
Inheritance of Automata Classes Using Dynamic Programming Languages
(using Ruby as an Example)

Kirill Timofeev
SPbSU IFMO

email: ktimofeev@dataart.com

Artyom Astafurov
SPbSU IFMO

email: astaff@dataart.com

Anatoly Shalyto
SPbSU IFMO

email: shalyto@mail.ifmo.ru

Abstract

This paper analyzed two libraries for
implementation of automata in dynamic languages.
The comparison has been made based on modifying
the functionality of the Restful-authentication plugin
for Ruby on Rails framework.

These libraries allow transferring a graphical
model into a source code. Moreover library developed
by the authors of the paper provide a method for
creation of state groups which reduces the number of
transitions required to implement the automaton in the
code. Also this library preserved the hierarchy of the
parent automata after inheritance. Using developed
library it is possible to perform a reverse engineering
and restore the original graphical model from the
source code.

1. Introduction

Year over year the dynamic programming languages
are used more often in software development. For
example, in 2008 the proportion of dynamic languages
to the languages with static type checking was 40% [1].
Dynamic languages allow for runtime program
extension by dynamic creation of new methods and
usage of macro scripts [2]. Ruby is a dynamic
programming language and is a part of top 10 most
popular languages in 2008 [1]. Also this language has
been used to develop a popular open source web-
application framework Ruby on Rails. One of the
features of Ruby on Rails is a flexible functionality
extension mechanism that uses plugins that can be
added into Ruby on Rails application. Restlful-
authentication [4] is one of such plugins that allows for
web application to support user registration
functionality. This plugin is used in 96% [5] of
applications developed on Ruby on Rails and is
implemented using Automata approach.

Restful-authentication plugin uses Acts as State
Machine [6] library that doesn’t allow preserve the
hierarchy of the parent automata when the automaton is
inherited and doesn’t have nested groups of states

concept. This leads to duplicated code, makes
debugging more complicated and also doesn’t allow an
isomorphic generation of the model based on code
when necessary. In paper [2] a method for inheritance
of automata classes has been proposed, also a State
Machine on Steroids library has been developed to
support the concept. This library uses the traditional
object-oriented paradigm applied to automata and
extended with some features of dynamic libraries,
which means that automata classes are created in
runtime. Using the method proposed by authors of
paper [2] will help to eliminate the drawbacks of the
Restful-authentication plugin implementation.

The goal of this research paper is to compare the
approaches to inheritance of automata classes
described above using Restful-authentication plugin
implementation as an example.

2. Graphical Notation Being Used

As a graphical model it is proposed to use state
diagram from UML 2 [7] extended with graphical
notation for inheritance of automata classes. This
notation has been proposed in [8], as in UML 2 it is
impossible to present inheritance of automata classes.
The sample use of an extended graphical notation is
shown on fig.1.

Fig. 1. Extended Graphical Notation

On this figure the automaton class SampleUser is
presented. This class is inherited from automaton class

BasicUser and contains the following changes to its
base class:
 added a new group deleted which is made of two

states: blocked and deleted. The initial state is
set to “blocked”;

 the group activation has been overridden. It now
contains captcha state which is marked as initial.
A transition from this group to the new group
deleted as been added;

 new state suspended has been added. There is a
transition from suspended state to activation
group.

3. Problem Statement

Let’s take Restful-authentication plugin and review
it in more details. Assume, for example, that in order to
register successfully the user has to take three steps:
1. Fill in the registration form on the website;
2. Receive an e-mail with activation code;
3. Confirm the registration by entering the activation

code into a special form on the website.
In case the user hasn’t registered in a given period

of time or entered the activation code incorrectly
several times, he will be blocked and won’t be able to
register on the site any longer. The site administrator
can block the users as well as delete from the system.

On fig. 2 using the extended graphical notation the
automaton for basic user registration (BasicUser) is
presented.

Fig. 2. Basic user registration

It consists of activation group and suspended
and deleted states. The nested group activation
contains three states: passive, active and pending,
the latter is marked as initial.

The AdvancedUser automaton (fig. 3) is inherited
from BasicUser automaton and has the following
functionality:
1. After entering the activation code the user should

perform two additional actions: recognize Captcha
(to avoid spam registrations) and submit user data
on a profile page. In order to do this, a nested
group active should be created.

2. The deletion of the user is performed in two
stages: on the first stage the user is blocked, but
his messages are still being stored in the system,
on the second stage both: the user and his data are
deleted. In order to do this a nested group
deleted should be created.

