
Finite State Machine Induction using Genetic Algorithm
Based on Testing and Model Checking

Fedor Tsarev
St. Petersburg State University of IT, Mechanics and

Optics
Russia, St. Petersburg, Kronverksky pr., 49

+7 (812) 232-43-18

tsarev@rain.ifmo.ru

Kirill Egorov
St. Petersburg State University of IT, Mechanics and

Optics
Russia, St. Petersburg, Kronverksky pr., 49

+7 (812) 232-43-18

egorovk@rain.ifmo.ru

ABSTRACT

In this paper, we describe the method of finite state machine
(FSM) induction using genetic algorithm with fitness function,
cross-over and mutation based on testing and model checking.
Input data for the genetic algorithm is a set of tests and a set of
properties described using linear time logic. Each test consists of
an input sequence of events and the corresponding output action
sequence. In previous works testing and model checking were
used separately in genetic algorithms. Usage of such an approach
is limited because the behavior of system usually cannot be
described by tests only. So, additional validation or verification is
needed. Calculation of fitness function based only on verification
do not perform well because there are very few possible values of
fitness function (verification gives only “yes” or “no” answer).
The approach described is tested on the problem of finite state
machine induction for elevator doors controlling. Using tests only
the genetic algorithm constructs the finite machine working
improperly in some cases. Usage of verification allows to induct
the correct finite state machine.

Categories and Subject Descriptors

I.2.2 [Artificial Intelligence]: Automatic Programming – program

synthesis, program verification.

General Terms

Algorithms, Experimentation, Verification.

Keywords

Genetic algorithm, model checking, finite state machine,
automata-based programming, testing.

1. INTRODUCTION
In genetic programming, fitness function is usually evaluated by
running the program on a number of test cases. Such an approach
is connected with a number of difficulties. The main of them is
that it is impossible to guarantee the behavior of the system on the
test-cases not included into the training set. So, programs created

using genetic programming or genetic algorithms based on tests
cannot be used without additional testing or verification. If during
this testing or verification some faults are found, program or test
cases should be modified manually. Usually, it is not important,
but in mission-critical systems this situation creates additional
barrier to usage of such methods.

One of the solutions to the problem described is the usage of
program verification techniques on the stage of fitness function
evaluation. A practical method of verification is model checking
[1, 2]. Usage of this method implies that the program should be
transformed into a finite state model (so called Kripke model) and
properties to be verified should be written in temporal logic. The
result of verification is either the counterexample or the
confirmation of the fact that properties hold.

For traditionally designed programs transformation of program to
model and of counterexample from terms of model to terms of
program can be rather difficult. These difficulties do not arise if
the program is designed using automata-based
programming [3, 11, 12]. Features of automata-based programs
allow for automatically converting them into models which can be
used for model checking. Counterexamples can be also converted
automatically from the terms of model to the terms of program.

2. AUTOMATA-BASED PROGRAMMING
Automata-based programming is the programming paradigm in
context of which it is proposed to design and implement the
software system as a system of interacting automated controlled
objects. Each automated controlled object consists of a finite state
machine (FSM) and a controlled object (see Figure 1).

Figure 1. Automated controlled object.

FSM has a set of states, a transition function and an actions
function. Controlled object has commands and requests
(implemented by its methods) and a set of computational states.

FSM takes events and input variables as input. They can come
from other parts of the system as well as from the controlled
object. After receiving an event or an input variable the FSM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0690-4/11/07...$10.00.

759

makes transition on which some output action is sent to controlled
object. Output action can also be performed on entering the state.
Output actions can change the computational state of the
controlled object.

The main idea of automata-based programming is to distinguish
control states and computational states. The number of control
states is not large so they can be drawn on transition graph, each
of them differs qualitatively from others and they define actions.
The number of possible computational states can be very large
(and even infinite), they differ from each other quantitatively and
define only results of actions but not actions themselves.

In this paper, we focus on automata-based programs with only one
automated controlled object. We suppose that the controlled
object, events and output actions are predefined and our task is to
design the FSM.

3. FSM INDUCTION
Induction of FSMs with genetic algorithms has been studied by
several researchers. In [8] two approaches to induction of FSMs
from examples were compared. One of them is Evidence-Driven
State Merging (EDSM) and another one is based on evolutionary
algorithms. FSM is represented using the table of transitions.
Lucas and Reynolds take into consideration only automata over
binary alphabet, so, the total number of finite state machines with
n states is equal to n2n. The total size of search space is 2n·n2n
because each state can be either accepting or non-accepting.

To reduce the size of search space Lucas and Reynolds proposed a
“smart state labeling” algorithm to determine which states of FSM
are accepting and which are not. The size of reduced search space
is equal to n2n. Comparison of (1+1) evolutionary strategy with
EDSM shows that it outperforms EDSM when the number of
states is relatively small.

