
Extended Finite-State Machine Induction
using SAT-Solver

Vladimir I. Ulyantsev ∗ Fedor N. Tsarev ∗∗

∗ Computer Technologies Department, St. Petersburg National
Research University of Information Technologies, Mechanics and
Optics, St. Petersburg, Russia (e-mail: ulyantsev@rain.ifmo.ru).
∗∗ Computer Technologies Department, St. Petersburg National
Research University of Information Technologies, Mechanics and
Optics, St. Petersburg, Russia (e-mail: tsarev@rain.ifmo.ru).

Abstract: In the paper we describe the extended finite-state machine (EFSM) induction
method which uses SAT-solver. Input data for the induction algorithm is a set of test scenarios.
The algorithm consists of several steps: scenarios tree construction, compatibility graph
construction, Boolean formula construction, SAT-solver invocation and finite-state machine
construction from the satisfying assignment. These extended finite-state machines can be used in
automata-based programming, where programs are designed using automated controlled objects.
Each controlled object contains a finite-state machine and a controlled object. The described
method has been tested on randomly generated scenario sets containing 250 to 1500 elements
and on the alarm clock controlling EFSM induction problem where it has greatly outperformed
genetic algorithm.

Keywords: Extended finite-state machine induction, SAT problem, SAT-solver,
automata-based programming, testing

1. INTRODUCTION

Extended finite-state machines (EFSM) are widely used in
computer science and reactive systems modeling. One of
the EFSM application areas is automata-based program-
ming (Polikarpova and Shalyto (2009), Shalyto (2001),
Gurov et al. (2007)) where EFSMs are used as a software
systems core component.

EFSM induction methods usage greatly increases automa-
tion level in automata-based program development. In pre-
vious works genetic algorithms and genetic programming
are used for EFSM induction (Tsarev (2010), Tsarev and
Egorov (2011)). These algorithms have a major drawback
because of ability to process only relatively small test sets
and produce only relatively small finite-state machines.

In this paper we present the EFSM induction algorithm
based on translation to Boolean formula satisfiability prob-
lem (SAT) which can handle larger test sets and EFSMs.

The paper is structured as follows. Section 2 gives a short
description of automata-based programming. Section 3
gives an overview of existing finite-state machines induc-
tion methods. Section 4 gives definitions of test scenarios
and describes input data for the algorithm. Section 5 de-
scribes the algorithm. Section 6 gives experimental results.
The paper finishes with the conclusion and description of
future work.

2. AUTOMATA-BASED PROGRAMMING

Automata-based programming is the programming para-
digm which proposes to design and implement software

systems as systems of interacting automated controlled
objects. Each automated controlled object consists of a
finite-state machine and a controlled object.

A finite-state machine (FSM) has a set of states, a transi-
tion function and an action function. A controlled object
has commands and requests (implemented by its methods)
and a set of computational states.

A FSM takes events and input variables as input. They
can come from other parts of the system as well as from
the controlled object. After receiving an event and an input
variable the FSM makes a transition on which some output
action is sent to a controlled object. Output actions can
change the computational state of the controlled object.

The main idea of automata-based programming is to
distinguish control states and computational states. The
number of control states is not large so they can be drawn
on transition graph. Each of them differs qualitatively from
the others and defines actions. The number of possible
computational states can be very large. They differ from
each other quantitatively and define only results of actions
but not actions themselves.

In this paper, we focus on automata-based programs with
only one automated controlled object. We suppose that
controlled object, events and output actions are predefined
and our task is to design the FSM.

3. FINITE-STATE MACHINE INDUCTION

Finite-state machine induction with genetic algorithms has
been studied by several researchers.

F-512

In Spears and Gordon (2000) genetic algorithm is used
to learn finite-state machines for “Competition for Re-
sources” game. In this game two agents compete for re-
sources (represented by cells of a field) on a toroidal field.
One of the agents has a stochastic strategy and the other
one is controlled by a finite-state machine. Finite-state
machines in the genetic algorithm were represented using
transition tables of size 80n (n is the number of states).
Uniform mutation and crossover are used.