Fig. 3. Extended User Registration Automata

4. The Implementation of Inheritance
using Act as State Machine Library

Let’s look at the BasicUser class that represents a
basic user in Restful-authentication plugin using Acts
as State Machine library. It provides four methods:
 acts_as_state_machine :initial – sets the

initial state of the automata;
 state – creates the state. As optional parameters

it accepts lambda-functions [2]: the actions to be
done when entering or leaving the state;

 event – named transition;

 transitions – defines from/to states for
making a named transition. As an optional
parameter the method accepts a lambda-function
that can contain a guard condition.

This library doesn’t support nested groups. In this
case in order to make an isomorphic transfer of a
diagram with nested groups into the code it is required
to modify the original BasicUser diagram as shown
on fig. 4 by “flattering” it:

Fig. 4. A Basic User Registration Automata
Without Nested Groups

Below is a Ruby code snippet that implements the
model described above:
class BasicUser
 acts_as_state_machine :initial => :pending

 state :passive
 state :pending, :enter =>
:make_activation_code
 state :active, :enter => :do_activate
 state :suspended
 state :deleted, :enter => :do_delete

 event :register do
 transitions :from => :passive, :to =>
:pending,
 :guard => Proc.new {|u| !
(u.crypted_password.blank? &&
u.password.blank?) }
 end

 event :activate do
 transitions :from => :pending, :to =>
:active
 end

 event :suspend do
 transitions :from => [:passive,
:pending, :active], :to => :suspended
 end

 event :delete do
 transitions :from => [:passive,
:pending, :active, :suspended], :to =>
:deleted
 end

 event :unsuspend do
 transitions :from => :suspended, :to =>
:active,
 :guard => Proc.new {|u| !
u.activated_at.blank? }

 transitions :from => :suspended, :to =>
:pending,
 :guard => Proc.new {|u| !
u.activation_code.blank? }
 transitions :from => :suspended, :to =>
:passive
 end
end

Let’s create a new class AdvancedUser which is
represented on the fig. 5. This class will be inherited
from BasicUser class. The new class will inherit the
internal structure of the BasicUser automaton created
using the methods of Acts as State Machine library.
Since the library doesn’t support nested groups the
hierarchy of the parent BasicUser automata will be
lost in the inherited AdvancedUser automata.

Fig. 5. The Model of the AdvancedUser
Automata Class After Losing the Hierarchy of the

Parent Automata

Below is the code that implements the
AdvancedUser automaton:

class AdvancedUser < BasicUser
 state :captcha
 state :registered
 state :blocked

 event :activate do
 transitions :from => :captcha, :to =>
:actived
 transitions :from => :pending, :to =>
:captcha
 end

 event :register do
 transitions :from => :activated, :to =>
:registered
 end

 event :unsuspend do
 transitions :from => :unsuspend, :to =>
:captcha
 end

 event :suspend do
 transitions :from => [:passive,
:pending, :active, :suspended, :captcha,
:registered], :to => :suspended
 end

 event :delete do
 transitions :from => [:passive,
:pending, :active, :suspended, :captcha,
:registered], :to => :deleted
 end
end

The approach described above has the following
drawbacks:
 The loss of hierarchy of the parent automata. This

results the inability to do the isomorphic transfer
of the code into the diagram preserving the
structure of the original diagram;

 No support for nested groups of states which
results in increase of the number of transitions in
the automaton.

5. The Implementation of Inheritance
Using State Machine on Steroids Library

In order to eliminate the drawbacks of the described
above approach, the author of this paper have
implemented a new library called State Machine on
Steroids. Like Acts as State Machine it uses dynamic
programming language to implement automata classes.
The library provides the following six methods:
 automaton – the method accepts the block as an

argument. The block has a DSL-syntax (Domain
Specific Language) designed to describe the
automaton [2];

 group – creates the nested group of states;
 initial – sets the initial state for the automaton;
 state – creates the state in the automaton in

runtime. As an optional parameter it accepts a
lambda-function that represents an action on
entering/leaving the state;

 event – named transition;
 transitions – defines the starting and the

destination states for the named transition. As an
optional parameter the method accepts a lambda-
function that serves as a guard condition for the
transition.