In [9] Lucas and Reynolds develop their approach further. They
propose two new methods of mutation which they called sampled
and quick-sampled mutation. They compared four algorithms –
plain (which do not use state labeling), smart state labeling,
sampled and quick-sampled. Results of experiments showed that
sampled algorithm has the best performance.

In [10] Lucas applied (1+1) evolutionary strategy to induction of
finite state transducers from the set of tests. Lucas and Reynolds
used three types of fitness function: based on strict comparison of
strings, based on Hamming distance [4] and based on edit
distance (Levenshtein distance) [7]. Experiments showed that the
edit distance function shows the best performance.

In [6] Johnson used verification (model checking) for fitness
evaluation. He used (1+λ) evolutionary strategy as optimization
method and computational tree logic to represent temporal
properties. Input data for the evolutionary algorithm consisted of a
set of temporal properties. To calculate the value of fitness
function model was checked against each of the properties and the
result is the number of properties which are true.

4. VERIFICATION OF AUTOMATA-

BASED PROGRAMS
To describe requirements for automata-based program we use
linear temporal logic (LTL) language. Time in this logic is
considered to be discrete and linear. LTL syntax contains
propositional variables Prop, Boolean operators (and, or, not) and

temporal operators. Temporal operators (X – neXt, F – in the

Future, G – Globally in the future, U – Until, R – Release) are
used to compose statements about future.

Verifier which we use in this paper takes as input the model to be
verified and an LTL-formula. The output of verification process is
either the counterexample (a path in a Kripke model) or the
confirmation of that the property holds for the model. This verifier
is described in [2] and [13].

5. GENETIC ALGORITHM
Input data for the algorithm consists of the set of possible events;
the set of possible output actions; the set of tests (is denoted by
Tests, each test consists of the sequence of input events Input[i],
and the corresponding sequence of output actions Answer[i]); the
set of LTL-formulae describing the requirements for the finite
state machine; the number Ns of states of FSM; the desired
number Nt of FSM transitions.

In ideal case the output of the algorithm is the FSM with Ns states
and Nt transitions that passes all tests and satisfies all LTL-
formulae. In non-ideal case this FSM may have more transitions
or pass not all tests or satisfy not all LTL-formulae.

The initial population consists of N randomly generated FSMs
with Ns states. The main reproduction strategy is elitism –
individuals are sorted in descending order according to their
fitness function values and part of most fit goes directly to the
next generation. After that the following process is repeated until
next generation size becomes equal to N. Two individuals from
the current generation are selected and then mutation or cross-
over is applied to them. Both individuals-results of this operation
are added to the next generation.

6. FITNESS FUNCTION EVALUATION
Fitness function evaluation is based on running the FSM on all
tests and checking the finite state machine against all LTL-
formulae. Each sequence Input[i] is given as input to the FSM and
the obtained sequence of output actions Output[i] is recorded.
After that the value FF1 is calculated:

n

ii

iin

i

)
|)][Answer||,][Outputmax(|

])[Answer],[OutputED(
1(

FF 1
1

∑
=

−

=

Here by ED(A, B) is denoted the edit distance. Note that the value of
FF1 is always between 0 and 1 and greater values correspond to
better compliance of finite state machine with tests. To take the
number of transitions into account the following value is calculated:

cnt)M(
1

FFFF 12 −⋅+⋅=

M
T

Here by cnt the number of transitions in finite state machine is
denoted, by T is denoted the “cost” of passing all tests (in
experiments T is equal to 100), M is an arbitrary number greater
that the number of possible transitions in FSM with N states and
given set of events (in experiments M is equal to 100).

Such a structure of fitness function means that between two finite
state machines behaving identically on tests the finite state
machine with fewer transitions will have the greater value of FF1.
Also the finite state machine that passes ideally all tests will have
the greater value of fitness function than the finite state machine
that does not pass one of the tests. Fitness depends on the number

760

of transitions because its minimization forces to delete the
transitions not used in tests. It its minimization partially solves the
over-fitting problem because with fewer transitions has more
“general” behavior.The final value FF of fitness function is
calculated using results of LTL-formulae checking:

2

1
2FFFF

n

n
F ⋅+=

Here by F is denoted the “cost” of “passing” all formulae (equal
to 10 in experiments), n1 is the number of LTL-formulae which
are true for the FSM and n2 is the total number of LTL-formulae.

