithm. For each transition, a condition is specified under which this transition is performed.
This condition has the form “xi” or “¬xi”, where xi is the i�еth proposition (predicate) about an object
state (for example, the aircraft engine is on). These conditions are composed manually before the evolu�
tionary algorithm starts executing, and they do not change in the course of its operation. No values of the
output controls zj (where zj is the jth tuple of changes in the control parameters) are specified for the tran�
sitions of the individuals. Thus, only the FSM framework is encoded by each individual, while the specific
output controls produced at the transitions are determined by the output assignment algorithm.

2.2. Operation of the Algorithm

We assume that the FSM to be generated is synchronous; that is, all the steps of its operation are iden�
tical, and their duration is determined by the sluggishness of the plant. One step of the FSM operation is
defined as its work on a single set of input parameters.

At each step, the control system gets the values of all input parameters. Then, the logical values of all
the conditions in the order of increasing indexes are evaluated. Once the value of a condition is evaluated,
it is sent to the FSM input. At each step, the FSM can perform several transitions, and the resultant output
at each time t may consist of several sequentially executed controls at the individual transitions. Recall that
each parameter of the resultant control is a sum of the controls if the parameter is continuous and is the
last control if the parameter is discrete.

Figure 3 shows a possible FSM framework.
For this framework, x0–x4 are the given predicates, and the values of the output controls (tuples) z1, …, z8 are

determined later using the output assignment algorithm.

2.3. Fitness Function

To evaluate the fitness function, each of N sequences  —the input set of the ith test—is sent to the
input of the FSM, and the sequence of output parameters  generated by the FSM is determined. Then,
the value of the fitness function is calculated. The fitness function reflects the closeness of the FSM behav�
ior to the reference behavior; this function is defined as

.

To simplify the further formulas, we denote by  the factor ; then, the fitness function takes the form

iI
�

iO

=

ρ
= −

ρ
∑

�

2

2

1

( , )11
( ,0)
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i i
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Fig. 3. Framework of the FSM.
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. (2.1)

Here, by , we mean the “distance” between the output and reference sequences of the control
parameters that is determined by the formula

.

As was indicated above, the control assignment algorithm is executed before the fitness function eval�
uation. This algorithm assigns controls to the transitions so as to maximize the fitness function for the
given FSM framework. Below, when the maximization or minimization of a function is mentioned, it is
assumed that its arguments are the values of the output controls at the transitions and their domain
depends on the type of the control parameters (discrete or continuous) of the corresponding controls.

2.4. Control Assignment Algorithm as the Additional Step in the Evolutionary Programming Algorithm

When this algorithm is used for the transitions of the FSM framework, the set of input parameters of
each test is fed at the FSM input. The transitions performed by the FSM are stored.

2.4.1. S i n g l e  t e s t. To facilitate the understanding of the proposed approach, we consider the case
when the training example consists of a single test T (N = 1). Then, the fitness function has the form

.

Here and below in this section, we omit the first subscript 1 to simplify the formulas (we write A1 instead
of А1, O instead of O1, and the like).

The fitness function attains its maximum when the distance squared  is minimal. Upon the sub�
stitution and the change in the summation order, we obtain

.

Notice that the sum for each parameter may be minimized independently. Therefore, it suffices to mini�
mize the sum

(2.2)

for each k in the range from 1 to d and the sum

(2.3)

for each m in the range from 1 to c. Below, the indexes k and m are assumed to be fixed.

2.4.1.1. A s s i g n m e n t  o f  d i s c r e t e  c o n t r o l s. Let  be the yet unknown value of the kth
discrete control parameter at the last performed transition at the time t. Then, expression (2.2) can be
rewritten as

. (2.4)

Here,  is the set of times t at which the index of the last performed transition was i and n is the number
of transitions in the FSM. To minimize sum (2.4), it is sufficient to minimize the sum
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for each i in the range from 1 to n. Let us fix i. For ,  is equal to the value of the kth discrete

parameter at the transition i, which depends on t. We denote this value by u (  for ). Using this
notation, we can write

.

Let  be the set of instants of time t in  at which  is equal to vh. Here, vh is the h�еth possible

value of the kth discrete parameter. Note that  are nonoverlapping subsets satisfying the condition

.

Taking this into account and denoting by G the number of possible values of the kth discrete parameter,
we obtain

. (2.5)

Choosing u = vg as the value of the discrete parameter at the ith transition, we obtain the value of sum

(2.5) equal to  because all the coefficients [  are equal to unity if and only if  and

.

