
Genetic Algorithm for Induction of Finite Automata
with Continuous and Discrete Output Actions

Anton Alexandrov
St. Petersburg State University of IT,

Mechanics and Optics
Russia, St. Petersburg,

Kronverksky pr., 49
+7 (812) 232-43-18

alexandrov@rain.ifmo.ru

Alexey Sergushichev
St. Petersburg State University of IT,

Mechanics and Optics
Russia, St. Petersburg,

Kronverksky pr., 49
+7 (812) 232-43-18

alserg@rain.ifmo.ru

Sergey Kazakov, Fedor Tsarev
St. Petersburg State University of IT,

Mechanics and Optics
Russia, St. Petersburg,

Kronverksky pr., 49
+7 (812) 232-43-18

{svkazakov,tsarev}@rain.ifmo.ru

ABSTRACT

In this paper, we describe a genetic algorithm for induction of finite
automata with continuous and discrete output actions. Input data for
the algorithm is a set of tests. Each test consists of two sequences:
input events and output actions. In previous works output actions
were discrete, i.e. selected from the finite set, in this work output
actions can also be continuous, i.e. represented by real numbers.
Only the structure of automaton transitions graph is evolved by the
genetic algorithm. Values of output actions are found using
transition labeling algorithm, which aim is to maximize the value of
fitness function. New transition labeling algorithm is proposed. It
also works with continuous output actions and is based on equations
system solving. In case of proper selection of fitness function,
equations in this system are linear and it can be solved by the
Gaussian elimination method. The unmanned airplane performing
the loop is considered as an example of the controlled object.

Categories and Subject Descriptors

I.2.2 [Artificial Intelligence]: Automatic Programming –
program synthesis.

General Terms

Algorithms.

Keywords

Genetic Programming, Finite Automaton, Finite Automaton
Induction, Continuous Output Actions.

1. INTRODUCTION
In the context of automata-based programming [1, 2] the behavior of
software systems is described with so called automated controlled
objects. Each automated controlled object consists of a controlled object
and a finite automaton. The automaton takes events and variables as an
input and outputs so called output actions for the controlled object. For
many problems finite automata can be built manually, but there are
problems for which manual construction is very difficult. Examples of
such problems are “Artificial ant” [3, 4] and unmanned aircraft
control [5].

There are several approaches to the latter problem. One of them is
the induction of “ideal” trajectory from several flights performed by
a human pilot [6]. Other approach is the usage of genetic algorithms
for finite automata design [7–11]. In the paper [12] genetic
algorithm is used for generation of top-level finite automaton for the
unmanned aircraft control. The fitness function in [12] is calculated
with behavior modeling of the unmanned aircraft in the
environment. That modeling is a very time-consuming process and
the fitness function evaluation for one automaton takes about 5
minutes. Therefore, all the process of evolving automaton may take
several days or even months.

The goal of this paper is to describe the genetic algorithm for finite
automaton induction which does not use modeling for the fitness
function evaluation. It is proposed to use tests to describe the
behavior of the controlled object. Tests are recorded during the
control by a human. If enough tests are given as an input then it is
expected that inaccuracies of the human control can be eliminated.
This approach extends the approach described in paper [13] (only
discrete output actions are considered there). In this paper output
actions can also be continuous (represented by real numbers).

2. PROBLEM DEFINITION
The input data for the genetic algorithm is a set of tests which
structure is described in the section 2.2. The goal of the genetic
algorithm is to construct the finite automaton which behavior on
these tests is as close as possible to the desired one.

2.1 Controlled Object
Controlled object is characterized by the set of its state parameters
and the set of its controls. State parameters are called input

parameters later on. E.g., if the controlled object is an airplane,
one of the state parameters is its altitude. Parameters associated
with controls are called control parameters. E.g., if the controlled
object is also an airplane, one of the controls is the starter, another
one is the control column. An example of the control parameter is
the aileron angle, another one is the elevator angle. Some of the
control parameters are discrete, i.e. their values are selected from
some finite set (corresponding controls are called discrete

controls), while other control parameters are continuous, i.e. their
values are real numbers (corresponding controls are called
continuous controls). Output actions changing discrete parameters
are called discrete actions, and changing continuous parameters
are called continuous actions. At each moment of time the value
of the control parameter is the cumulative value of corresponding
actions for previous moments of time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0690-4/11/07...$10.00.