Spears and Gordon test the algorithm with n = 1..10.
Experiments show that finite-state machines with two or
more states perform better in this problem. Best finite-
state machines with 3 to 10 states perform equally well –
they win about 90% of games. Spears and Gordon also
conduct experiments where state addition and deletion are
allowed. These experiments show that these operations are
too “destructive” to be used in evolutionary methods for
finite-state machine induction.

Spears and Gordon also use dynamic verification to elim-
inate cyclic behavior of agent controlled by a finite-state
machine. It allows creating a finite-state machine which
wins 96% of games.

Finite-state machines for regular language recognition
have been also studied. In Lucas and Reynolds (2003) two
approaches to finite-state machines induction from exam-
ples are compared. One of them is Evidence-Driven State
Merging (EDSM) and another one is based on evolutionary
algorithms. A Finite-state machine is represented using the
transition table. An initial state always has the number
“0”. Lucas and Reynolds take into consideration automata
over binary alphabet only, so the total number of finite-
state machines with n states is n2n. The search space size
is 2n · n2n because each state can be either accepting or
not.

To reduce the search space size Lucas and Reynolds pro-
pose “smart state labeling” algorithm to determine which
states are accepting and which are not. This algorithm
reduces the search space size to n2n.

Lucas and Reynolds use a (1+1) evolutionary strategy.
Its comparison with EDSM shows that the evolutionary
method outperforms EDSM when finite-state machines are
relatively small.

In Lucas and Reynolds (2005) authors develop their ap-
proach further. They propose two new mutation meth-
ods which they call sampled and quick-sampled mutation.
They compare four algorithms— plain (which does not use
state labeling), smart state labeling, sampled and quick-
sampled.

Experiments show that sampled algorithm has the best
performance, second place goes to the algorithm which
uses mutation described in Lucas and Reynolds (2003),
third place goes to quick-sampled. The algorithm which
does not use smart state labeling demonstrates the worst
performance.

In Heule and Verwer (2010) “translation to SAT” method
for deterministic finite automaton (DFA) induction was
applied. Their method includes several stages:

• augmented prefix tree construction;

0 A [¬x] / z2

1

 A [x] / z1 B / z1,z2

 A / z1,z1

Fig. 1. Example of the extended finite-state machine

• consistency graph construction;
• Boolean formula construction;
• SAT-solver invocation;
• DFA construction from Boolean variables values.

Their experiments show that “translation to SAT” method
outperforms EDSM on Abbadingo One Lang et al. (1998)
competition test set.

The finite-state transducers induction which is similar to
the problem investigated in this paper is less studied.

In Lucas (2003) (1+1) evolutionary strategy is used to the
finite-state transducers induction from the set of tests. In
the algorithm the finite-state transducer is encoded using
two tables: transition table and output table. Lucas and
Reynolds use three types of fitness function based on:

• strict comparison of strings;
• Hamming distance (Hamming (1950));
• edit distance (Levenshtein (1966)).

Experiments show that the edit distance function has the
best performance, second place goes to Hamming distance
function and strict comparison is the worst.

4. DEFINITIONS AND PROBLEM STATEMENT

In EFMSs considered in this paper each transition is
labeled with an event, an output actions sequence and a
guard condition which is a Boolean formula depending on
input variables. States of the finite-state machine are not
divided into accepting and non-accepting. EFSM example
is shown on the Fig. 1. In this paper on this figure and all
similar ones transition labels have the following format:
“event [guard condition] /output actions sequence”. If the
guard condition is not specified the transition is performed
unconditionally.

For the EFSM shown on figure the set of events is {A,
B}, guard conditions depend only on one input variable
x, set of output actions is {z1, z2}. In this EFSM and in
all EFSMs considered in this paper initial state has the
number 0.

Input data for EFSM induction is the set of test scenarios.
A test scenario is a sequence of triples T1 . . . Tn, Ti =
⟨ei, fi, Ai⟩, where ei is an event, fi is a Boolean formula
of input variables, defining the guard condition, Ai is the
sequence of output actions. Each of these triples Ti is called
a scenario element.

F-513

We will say that a finite-state machine complies with the
scenario element Ti in state s if there is a transition from
state s labeled with event ei, output actions sequence Ai

and guard condition equal to fi as Boolean formula. An
extended finite-state machine complies with the scenario
T1 . . . Tn, if it complies with each of the scenario elements
in states of path formed by transitions used while process-
ing this scenario.