Therefore, in order to minimize sum (2.5), the value vg must be chosen for which  is maximal, and

this is the value among  ( ) that is encountered most often. If there are several such values, any of
them may be chosen.

2.4.1.2. A s s i g n m e n t  o f  c o n t i n u o u s  c o n t r o l s. As has been mentioned above, the change
in the mth continuous parameter is equal to the sum of the changes of this parameter on all the transitions
made. At each of these transitions, this parameter changes by a certain (constant for this transition) but
unknown value. Denote by ui the change in the parameter at the ith transition. Then, the final value of the
parameter at the time t is equal to the sum of its initial value (which is zero) and all its changes at each
transition:

.

Here,  is the number of executions of the ith transition by the time t. Therefore, sum (2.3) can be written as

.

To find the point at which S takes the minimal value, we should find the point at which the partial deriv�
atives of S with respect to uj for all j vanish. These derivatives have the form

.

Upon some transformations, we obtain the system of linear equations
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.

In this paper, these с systems (for m in the range from 1 to с) are solved by Gaussian elimination for the
unknowns uj that indicate the change of the mth parameter at the transition j.

2.4.2. S e v e r a l  t e s t s. In this subsection, we generalize the proposed method for the case of several
tests. Function (2.1) attains its maximum when the sum

.

is minimal.
As before, the sums with respect to each parameter can be minimized independently of one another.

Thus, we should minimize the sum

(2.6)

for each k in the range from 1 to d and the sum

(2.7)

for each m in the range from 1 to c. Below, we assume that the indexes k and m are fixed.
2.4.2.1. A s s i g n m e n t  o f  d i s c r e t e  c o n t r o l s. Let us single out in sum (2.6) the terms corre�

sponding to each transition:

.

Here,  is the set of the instants of time at which the index of the last executed transition of the FSM
run on test t is equal to i, and j, а n is the number of transitions in the FSM. Therefore, for each j in the
range from 1 to n, it is required to minimize the function

.

Let us fix j. As in the case when the training example consists of a single test,  at  equals the
value of the kth discrete parameter at the transition j, which is independent of t. Again, we denote it by u.

Let  be the set of instants of time t in  at which  is equal to vh. As before, vh is the hth pos�
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Choosing vg as the value of the discrete parameter at the jth transition (u = vg) and substituting it into
the preceding sum, we can write it as

(2.8)

To minimize sum (2.8), we should find the value of vg for which

is maximal. Therefore, we should assign vg as the value of the kth discrete parameter at the jth transition; here,

.

2.4.2.2. A s s i g n m e n t  o f  c o n t i n u o u s  c o n t r o l s. Since the change in the mth continuous
parameter at the time t ( ) is equal to the sum of changes of this parameter on all the transitions made
by this time, we obtain from formula (2.7) that

.

Here, as before, uj is the unknown change in the mth continuous parameter at the jth transition and 
is the number of executions of the jth transition of the FSM run on test i by the time t. The derivative of S
with respect to uh is

.

Equating all these derivatives to zero, we obtain the following system of n equations for each mth
parameter:
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Each of these systems is solved by Gaussian elimination. The unknowns uj found from this system indi�
cate the change in the mth continuous parameter at the transition j. Note that the linearity of this system
depends on the fitness function. First, we used the fitness function

,

which gave a system of nonlinear equations and considerably complicated the solution of the problem.

2.5. Theoretical Estimation of the Time Complexity of the Fitness Function Evaluation

In this section, we estimate the execution time of the control assignment algorithm for the case of several

tests. Denote by L the sum . For the assignment of discrete controls,  operations for each k in

the range from 1 to d must be performed. The total number of operations is  if d is a
constant. In the case of the assignment of continuous controls, the matrix on the left�hand side of the sys�
tem has the size n × n. In the case of the fitness function used in this paper, this system can be solved by
Gaussian elimination, which requires O(n3) operations. Since the matrix of the system is the same for

every k, all the systems can be solved using  operations. To form the matrix of the system,
O(n2L) operations are needed. The formation of the kth column of free terms requires  operations for

k in the range from 1 to c. In total,  operations are needed to assign the con�

tinuous controls if c is a constant. Ultimately,  operations are needed to assign all the controls.
By the definition of the big O notation, there exist constants α and β such that the assignment of all the

controls at the framework transitions requires not more than  simple arithmetic operations.
This estimate is linear in the total length of the tests (which is proportional to the plant control time).
To make this estimate acceptable for practical application, a relatively small n should be used. It is worth
noting that the execution time of the evolutionary programming algorithm considerably increases with
increasing n because the search space grows exponentially with n. In this paper, n did not exceed 130. The
specific values of the constants α and β depend on the implementation of the fitness function evaluation
algorithm (if this algorithm is thoroughly implemented, these coefficients are not large). In the approach
proposed in [14], with which we compare the approach proposed in this paper, the execution time of the
fitness function evaluation algorithm also linearly depends on the plant control time; however, the con�
stants there are typically much larger because simulation is used.