7. INDIVIDUAL REPRESENTATION
Individual representation contains three parts: the number of
states; the number of initial state; an array containing descriptions
of states. Description of each state is the array of descriptions of
outgoing transitions. Each transition has three fields: the event
associated with this transition; the number of state which this
transition goes to; the number of output actions on it. Output
actions themselves are not encoded in the individual. They are
determined using transitions labeling algorithm. For example, the
individual given on Figure 2 has the following representation:
{2, 0, {{A, 1, 0}, {T, 1, 1}}, {{T, 1, 1}, {M, 0, 2}}}.

Figure 2. Example of the individual.

Transition labeling is done analogically to the state labeling algorithm
from [8]. The transition is labeled with a sequence of actions which
occurs most frequently on it in tests. Formally, for each transition T
and each sequence of output actions zs we calculate C[T][zs] – the
number of times sequence of output actions zs should be generated on
transition T in tests. After that each transition is labeled with the
sequence z for which the value C[T][z] is maximal.

8. CROSS-OVER
Let us denote “parent” FSMs as P1 and P2 and “offspring” FSMs
as S1 and S2. For initial states S1.is and S2.is one of the
following will be true: S1.is = P1.is and S2.is = P2.is; or S1.is =
P2.is and S2.is = P1.is. Since all FSMs have the same number of
states cross-over is performed for each state number separately.
Let us denote the list of transitions from state i of FSM A as
A.T[i]. The “transitions cross-over” can be performed using one of
the methods. First of them is “traditional cross-over”:

1. A list containing all transitions from both P1.T[i] and
P2.T[i] is constructed.

2. A random permutation is applied to this list.
3. One the following variants is chosen at random:

a. S1.T[i] will contain first |P1.T[i]| elements of
the list and S2.T[i] – remaining elements (by
|L| is denoted length of list L).

b. S1.T[i] will contain first |P2.T[i]| elements of
the list and S2.T[i] – remaining elements (by
|L| is denoted length of list L).

Second method is “test-based cross-over”:

1. In FSMs P1 and P2 we mark transitions which are used
in processing 10% of tests for which the difference

|)][Answer||,][Outputmax(|

])[Answer],[OutputED(

ii

ii between the output and

answer is minimal. This step is done during the
calculation of fitness function.

2. Transitions marked during the previous step are copied
to S1.T[i] (from P1.T[i]) and to S2.P[i] (from P2.T[i]).

3. A list L containing all non-marked transitions both from
P1.T[i] and P2.T[i] is constructed.

4. A random permutation is applied to this list.
5. List S1.T[i] is appended with first transitions from list L

until reaches the size |P1.T[i]|. All remaining transitions
are added to the list S2.T[i].

Results of verification are also used on the stage of cross-over. If
there is at least one LTL-formula that does not hold for the FSM
then the longest counter-example is taken. If during the cross-over
the transition from this counter-example is processed and this
transition is not marked (in test-based crossover) then with
probability of 10% is changed the number of output actions
associated with this transition and the number of state to which
this transition goes. After both traditional and test-based cross-
over duplicated transitions deletion is applied to FSMs S1 and S2.

After the cross-over the finite state machine can have two
transitions from one state with the same event (duplicated
transitions). In order to delete them the following operations are
done: the list of transitions is scanned and whether a transition
with event which is already used encounters it is deleted.

9. MUTATION
To perform the mutation each of the following operations is
applied to the finite-state machine with the probability equal to
0.05: change of initial state to randomly chosen one; change of
each transition; addition or deletion of transition for each state.
During the mutation results of verification are used in the similar
way as during the cross-over. That means that if it is chosen to
delete a transition from some state then if there is a transition from
the counter-example it is deleted. Otherwise, the transition is
chosen at random.

To change the transition one of following operations is chosen
with equal probabilities: change of the state to which the
transition leads by the randomly chosen; change of the event
associated with the transition by the randomly chosen; change of
the number of output actions associated with this transition – it is
either increased or decreased by one, but cannot become negative
or exceed MA (in experiments MA=3). Also if a transition
belongs to the counter-example it is changed in the similar way as
during cross-over. After the mutation duplicated transition
deletion (described in the previous section) is applied to the finite
state machine.

10. RESULTS
The genetic algorithm described in this paper was on problem of
designing finite state machine controlling the doors of elevator. In
this problem there are five events: e11 – button “Open the doors”
pressed, e12 – button “Close the doors” pressed, e2 – doors are
successfully opened, e3 – an obstacle prevents doors closing, e4 –
doors jammed. There are also three output actions: z1 – start
opening doors, z2 – start closing doors, z3 – call to emergency
service. The test set in this problem contains nine tests (see Table
1 for example of tests).