For example, the finite-state machine shown on Fig. 1,
complies with the scenario ⟨A,¬x, (z2)⟩⟨A, x, (z1)⟩, and
does not comply with following scenarios:

• ⟨B, true, (z2)⟩, because from the starting state no
transition labeled with event B can be found;

• ⟨A, x, (z1)⟩⟨A, x, (z1, z1)⟩, because from the state 1
no transition labeled with event A and guard condi-
tion equal to “x” as Boolean formula can be found;

• ⟨A, x, (z2)⟩, because the output action z1 (not z2) will
be executed on the transition from a starting state.

In this paper the following problem is considered: you are
given an integer number C and a set of scenarios Sc. The
goal is to construct the finite-state machine with C state
complying with all the scenarios from Sc. Note that the
problem of induction of the FSM with minimal number
of states can be reduced to the considered problem by
applying binary search.

5. ALGORITHM DESCRIPTION

A EFSM induction algorithm proposed in this paper is
based on ideas from Heule and Verwer (2010). First of all,
all given scenarios are used to construct the scenarios tree.
To construct the finite-state machine vertices of this tree
are to be colored by the given number of colors (equal
to the number of states). Vertices of the same color will
be merged into a single state of the finite-state machine.
Outgoing transitions for all states will be formed as a union
of outgoing edges for vertices of the corresponding color.
So, the EFSM induction algorithm has five stages:

(1) Scenarios tree construction.
(2) Consistency graph construction.
(3) Boolean CNF-formula construction. This formula

represents requirements for the coloring of the graph
and consistency requirement for finite-state machine
transitions.

(4) SAT-solver invocation.
(5) Finite-state machine construction from the satisfying

assignment.

5.1 Scenarios tree construction

Scenarios tree is a tree, each edge of which is labeled
with an event, a guard condition and a sequence of
output actions. The scenarios tree construction algorithm
is described below.

At the start of the algorithm the scenarios tree contains
only one vertex — the root. Each scenario is processed
separately in this algorithm.

Each of the scenarios is inserted element by element
starting from the first one to the tree. During this process
two variables will be stored: the number of the current

0

4 A [x] / z1

1

 A [¬x] / z2

5
 B / z1,z2

2
 A [x] / z1

3
 A / z1,z1

6 A [x] / z1

7
 A [¬x] / z2

8
 A [¬x] / z2

Fig. 2. Scenarios tree

vertex of tree v and the number i of first not yet processed
element of scenario.

At the start of the scenario insertion v is the root and i = 1.
On each step the existence of the outgoing edge E from the
vertex v, labeled with event ei and a guard condition equal
to fi as Boolean function is checked. If such an edge does
not exist then a new vertex u and a new edge from v to u
are created. This new edge is labeled by triple ⟨ei, fi, Ai⟩.
After that u becomes the current vertex and i is increased
by one.

If such an edge exists then sequence of output actions Ai

is compared with the sequence A′, by which edge E is
labeled. If Ai = A′, then the vertex to which edge E goes
becomes the current one and i is increased by one.

If these sequences are not equal then the scenarios set Sc
is contradictory. In this case the algorithm stops and the
corresponding message is shown to the user.

Guard conditions check is performed after insertion of
all scenarios to the tree. All pairs of outgoing edges are
checked for each vertex of the tree. If there exists a pair of
edges labeled with the same event such that their guard
conditions are not equal as Boolean functions but have
a common satisfying assignment, then the scenarios set
defines the non-deterministic behavior. In this case the
algorithm stops and the corresponding message is shown
to user.

Fig. 2 shows the scenarios tree constructed from the
following set of scenarios:

• ⟨A,¬x, (z2)⟩⟨A, x, (z1)⟩⟨A, true, (z1, z1)⟩;
• ⟨A, x, (z1)⟩⟨B, true, (z1, z2)⟩⟨A, x, (z1)⟩;
• ⟨A, x, (z1)⟩⟨B, true, (z1, z2)⟩⟨A,¬x, (z2)⟩
⟨A,¬x, (z2)⟩.