2.6. Operators of the Evolutionary Programming Algorithm

In this section, we describe the selection, mutation, and crossover operators used in the proposed evo�
lutionary programming algorithm.

2.6.1. S e l e c t i o n  o p e r a t o r. This operator is used to find in the current generation the fittest indi�
viduals and add them to the intermediate generation. To compare individuals, a fitness function is used.
This function assigns to each individual a number that characterizes how well this individual suits for solv�
ing the problem. The greater this number, the better is the individual. In this paper, we use tournament
selection [9]. In this method, k individuals are randomly selected from the current generation. Then, the
fittest individual among them is chosen and added to the intermediate generation. The tournament is held
as many times as there are individuals in the generation.

2.6.2. M u t a t i o n  o p e r a t o r. This operator executes the following operations with a prescribed
probability: change in the initial state and addition, deletion, or change of a random transition in the FSM
framework. By the change of transition, we mean the change of the state into which the transition is per�
formed to a randomly selected state.

2.6.3. C r o s s o v e r  o p e r a t o r . Two individuals take part in the crossover operation, and this opera�
tion produces two new individuals. Denote the parent individuals by P1 and P2, and the descendant individ�
uals by C1 and C2. For the initial states C1.is and C2.is, one of the following relations holds: C1.is = P1.is and
C2.is = P2.is or C1.is = P2.is and C2.is = P1.is. Next, for each cell t[i][j] of the transition table, one of the
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following values is selected with identical probability: C1.t[i][j] = P1.t[i][j] and C2.t[i][j] = P2.t[i][j] or
C1.t[i][j] = P2.t[i][j] and C2.t[i][j] = P1.t[i][j].

2.7. The Proposed Method

Summarizing the foregoing, we formulate the proposed method for generating control FSMs using
evolutionary programming based on training examples.

1. A plant is specified (for example, in the form of an emulator) with the known control interface and
the ability of reading and writing the input and control parameters.

2. The control system has a hierarchical structure. Operational modes of this system are distinguished, and
for each of them an FSM is constructed using the proposed method. The upper�level FSM, which is responsi�
ble for switching modes, can be constructed manually or generated using the method described in [14].

3. For each mode, the following actions are repeatedly performed:
3.1. Choice of parameters. Predicates of the input parameters are used as input controls for the FSM,

and changes in the control parameters are used as its output controls. A tuple of numbers of the length
equal to the number of control parameters is associated with each transition of the FSM.

3.2. Test creation.
3.2.1. Start the plant and register the parameters as often as possible. For different modes, different

numbers of parameter sets are used as tests. The collection of these sets for each run is a test example. The
sequences thus registered are called reference sequences.

3.2.2. Heuristic choice of the number of tests. As the number of tests increases, the quality of the result
improves; however, the time needed to collect the data and the execution time of the evolutionary pro�
gramming algorithm used to construct the FSM also increases.

3.3. The use of evolutionary programming.
3.3.1. An FSM framework—an FSM with a fixed number of states containing transitions associated

with transition execution conditions and output controls (but the values of controls are undefined)—is
used as an individual.

3.3.2. Choice of the fitness function. This function must reflect the degree of similarity of the reference
(generated by a human) and generated by the FSM output controls. The form of this function affects the
complexity of the algorithm because it solves systems of linear or nonlinear equations of which each cor�
responds to one continuous control parameter.

3.3.3. The set of predicates that form conditions for the transition execution is created heuristically.
3.3.4. For each predicate, a code that implements this predicate based on the input parameters is writ�

ten in a programming language.
3.3.5. Creation of an operator that transforms the framework into an FSM that maximizes the fitness

function over all possible FMSs corresponding to the framework.
3.3.5.1. Run the FSM framework on test examples and register the sequence of executed transitions.
3.3.5.2. For each step of the plant operation, determine the values of the control parameters in terms

of the initial values and unknown changes at the transitions. For the continuous controls, this value is the
sum of the value at the preceding step and the change at the current step; for the discrete controls, this is
the value at the last executed transition.