775

A continuous action changes the control parameter by some value
and a discrete action sets the parameter to some value. Note that
consecutive continuous actions are equivalent to the sum of these
actions and consecutive discrete actions are equivalent to the last
one. E.g., one of the continuous control parameters for the
unmanned airplane is the aileron angle. The aileron rotation by
some angle is a continuous action for this control. So, consecutive
rotations by angles x and y are equivalent to one rotation by the
angle x+y. An example of the discrete control is the starter. There
are two discrete actions for it: “turn on” and “turn off”. A
sequence of these actions is equivalent to the last of them.

2.2 Training data
Each test T consists of two parts: T.in and T.ans (see Figure 1).

Figure 1. Test structure.

Each of these two parts is a sequence of length T.len: first of them
contains values of input parameters and the second one contains
reference values of control parameters recorded during human
control. Each element T.in[t] of the input sequence contains P
numbers: values of parameters at the moment of time t. Each
element T.ans[t] contains two collections of numbers: T.ans[t].d
and T.ans[t].c. Collection T.ans[t].d contains values of D discrete
parameters and T.ans[t].c – values of C continuous parameters. A
sequence of control parameters produced by a finite automaton on
test T will be denoted as T.out. Its structure is the same as
structure of T.ans. The test number i will be denoted by T[i] later
on. Total number of tests will be denoted by N.

2.3 Automaton-controlled object interaction
First of all, we define a predicate. A predicate is a statement about
the controlled object state that can be written as mathematic
formula. That formula can depend not only on input parameters at
the current moment of time, but also on parameters of states in
previous moments of time. E.g., the predicate can be “the airplane
is descending”, that is, current airplane altitude is strictly less than
the previous one. The list of predicates that can be used is
automaton is composed manually before running the genetic
algorithm and is not changed during the run.

The main scheme of the interaction is shown on Figure 2.

Figure 2. Automaton and controlled object communications.

In the beginning of each time step “Predicates’ values calculator”
receives values of each input parameter and calculates values of
each predicate. Values of these predicates are processed by
automaton in ascending order of their numbers. After getting a
sequence of actions from the automaton, one resulting action is
calculated. This action is applied to control parameters and their
new values are sent to the controlled object.

3. Genetic algorithm
The proposed method differs from the classical genetic algorithm
by an additional step which is done before the fitness function
calculation – the transition labeling algorithm. This algorithm is
similar to the one proposed in [14] and [15], but it works not only
for discrete actions but for continuous as well.

3.1 Individual Representation
A finite automaton is represented as an object containing
descriptions of transitions for each of the states and the initial
state. The number of states is fixed and is the same for all finite
automata generated during one run of the algorithm. The guard
condition is specified for each transition. This condition has one
of two forms: either “xi” or “¬xi” where xi is the i-th predicate.
Output actions are not specified on transitions, that is, an
individual is just a “skeleton” of a finite automaton. Concrete
actions are to be determined by the transition labeling algorithm.
An output action on one transition consists of a D–tuple of actions
on all discrete controls and a C–tuple of actions on all continuous
controls. Skeleton is represented with the full transition table: for
each state and each value of each predicate (value can be “true” of
“false”) there can be a transition.

3.2 Fitness Function
A fitness function represents how close the behavior of the
inducted automaton is to the desired one. It is calculated using the
following formula:

∑
=

−=
N

i ansiT

ansiToutiT

N
Fitness

1
2

2

)0,].[(

)].[,].[(1
1

ρ

ρ

To calculate it, each of the N input sequences T[i].in is given to
the automaton as an input and corresponding output sequences
T[i].out are recorded. In the formula above 0 is a sequence of zero
controls and ρ(out, ans) is a denotation of a distance between
sequences of control parameters, which is calculated using the
following formula:

[] ()∑ ∑∑
= ==

−+≠=

lenT

t

C

k

D

k

kctanskctoutkdtanskdtoutansout
.

1 1

2

1

][].[][].[][].[][].[),(ρ

Here D stands for the number of discrete controls, C – continuous.

As mentioned above, before calculating the fitness function the
transition labeling algorithm is applied to an individual. Its goal is
to find values of output actions leading to the maximal possible
value of the fitness function for the “skeleton” represented by the
given individual.