The EFSM shown of Fig. 1 complies with this scenarios
set.

5.2 Consistency Graph Construction

Consistency graph vertices set is the same as scenarios
tree vertices set; therefore we will not distinguish between
graph and tree vertices. Graph edges are constructed in
the following way. Two vertices u and v are connected
by an edge (such vertices are called inconsistent), if there
exists a sequence of events and variables values sets pairs
⟨e1, values1⟩ . . . ⟨ek, valuesk⟩, which tells them apart. We
will say, that this sequence tells vertices u and v apart
if each of the following conditions holds:

• in the tree there is a path Pu from vertex u, whose
edges are labeled with events e1 . . . ek and such guard
conditions f1 . . . fk, that values1 is a satisfying assign-

F-514

ment for f1, values2 is a satisfying assignment for f2,
. . . , valuesk is a satisfying assignment for fk;

• the similar path Pv starts from vertex v;
• for last edges of paths Pu and Pv at least one of the
following conditions holds:

· labels of this edges differ in output actions;
· guard conditions of this edges have a com-
mon satisfying assignment, but are not equal as
Boolean functions.

The consistency graph construction algorithm is based on
dynamic programming. For each scenarios tree vertex v we
compute the set S(v) of vertices inconsistent with it. These
sets are computed starting from tree leaves. For each leaf
u the set S(u) is empty by definition (because there are
no paths starting from a leaf).

Suppose that this set is already computed for all children
of some vertex v. Set S(v) can be computed the following
way. We check all vertices of tree — vertex u should be
included into the set S(v) if there exists a pair of edges
ux (labeled with event e, formula f1 and output action
sequence A1) and vy (labeled with the same event e,
formula f2 and output action sequence A2) such that at
least one of the following conditions holds:

• formulae f1 and f2 have a common satisfying as-
signment, but are not equal as Boolean functions. It
means that ⟨e, values⟩ is a sequence which tells apart
u and v (here by values the satisfying assignment of
f1 is denoted);

• formulae f1 and f2 are equal as Boolean functions,
but sequences A1 and A2 are not equal. It means that
⟨e, values⟩ is a sequence which tells apart u and v;

• formulae f1 and f2 are equal as Boolean functions
and vertex x is included into S(y), which is already
computed. It means that there exists a sequence
⟨e1, values1⟩ . . . ⟨ek, valuesk⟩, telling apart x and y,
and vertices v and u are told apart by the sequence
⟨e, values⟩⟨e1, values1⟩ . . . ⟨ek, valuesk⟩.

The running time of this stage of the EFSM induction
algorithm is O(n2) (n denotes the number of vertices in
scenarios tree is denoted), because each pair of scenarios
tree edges will be considered at most once.

To achieve this running time we make a certain precompu-
tation. For each pair of guard conditions f and g occurring
in the scenarios we:

• find if f is equal to g as Boolean function;
• find if f and g have a common satisfying assignment.

In the worst case the running time of the precomputation
step is O(22m−1 · n2), where m is the maximal number of
input variables used in one formula. In practice m do not
exceed 5.

Fig. 3 shows the consistency graph for the scenarios tree
from Fig. 2.

5.3 Boolean CNF-formula Construction

The CNF-formula construction algorithm is based on ideas
from Heule and Verwer (2010). The CNF-formula contains
following variables:

0

2

1

3

4

5
6

7

8

Fig. 3. Consistency graph

• xv,i (for each vertex v of scenarios tree and color i
which is a number from 1 to C) — if it is true that
vertex v has color i;

• ya,b,e,f (for each pair of resulting EFSM states (a, b),
each event e and each formula f occurring in scenar-
ios) — is it true that in resulting EFSM a transition
from state a to state b labeled with event e and
formula f exists.