761

Table 1. Tests for FSM controlling the elevator doors

Input sequence Output sequence

e11, e2, e12, e2 z1, z2

e11, e2, e12, e2, e11, e2, e12, e2 z1, z2, z1, z2

e11, e2, e12, e3, e2, e12, e2 z1, z2, z1, z2

If we use only tests to design the finite state machine with genetic
algorithm we can get as a result the finite state machine (see
Figure 3) which passes all tests but works improperly in some
cases – this finite state machine can generate an output action
“start opening doors” when doors are open or it can generate an
output action “start closing doors” when the doors are jammed.

Figure 3. Finite state machine constructed using only tests.

Requirements for the FSM for elevator doors are expressed using
five LTL-formulae (two of them are given in Table 2).

Table 2. LTL-formulae for FSM controlling the elevator doors

LTL-formula Output sequence

G(wasEvent(ep.e11) =>
wasAction(co.z1))

If button “Open the doors pressed”
then start opening doors

G(wasEvent(ep.e4) <=>
wasAction(co.z3))

Call to emergency service is done if
and only if doors are jammed

Using these LTL-formulae together with tests as a specification
we can construct the finite state machine (see Figure 4) that works
properly in all cases.

Figure 4. FSM constructed using tests and LTL-formulae.

To measure the performance of the algorithm 1000 runs were made
for induction from tests only and from test and LTL-formulae.
Following values of algorithm parameters were used in these
experiments: population size – 2000; the number Ns of states of
FSM – 6; the desired number Nt of FSM transitions – 7; elite size –
10%; mutation probability – 5%. For each run the number of fitness
function calculations was recorded (see Table 3 for statistics). In
test-based induction the correct FSM was constructed only in 9
cases of 1000, in verification and test-based in all 1000 cases.

Table 3. Number of fitness function calculations

Test-based

induction

Verification and

test-based induction

Average 7.479 × 104 7.246 × 105

Minimal 2.184 × 104 7.054 × 104

Maximal 2.999 × 105 5.492 × 106

Standard deviation 2.54 × 104 7.729 × 105

11. CONCLUSION
In this paper, we described the method of FSM induction using
genetic algorithm with fitness function, cross-over and mutation
based on testing and model checking. The input data for the
algorithm described is a tests set and LTL-formulae set. The main
idea of this method is the reduction of search space with transition
labeling algorithm, the test based cross-over and mutation which
uses results of LTL-formula verification.

This method was applied the problem of elevator doors control
FSM induction. In it usage of verification helped to induct the
correct FSM that could be hardly constructed using tests only.

Future work includes development of cross-over methods that
uses results of verification.

The research was supported by Ministry of Education and Science
of Russian Federation in the context of Federal Program
“Scientific and pedagogical personnel of innovative Russia”.

12. REFERENCES
[1] Clarke, E., Grumberg, O., Peled, D. Model Checking. The

MIT Press, 2001.
[2] Egorov, K., Shalyto, A. Method for Verification of

Automata-Based Programs (in Russian). Information and
Control Systems (Informatsionno-upravljajuschie sistemy).
St. Petersburg, Politehnika. 2008, № 5, pp. 15–21.

[3] Gurov, V., Mazin, M., Narvsky, A., Shalyto, A. Tools for

Support of Automata-Based Programming. Programming
and Computer Software, 2007, Vol. 33, No. 6, pp. 343–355.

[4] Hamming, R. Error detecting and error correcting codes. Bell

System Technical Journal 29 (2), pp. 147–160.
[5] Hoffman, L. Talking Model-Checking Technology.

Communications of the ACM, 2008, Vol. 51. № 7, pp. 110–
112.

[6] Johnson, C. Genetic Programming with Fitness based on
Model Checking. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2007. Volume 4445/2007, pp.
114–124.

[7] Levenshtein, V. Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics Doklady

10: 707–10. 1966.
[8] Lucas, S., Reynolds, J. Learning DFA: Evolution versus

Evidence Driven State Merging. The 2003 Congress on

Evolutionary Computation (CEC '03). Vol. 1, pp. 351–358.
[9] Lucas, S., Reynolds, J. Learning Deterministic Finite

Automata with a Smart State Labeling Algorithm. IEEE

Transactions on Pattern Analysis and Machine Intelligence.
Vol. 27, №7, 2005, pp. 1063–1074.

[10] Lucas, S. Evolving Finite-State Transducers: Some Initial
Explorations. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg. Volume 2610/2003, pp. 241–257.

[11] Polikarpova, N., Shalyto, A. Automata-based programming.
Piter, 2009 (in Russian).

[12] Shalyto, A. Logic Control and Reactive Systems:

Algorithmization and Programming. Automation and
Remote Control, Vol. 62, No. 1, 2001, pp. 1–29.

[13] Verification Technology of Automata-Based Control
Programs with Complex Behavior. Report (in Russian).
SPbSU ITMO. 2007.
http://is.ifmo.ru/verification/_2007_02_report-verification.pd

762