3.3.5.3. Substitution of the expressions for the control parameters into the fitness function. Thus, the
fitness function is parameterized by the values of the controls at the transitions of the framework.

3.3.5.4. Maximization of the fitness function. If the fitness function is appropriate, the expression for
the controls depending on the discrete parameters can be obtained explicitly. The values of the continuous
controls are determined by solving a system of equations. This system is obtained by equating the partial
derivatives of the fitness function with respect to the unknown controls to zero. If the fitness function is
appropriate, then this system is linear. Thus, the fitness function should be “appropriate” both for the dis�
crete and continuous parameters. Function (2.1) satisfies this condition.

3.3.6. Choice of the model for the evolutionary programming algorithm and the choice of its charac�
teristics (the number of individuals in a generation, the size of elite group, selection and crossover func�
tions, the step size, and so on).

3.3.7. Run of the algorithm.
3.4. Run of the resultant FSMs and estimation of their behavior.
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3. TESTING THE METHOD EFFICIENCY

To check the efficiency of the proposed method, we generated an FSM for controlling an aircraft exe�
cuting a loop�the�loop maneuver.

3.1. Interaction of the Generated FSM with the model of an UAV

There are simulators that can model aircraft flight. We chose the open�source cross�platform simulator
FlightGear (http://www.flightgear.org), which allows one to steer a model aircraft manually or in auto�
matic mode. Figure 4 shows a snapshot of the FlightGear display at the time when the acceleration starts.

The simulator makes it possible to register the flight parameters (velocity, flight direction, and so on)
and the aircraft parameters (the position of the rudder, ailerons, state of the starter, and so on). The flight
parameters are the input parameters for the control system, and the aircraft parameters are the controlling
parameters because their changes help steer the aircraft. The values of the controlling parameters are
formed by the FSM (see Fig. 5).

3.2. Generation of an FSM for the Loop�the�Loop Execution

This problem can be formulated as follows: design an FSM under whose control a model aircraft exe�
cutes a loop�the�loop maneuver and then flies evenly for several seconds.

3.2.1. U s e  o f  t h e  p r o p o s e d  m e t h o d. We briefly consider the main steps of the application
of the proposed method for this example: we formed the necessary and sufficient set of propositions con�
cerning the aircraft state; designed three collections of tests that were considered independently of each
other (each collection consisted of ten tests of which each included several thousands of sets of input and
output control parameters, and the parameters were registered ten times per second); the evolutionary
programming algorithm was run for each of the three collections of tests and each set of the algorithm
parameters.

Fig. 4. Snapshot of the FlightGear simulator display at the time when the acceleration starts.

Predicate

Evaluator of

FSM

Truth values

Input

Input
parameters evaluator of propositions

actions

New values of
the control
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Fig. 5. Aircraft control using the FSM.
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Here are the parameters of the algorithm and their values: the generation size was 100 individuals, the
number of FSM states was in the range from two to five, the probability of mutation was 0.5, the tourna�
ment selection was used, the elite group consisted of two individuals, and the step time length was 0.1 s.

Computations were performed on one core of a computer with an Intel Core 2 Duo T7250 2 GHz pro�
cessor under Microsoft Windows XP. Programs were written in Java.

On the average, the algorithm execution time was ten hours for one set of parameters and one collec�
tion of tests. About 2000 generations were produced. Therefore, the creation and processing of one gen�
eration took 20 s on the average or 0.2 s per one FSM, which is much less than in [14], where the creation
of one generation took about 5 min.

The propositions were as follows: x0 stands for x1 engine is on;x1 stands for the acceleration of the
change in the aircraft heading is greater than zero; x2 stands for the change in the aircraft heading is greater
than zero; x3 stands for the deviation from the initial heading is less than one degree; x4 stands for the devi�
ation from the initial heading is greater than zero (deviation to the left); x5 stands for the acceleration of
the roll change is greater than zero; x6 stands for x7 velocity of the roll change is greater than zero; x7 stands
for the roll is small (less than 1°); x8 stands for the roll is greater than zero (the aircraft tilts to the right);
x9 stands for the acceleration of change in the vertical aircraft velocity is greater than zero; x10 stands for
the velocity of change in the vertical aircraft velocity is greater than zero; x11 stands for the vertical velocity
is low (less than 0.1 m/s); and x12 stands for the vertical aircraft velocity is greater than zero (the aircraft is
ascending). 