CNF-formula contains following clauses:

• (xv,1∨. . .∨xv,C) (for each vertex v) — vertex v should
be colored with at least one color;

• (¬xv,i ∨ ¬xv,j) (for each vertex v, each pair of colors
i < j) — vertex v can not be colored with colors i
and j simultaneously;

• (¬xv,i ∨ ¬xu,i) (for each pair of inconsistent vertices
u and v and each color i) — no pair of inconsistent
vertices can be colored with same color;

• (¬ya,b,e,f∨¬ya,d,e,f) (for each triple a, b and d (b < d)
of colors, each event e, each formula f occurring in
scenarios) — there is at most one outgoing transition
labeled by event e and formula f from state of EFSM
labelled by each color;

• (ya,b,e,f ∨¬xv,a∨¬xu,b) (for each edge vu of scenarios
tree, each event e, each formula f and each pair of
colors (a, b)) — if following conditions hold:

· this edge is labeled with event e and formula f ;
· vertex v is colored with color a;
· vertex u is colored with color b;

then a transition from state a to state b, labeled with
event e and formula f must exist in resulting finite-
state machine;

• (¬ya,b,e,f ∨¬xv,a∨xu,b) (for each edge vu of scenarios
tree, each event e, each formula f and each pair of
colors (a, b)) — if following conditions hold:

· edge from vertex v to vertex u is labeled with
event e and formula f ;

· vertex v is colored with color a;
· a transition from state a to state b and this
transition is labeled with event e and formula f
must exist in resulting finite-state machine;

then vertex u has the color b.

6. USAGE OF SAT-SOLVER TO FIND SATISFYING
ASSIGNMENT FOR THE CNF-BOOLEAN FORMULA

To find the satisfying assignment for the constructed CNF-
formula we use cryptominisat SAT-solver (Soos (2010)),

F-515

0

4 A [x] / z1

1

 A [¬x] / z2

5
 B / z1,z2

2
 A [x] / z1

3
 A / z1,z1

6 A [x] / z1

7
 A [¬x] / z2

8
 A [¬x] / z2

Fig. 4. Scenarios tree coloring

0 A [¬x] / z2

1

A [x] / z1 B / z1,z2

A / z1,z1

0
A [¬x] / z2

1

A [x] / z1 B / z1, z2 A / z1, z1

Fig. 5. Extended finite-state machines obtained by merging
vertices of trees

the winner of SAT RACE 2010 (http://baldur.iti.
uka.de/sat-race-2010). DIMACS format (http://www.
satlib.org/ubcsat/satformat.pdf) is used to represent
the formula.

If a SAT-solver does not find the satisfying assignment
then the EFSM with C states complying with the given set
of scenarios Sc does not exist. In other case, we determine
scenarios tree vertices colors from xv,i values. Fig. 4 shows
the scenarios tree coloring from Fig. 2. Note that value C
is fixed and is not an objective for optimization.

After that all vertices of the same color are merged into
a single state of the finite-state machine. Starting state is
the state corresponding to the color of tree root.

Note that since coloring of the scenarios tree is not
necessarily unique there can be several EFSMs with C
states complying with the given set of scenarios. Finite-
state machines shown on the left of Fig. 5 is obtained by
merging vertices of the tree shown on Fig. 4. Note, that this
finite-state machine is isomorphic to the machine shown on
Fig. 1.

If we change the color of vertex 3 of this tree we obtain
the EFSM shown on the right of Fig. 5. This EFSM is not
isomorphic to the machine shown on Fig. 1.

7. EXPERIMENTS

First experiment has been performed on the EFSM for
alarm clock controlling induction problem (Tsarev (2010),
Tsarev and Egorov (2011)). This clock has three buttons
(marked with letters “H”, “M”, “A”), a timer and three
modes of operation: “alarm is off”, “alarm is on”, “setting
alarm time”. Button A is used for switching between these
modes, buttons H and M — to adjust the time.

Alarm clock has four events:

• H – button is “H” pressed;
• M – button is “M” pressed;
• A – button is “A” pressed;
• T – occurs on each timer tick.

It has two input variables:

• x1 – if it is true that current time is equal to alarm
time;

• x2 – if it is true that current time is one minute more
than the alarm time.

It also has seven output actions:

• z1 – increase current time hours;
• z2 – increase current time minutes;
• z3 – increase alarm time hours;
• z4 – increase alarm time minutes;
• z5 – increase current time by one minute;
• z6 – turn on the buzzer;
• z7 – turn off the buzzer.

The control system for this alarm clock can be described
by a manually designed finite-state machine.