3.3 Transition Labeling Algorithm
First of all, for the purpose of the transition labeling all transitions
of the automaton that is launched on all tests are recorded. To
maximize the fitness function it is sufficient to minimize the
following sum:

∑
=

N

i),ans].i[T(

)ans].i[T,out].i[T(

1
2

2

0ρ

ρ

776

Sums corresponding to different control parameters can be
minimized independently. Therefore, we need to minimize the
following sum:

[]
∑

∑

=

=

≠
N

i

len].i[T

t

),ans].i[T(

]k[d].t[ans].i[T]k[d].t[out].i[T

1
2

1

0ρ

for each k in the range [1 .. D] and the sum:

()
∑

∑

=

=

−
N

i

len].i[T

t

),ans].i[T(

]m[c].t[ans].i[T]m[c].t[out].i[T

1
2

1

2

0ρ

for each m in the range [1 .. C].

To find the values of discrete parameters we can rewrite the first
expression in the following way:

[]
=

≠
∑∑ ∑

= = ∈

N

i

n

j Timet j,i
),ans].i[T(

]k[d].t[ans].i[T]k[d].t[out].i[T

1 1
20ρ

[]
∑∑ ∑

= = ∈

≠
=

n

j

N

i Timet j,i
),ans].i[T(

]k[d].t[ans].i[T]k[d].t[out].i[T

1 1
20ρ

by grouping items corresponding to each transition. Here Timei,j
consists of such values of t, that the last transition performed by
the automaton on the test i equals to j, and n stands for the
number of transitions in the automaton. This transformation
implies that we can minimize sums

[]
∑ ∑

= ∈

≠N

i Timet j,i
),ans].i[T(

]k[d].t[ans].i[T]k[d].t[out].i[T

1
20ρ

 for each j in the

range [1 .. n].

Now notice that T[i].out[t].d[k] equals to the value of the k-th
discrete parameter on the j-th transition when t belongs to

j,i
Time .

Let's denote it by u and group items with the same value of
T[i].ans[t].d[k]. These transformations give us:

[] []
∑ ∑∑∑∑ ∑

= ∈= == ∈

=
≠

=
≠G

h TimeVt

G

h

N

i

h
N

i TimeVt h,j,ih,j,i
),ans].i[T(

vu

),ans].i[T(

]k[d].t[ans].i[Tu

1 1 1
2

1
2

1
00 ρρ

[] []∑ ∑∑∑
= == =

≠=
≠

=
G

h

N

i

hji

hhji

G

h

N

i

h

ansiT

TimeV
vuTimeV

ansiT

vu

1 1
2

,,

,,

1 1
2)0,].[()0,].[(ρρ

.

Here vh stands for the value of the h-th discrete parameter, G is the
number of possible values of this parameter, TimeVi,j,h consists of
such values of t from Timei,j that T[i].ans[t].d[k] equals to vh.

Let's denote the chosen value of the k-th discrete parameter on the
j-th transition by vm. This gives us:

[] =≠∑ ∑
= =

G

h

N

i

hji

hm
ansiT

TimeV
vv

1 1
2

,,

)0,].[(ρ

=−= ∑∑∑
== =

N

i

mji
G

h

N

i

hji

ansiT

TimeV

ansiT

TimeV

1
2

,,

1 1
2

,,

)0,].[()0,].[(ρρ

∑∑
==

−=
N

i

mji
N

i

ji

ansiT

TimeV

ansiT

Time

1
2

,,

1
2

,

)0,].[()0,].[(ρρ
.

Thus, to minimize this expression we should choose m equal to

∑
=

N

i

hji

h ansiT

TimeV

1
2

,,

)0,].[(
maxarg

ρ
.

To find values of continuous parameters firstly notice that the
value of the m-th continuous parameter at the moment t (which is
T[i].out[t].c[m]) equals to the sum of the parameter initial value
(that is 0) and amounts of its changes on all transitions performed

before this moment, that is, ∑
=

=
n

j

jji utmctoutiT
1

,][][].[].[α . Here

uj stands for the amount of change of the m-th continuous
parameter on the j-th transition, and]t[j,iα is the number of

times the j-th transitions had been performed before the time t on
the test i. So, we should minimize the following sum:

∑
∑ ∑

=

= =

−

=
N

i

leniT

t

n

j

jji

ansiT

mctansiTut

S
1

2

].[

1

2

1

,

)0,].[(

][].[].[][

ρ

α

for each m in the range [1 .. C].