The controlling devices are magneto, starter, throttle, ailerons, elevation rudder, and rudder. The two
first devices are discrete, and the others are continuous. For example, the control switch on the starter is
discrete and turn the rudder to the right by 0.5° is continuous. Experiments with the evolutionary pro�
gramming algorithm showed that FSMs with three or four states have fairly good behavior, while the struc�
ture of FSMs with a greater number of states is more complex and their behavior deteriorates.

3.2.2. R e g i s t e r e d  t e s t s. Figures 6a–6f show 12 frames from the video of a training example for
a loop�the�loop maneuver.

Notice that this is the classical loop�the�loop maneuver, but, due to the fact that the camera that reg�
isters the maneuver changes its position, it seems that another (more complicated) maneuver is executed.

Here are two references to video of maneuvers performed by a human operator. The first of them is a
successful loop�the�loop maneuver (http://www.youtube.com/watch?v=G5Kcx0ohpNo); this flight was
included in the training set. The second video shows the unsuccessful maneuver (http://www.you�
tube.com/watch?v=OGVTch�a97A); this flight was not included in the training set.

3.2.3. R e s u l t s. The evolutionary programming algorithm was run about 50 times, and in each of
them the FSM with the best value of the fitness function was selected. The runs differed in the parameters
and collections of tests. The flights of models controlled by the selected FSMs were visually examined, and
the FSM that gave the flight most close to the “perfect loop�the�loop maneuver” was regarded to be the
best one. This FSM has four states and 68 transitions (see table). It is worth noting that the perfect loop�
the�loop maneuver can be different from the reference maneuver executed manually.

Examination of the execution of the loop�the�loop maneuver controlled by the best FSM showed that
three versions of the execution are possible depending on the parameters of the environment and the air�
craft.

1. In most cases, the aircraft model executes one loop�the�loop maneuver, as under manual control,
and flies further.

2. Sometimes, the aircraft model executes several loop�the�loop maneuvers with a certain interval.
This happens when the values of the aircraft model at the end of the maneuver are similar to those at its
beginning. In this case, the FSM is at the same state after the maneuver as it was at its beginning, and the
model behavior goes in cycles. In our experiments, we observed two loops in succession, but no longer
sequences of loop�the�loops were observed.

3. The model can fail to execute the loop�the�loop maneuver because the FSM is unable to meet the
challenge; however, this is a rare case.

The determination of conditions under which each of these cases is realized is a subject to further inves�
tigation.
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3.3. Example of Flight under the Control of the Best FSM

Here are references to three realizations of the loop�the�loop maneuver under the control of the best
FSM: execution that is close to the perfect one (http://www.youtube.com/watch?v=TzrLoJjjVTA); exe�
cution with tilting to the left and subsequent leveling (http://www.youtube.com/watch?v=
C6WV7x2bqE8); and sequential execution of two loop�the�loops (http://www.youtube.com/watch?v=
yFiG4yz67Ks).

Figures 7a–7f show eleven frames of the first of these videos.

The Table describes the transitions of the best FSM for executing the loop�the�loop maneuver (the
number of states is four, the initial state is zero, and the number of arcs is 68).

We emphasize that the complete transition table is used in the proposed method. For each state, 2m tran�
sitions can be defined, where m is the number of predicates. In the example under consideration, m = 13.
However, none of the fours states is characterized by all of the predicates. If there is no certain transition
in the table, then the FSM retains its state and parameters of the control devices at this transition.

Before the loop�the�loop maneuver is started, the engine is on. For that reason, the starter is not used
in the course of its execution—the column starter contains only zeros. This device was included in the
FSM generation because additional tests can be used in which the starter must be switched (for example,
if the engine fails). The last column also contains only zeros, but the corresponding device can be used in
other tests.

Fig. 6. Frames from the video of a training example of executing the loop�the�loop maneuver.



424

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 52  No. 3  2013

ALEKSANDROV et al.

CONCLUSIONS

An evolutionary programming method based on training examples for the generation of FSMs control�
ling an object with complex behavior is developed. The method is experimentally investigated, and it is
shown that the automatically generated FSM ensures better control than the manual control. In most
cases, the automatically generated FSM correctly accomplishes the task. It is shown that the proposed
method makes it possible to estimate the produced FSMs much faster than its prototype described in [14].
The proposed method was used to control a model of an UAV executing a loop�the�loop maneuver.
In addition to high performance of the method, it has one more advantage compared with the case when
the fitness function is evaluated by simulation—the method proposed in this paper does not require this
function to be adapted to the control mode or to another object.
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