The test set for this problem contains 38 scenarios (to-
tal size of scenarios is 242 scenario elements) describing
the finite-state machine behavior in different modes of
operation. On this problem algorithm described in this
paper inducts the correct EFSM in less than one second,
while the genetic algorithm from Tsarev (2010) and Tsarev
and Egorov (2011) needs about five minutes on the same
computer with Intel Core 2 Quad Q9400 processor and 4
GB of RAM.

Second experiment measures the algorithm performance
on larger sets of scenarios. This experiment contains six
stages:

• random EFSM with n states generation. This EFSM
is denoted by A;

• test scenarios generation — each scenario is a random
path in the EFSM — each scenario is a random path
in the EFSM with length from n to 3n. Total size of
scenarios is denoted by l;

• EFSM with n states induction from the generated set
of scenarios with the described algorithm. Running
time of the whole induction process (including solving
SAT with cryptominisat) is recorded. The resulting
EFSM is denoted by A′;

• A and A′ are checked for isomorphism;
• 1000n random scenarios of length 4n are generated
from A. After that A′ is checked against each of these
scenarios. The part of scenarios A′ complies with is
recorded. This stage is called ”forward check”;

• 1000n random scenarios of length 4n are generated
from A′. After that A is checked against each of these
scenarios. The part of scenarios A complies with is
recorded. This stage is called ”backward check”.

EFSMs are generated with the following parameters:

• number of events is equal to two;
• number of output actions is equal to two, minimal size
of output actions sequence is equal to one, maximal
size of output actions sequence is equal to three. So
the number of different output actions sequences is
21 + 22 + 23 = 14;

• guard conditions depend on at most two input vari-
ables and may contain only AND operator. So the
number of different guard conditions is equal to 1 +
2 · 2 + 22 = 9;

• each EFSM contains 4n transitions (half of possible
transitions).

F-516

For each combination of n = 5, 10, 15, 20 and l =
250, 500, 750, 1000, 1250, 1500 thirty experiments were con-
ducted. Source code used to run experiments is available
online: http://rain.ifmo.ru/~ulyantsev/EFSM.zip.

These experiments have been conducted using computer
with Intel Core i5-2520M (2.5 GHz) processor. On gen-
erated scenario sets the algorithm used up to 3.5 GB of
RAM, and CNF-formula contained up to 35000 variables
and 9000000 clauses. Table 1 contains the summary of
experiment results.

This table contains following infromation:

• runtime — mean EFSM construction time (in sec-
onds);

• isom — part of experiments in which A′ is isomorphic
to A (in percent);

• forw — results of forward check (in percent);
• backw — result of backward check (in percent).

For “runtime”, “forw” and “backw” standard deviation is
also given.

Table 1. Experiment results

n l runtime isom forw backw

5 250 0.4 (0.1) 33.3 94.3 (13.2) 35.0 (46.1)
5 500 0.9 (0.1) 36.7 97.8 (5.2) 37.6 (47.5)
5 750 1.5 (0.2) 36.7 98.9 (4.2) 38.6 (47.0)
5 1000 1.8 (0.1) 46.7 99.6 (1.4) 52.1 (47.7)
5 1250 2.0 (0.2) 30.0 100.0 (0.0) 30.7 (45.4)
5 1500 2.5 (0.3) 43.3 99.4 (2.3) 46.0 (48.2)

10 250 1.6 (0.1) 0.0 18.3 (24.0) 0.1 (0.2)
10 500 2.3 (0.5) 0.0 63.7 (22.1) 3.0 (13.1)
10 750 3.3 (0.4) 6.7 86.4 (14.0) 7.5 (25.1)
10 1000 4.9 (0.5) 10.0 93.8 (11.8) 10.4 (29.9)
10 1250 6.5 (0.6) 6.7 95.5 (7.6) 8.0 (24.9)
10 1500 9.1 (1.2) 3.3 97.9 (4.5) 3.9 (17.9)

15 500 7.4 (8.5) 0.0 18.1 (19.0) 1.4 (6.6)
15 750 10.0 (9.3) 0.0 51.7 (22.4) 3.3 (17.9)
15 1000 12.2 (8.1) 0.0 66.7 (19.6) 0.1 (0.3)
15 1250 15.2 (3.9) 0.0 79.0 (17.7) 0.1 (0.4)
15 1500 20.2 (2.6) 0.0 87.8 (13.1) 0.1 (0.4)