The partial derivative of S with respect to uh looks as follows:

∑ ∑ ∑
= = =

−=′

N

i

leniT

t

n

j

jjihiu mctansiTutt
ansiT

S
h

1

].[

1 1

,,2
][].[].[][][2

)0,].[(

1
αα

ρ

.

After equating each of the derivatives to zero we get the following
system of equations:

=

=

=

∑ ∑ ∑∑ ∑

∑ ∑ ∑∑ ∑

∑ ∑ ∑∑ ∑

= = == =

= = == =

= = == =

n

j

N

i

leniT

t

nij

N

i

leniT

t

jini

n

j

N

i

leniT

t

ij

N

i

leniT

t

jii

n

j

N

i

leniT

t

ij

N

i

leniT

t

jii

tmctansiT
ansiT

utt
ansiT

tmctansiT
ansiT

utt
ansiT

tmctansiT
ansiT

utt
ansiT

1 1

].[

1

,2
1

].[

1

,,2

1 1

].[

1

2,2
1

].[

1

,2,2

1 1

].[

1

1,2
1

].[

1

,1,2

.][][].[].[
)0,].[(

1
][][

)0,].[(

1

;][][].[].[
)0,].[(

1
][][

)0,].[(

1

];[][].[].[
)0,].[(

1
][][

)0,].[(

1

α
ρ

αα
ρ

α
ρ

αα
ρ

α
ρ

αα
ρ

…

It is necessary to notice that this system is linear which makes it
easy to solve. This linearity is caused by the structure of the
chosen fitness function.

4. Experiments
In order to check the efficiency of the method proposed the
problem of generating an automaton to control the plane
performing the loop trick is used. FlightGear airplane simulator
(http://flightgear.org) is used to model the airplane being
controlled. This software allows automated control of the airplane
as well as manual and it can record control parameters as well as
parameters of the flight. The problem is to generate an automaton
that can be used to control the plane performing the loop and then
continuing to fly ahead.

4.1 Usage of the method proposed
The following steps were performed:

• a set of predicates to describe the plane state was created;

• three independently used sets of tests were recorded: each
set consisted of 10 tests; each test consisted of a few
thousands input-output parameters sets; recording of
parameters was performing 10 times per second;

• the algorithm was run for several tests sets and several
algorithm parameters: population size – 100 individuals;
the automaton contained not less than 2 and not more than
5 states; mutation probability was 0.5 and 0.1; selection
strategy – tournament selection, crossover – generic
automaton crossover, mutation – generic automaton
mutation; elite size – 2 individuals;

777

All runs were performed on one core of Intel Core 2 Duo T7250

processor of the computer with OS Microsoft Windows XP. The
average running time of the algorithm was about 10 hours. This
time was sufficient to generate about 2000 generations. That
implies that the average individual processing time was about 0.2
sec. This is significally less than in paper [12].

The chosen predicates were: x0 – the engine is turned on; x1 –

speeding-up of changing direction of plane moving is greater than
zero; x2 – speed of changing direction of plane moving is greater
than zero; x3 – the value of deviation from the initial direction is
less than 1 degree; x4 – the value of deviation from the initial
direction is greater than zero;; x5 – speeding-up of changing of
plane heeling is greater than zero; x6 – speed of the changing of
plane heeling is greater than zero; x7 – plane heeling is small (less
than 1 degree); x8 – plane heeling is positive; x9 – speeding-up of
changing the vertical speed of the plane is greater than zero; x10 –

speed of changing the vertical speed of the plane is greater than
zero; x11 – vertical speed is small (less than 0.1 m/sec) x12 –

vertical speed is positive. The list of controls included magneto,
starter, throttle, ailerons, elevator and rudder. While the first two
controls were discrete, the others were continuous.

The results of running algorithms with different parameters
showed that automata with 3-4 states were rather good and that
more states automata had, the less understandable became its
structure and also its behavior became worse.