20 750 54.2 (82.7) 0.0 21.9 (23.4) 0.1 (0.5)
20 1000 67.7 (136.5) 0.0 40.0 (21.1) 0.0 (0.0)
20 1250 63.4 (144.8) 0.0 56.3 (21.7) 0.0 (0.0)
20 1500 75.2 (63.6) 0.0 62.3 (17.5) 0.0 (0.0)

Note that table does not contain lines for (n = 15,
l = 250), (n = 20, l = 250) and (n = 20, l = 500) because
these experiments did not finish in 18 hours.

Experiment results show that we cannot guarantee that
A′ is isomorphic to A, but if the size of scenarios set is big
enough A′ complies with big part of scenarios generated
from A (forward check). At the same time A′ usually
complies with a lot of additional scenarios not compliant
with A (backward check).

8. CONCLUSION

The EFSM induction algorithm based on translation to
SAT is described in the paper. When compared with
genetic algorithm this algorithm performs faster up to an
order of magnitude.

Future work includes constraint satisfiability problem
(CSP) solver application instead of SAT-solver and usage
of verification methods in the EFSM induction process.

REFERENCES

Gurov, V., Mazin, M., Narvsky, A., and Shalyto, A. (2007).
Tools for support of automata-based programming. Pro-
gramming and Computer Software, 33(6), 343–355.

Hamming, R.W. (1950). Error detecting and error correct-
ing codes. Bell System Technical Journal, 29(2), 147–
160.

Heule, M. and Verwer, S. (2010). Exact dfa identification
using sat solvers. In J.M. Sempere and P. Garca
(eds.), Grammatical Inference: Theoretical Results and
Applications 10th International Colloquium, ICGI 2010,
volume 6339 of Lecture Notes in Computer Science, 66–
79. Springer.

Lang, K.J., Pearlmutter, B.A., and Price, R.A. (1998).
Results of the abbadingo one dfa learning competition
and a new evidence-driven state merging algorithm.
In ICGI, volume 1433 of Lecture Notes in Computer
Science, 1–12. Springer.

Levenshtein, V. (1966). Binary codes capable of correct-
ing deletions, insertions, and reversals. Soviet Physics
Doklady, 10(8), 707–710.

Lucas, S. (2003). Evolving finite state transducers: Some
initial explorations. In C. Ryan, T. Soule, M. Keijzer,
E. Tsang, R. Poli, and E. Costa (eds.), Genetic Pro-
gramming, volume 2610 of Lecture Notes in Computer
Science, 241–257. Springer Berlin / Heidelberg.

Lucas, S. and Reynolds, J. (2003). Learning dfa: Evolu-
tion versus evidence driven state merging. The 2003
Congress on Evolutionary Computation (CEC ’03), 1,
351–358.

Lucas, S. and Reynolds, J. (2005). Learning deterministic
finite automata with a smart state labeling evolutionary
algorithm. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27, 1063–1074.

Polikarpova, N. and Shalyto, A. (2009). Automata-based
programming (in Russian). Piter.

Shalyto, A. (2001). Logic control and reactive systems:
Algorithmization and programming. Automation and
Remote Control, 62(1), 1–29.

Soos, M. (2010). Cryptominisat 2.5.0. In SAT Race
competitive event booklet.

Spears, W.M. and Gordon, D.F. (2000). Evolving finite-
state machine strategies for protecting resources. In
Proceedings of the International Symposium on Method-
ologies for Intelligent Systems 2000. ACM Special Inter-
est Group on Artificial Intelligence, 166–175. Springer-
Verlag.

Tsarev, F. (2010). Method of finite state machine induc-
tion from tests with genetic programming. Information
and Control Systems (Informatsionno-upravljajuschie
sistemy, in Russian), (5), 31–36.

Tsarev, F. and Egorov, K. (2011). Finite state machine
induction using genetic algorithm based on testing and
model checking. In Proceedings of the 13th annual
conference companion on Genetic and evolutionary com-
putation, GECCO ’11, 759–762. ACM, New York, NY,
USA.

F-517