4.2 Results
Genetic algorithm was run about 50 times and the best automaton
was recorded for each run. These automata were analyzed by
authors by watching its flight, and the best one was chosen. This
automaton has 4 states and 68 transitions. During analyzing this
automaton authors noticed that depending on some external
conditions automaton performed the loop in three different ways.
In the most common case the plane performed exactly one loop
and then continue flying smoothly. Sometimes the plane
performed two loops one by one. It was explained by the fact that
the environment state after the first loop could be so close to the
one in the beginning of the test that the automaton couldn’t
distinguish them. It also seemed possible for the automaton to
perform more than two loops, but authors had never seen this
case. Sometimes the plane failed to perform the loop but this
behavior was very rare. Determing the exact conditions that imply
the behavior of the plane is to be investigated.

5. CONCLUSION
A genetic algorithm for induction of finite automata with
continuous and discrete output actions was proposed. This
method was successfully tested on the real problem. Results
showed that the generated automaton can provide better behavior
than human. As compared with [12], this method provides much
faster way to calculate the fitness function. Besides this
advantage, the fitness function used in this method is much more
general than the one used in [13]. Therefore, there is no need to
modify when changing the controlled object.

The research was supported by Ministry of Education and Science
of Russian Federation in the context of Federal Program
“Scientific and pedagogical personnel of innovative Russia”.

6. REFERENCES
[1] Polikarpova, N., Shalyto, A. Automata-based

programming. Piter, 2009 (in Russian).

[2] Shalyto, A. Logic Control and Reactive Systems:

Algorithmization and Programming. Automation and
Remote Control, Vol. 62, No. 1, 2001, pp. 1–29.

[3] Angeline, P., Pollack, J. Evolutionary Module Acquisition.
Proceedings of the Second Annual Conference on

Evolutionary Programming. Cambridge: MIT Press. 1993.
Р.154-163.

[4] Jefferson, D., Collins, R., Cooper, C., Dyer, M.,
Flowers, M., Korf, R., Taylor, C., Wang, A. The Genesys
System: Evolution as a Theme in Artificial Life.
Proceedings of Second Conference on Artificial Life. MA:
Addison-Wesley. 1992. P. 549–578.

[5] Paraschenko, D., Shalyto, A., Tsarev, F. Modeling
Technology for One Class of Multi-Agent Systems with
Automata Based Programming. Proceedings of 2006 IEEE

International Conference on Computational Intelligence

for Measurement Systems and Applications (CIMSA-2006).
La Coruna. Spain. 2006, pp.15– 20.

[6] Coates, A., Abbeel, P., Ng, A. Y. Learning for Control
from Multiple Demonstrations. Proceedings of the 25th

International Conference on Machine Learning. Helsinki:
2008. P.144 – 151.

[7] Gladkov, L. A., Kureichik, V. V., Kureichik, V. M.
Genetic Algorithms. Moscow. Fizmatlit, 2006.

[8] Russel, S., Norvig, P. Artificial Intellingence: A Modern

Approach. Prentice Hall, 2009.

[9] Koza, J. R. Genetic programming: on the programming of

computers by means of natural selection. MIT Press, 1992.

[10] Kureichik, V. M. Genetic Algorithms: State of the Art,

Problems, and Perspectives. Journal of Computer and
Systems Sciences International, 1999. Vol. 38, № 1, pp.
137–157.

[11] Kureichik, V. M., Rodzin S. I. Evolutionary Algorithms:

Genetic Programming. Journal of Computer and Systems
Sciences International, 2002. Vol. 41, № 1, pp. 123–132.

[12] Polikarpova, N., Tochilin, V., Shalyto A. Method of

Reduced Tables for Generation of Automata with a Large

Number of Input Variables Based on Genetic

Programming. Journal of Computer and Systems Sciences
International, 2010. Vol. 49, № 2, pp. 265–282.

[13] Tsarev, F. Method of finite state machine induction from

tests with genetic programming. Information and Control
Systems (Informatsionno-upravljajuschie sistemy, in
Russian). 2010. № 5, с. 31–36.

[14] Lucas, S., Reynolds, J. Learning Deterministic Finite
Automata with a Smart State Labeling Evolutionary
Algorithm // IEEE Transactions on Pattern Analysis and

Machine Intelligence. Vol. 27, №7, 2005, pp. 1063–1074.

[15] Lucas, S. Evolving Finite-State Transducers: Some Initial
Explorations. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg. Volume 2610/2003, pp. 241–257

778