Let’s implement the automaton presented on fig. 2:
class BasicUser
 include StateMachineOnSteroids

 automaton :user, :initial => :activation do
 state :deleted

 group :activation, initial => :pending do
 state :pending do

 transition :activate, :to => :actived
 end

 state :passive do
 transition :register, :to =>

:pending,
 :guard => Proc.new {|u| !
(u.crypted_password.blank? &&
u.password.blank?) }
 end

 state :activated do
 transition :suspend, :to => :suspended
 transition :delete, :to => :deleted
 end

 state :suspended do
 event :unsuspend do
 transition :to => :active,
 :guard => Proc.new {|u| !
u.activated_at.blank? }
 transition :to => :pending,
 :guard => Proc.new {|u| !
u.activation_code.blank? }

 transition :to => :passive
 end
 end
 end
end

In code above every call to the method of the library
creates a separate class. This approach preserves the
structure of the parent automata BasicUser after
inheriting it.

Let’s implement the inherited class AdvancedUser
(fig. 3):
class AdvancedUser < BasicUser
 automaton :user do
 group :deleted, initial => :blocked do
 state :blocked do
 transition :remove, :to => :deleted
 end

 state :”user::activation::deleted” do
 end
 group :activation do
 group :active, initial => :captcha do
 state :captcha do
 transition :activate, :to =>
:activated
 end
 state :”user::activated” do
 transition :register, :to =>
:registered
 end
 state :registered
 end
 end
 transition :”user::delete”, :to =>
:deleted
 transition :”user::activate”, :to =>
:actived
 state :suspended do
 event :”user::unsuspend”, :to => :active
 end
 end
end

Using the described above State Machine on
Steroids library we were able to eliminate the
drawbacks of Acts of State Machine library, discussed
in Part 3 of this paper:
 a method for creation of state groups has been

introduced which reduces the number of transitions
required to implement the automaton in the code;

 the hierarchy of the parent automata is preserved
after inheritance. This allows to reference to the
previously created classes, for example we can
reference :”user::deleted”. Also this helps to
solve the problem of automatic isomorphic transfer
of the source code back to the graphical model.

6. Side-by-Side Comparison of Acts as
State Machine and State Machine on
Steroids Libraries

State Machine on Steroids library retains all the
advantages of the dynamic and object-oriented features
of Ruby programming language, such as:
 the ability to create the code using domain specific

language. As a result, the domain experts will be
able to easier understand, verify and modify the
source code;

 the support for the development of self-
documenting code;

 increase of the quality, reliability and
maintainability of the programs;

 preservation of the hierarchy during the inheritance
of the automata.

On a special note, one of the advantages of the State
Machine on Steroids library is the ability to perform an
isomorphic transfer of the graphical notation into the
source code and vice versa. This also allows to avoid
duplicate code that is produced as a result of the
implementation of group transitions in Acts as State
Machine library.

The number of transitions and states required to
implement the automaton displayed on the fig. 3 is
shown in the table below for the libraries described
above. Please note that State Machines on Steroids
library simplifies the code making it less redundant.

Table. The Comparison of Libraries

Library Transitions States Groups

Acts as State
Machine

20 8 -

State Machine on
Steroids

9 8 3

7. Conclusions

In this paper we have analyzed two libraries for
implementation of automata in dynamic languages. The
comparison has been made based on modifying the
functionality of the Restful-authentication plugin.

These libraries allow for transferring a graphical
model into a source code. At the same time a well-
known Acts as State Machine library doesn’t preserve
the hierarchy of the parent automata after inheritance
and doesn’t support isomorphic implementation of
nested groups of states.

The State Machine on Steroids library developed by
the authors of the paper eliminates the drawbacks listed
above. Also using this library it is possible to perform a
reverse engineering and restore the original graphical
model from the source code.

8. References

[1] TIOBE. “TIOBE Software: Tiobe Index”.
http://www.tiobe.com/index.php/content/paperinfo/tpci/index
.html

[2] Timofeev K. I., Astafurov A. A., and Shalyto A. A.
“Automata classes inheritance with dynamical language
Ruby” / Software Engineering Conference (Russia) 2008.
http://www.secr.ru/?pageid=4548&submissionid=5270

[3] David H. H. “Ruby on Rails”.
http://www.rubyonrails.com/

[4] Grant G. “Restful Authentication Generator”.
http://github.com/technoweenie/restful-
authentication/tree/master

[5] Szinek P. “Rails Rumble Observations, part II – trends in
gem/plugin usage”. http://www.rubyrailways.com/rails-
rumble-observations-part-ii-trends-in-gemplugin-usage/

[6] Scott B., “Acts as State Machine”.
http://agilewebdevelopment.com/plugins/acts_as_state_mach
ine.

[7] “Object Management Group. Official UML
Specification”. http :// www . uml . org /# UML 2.0

[8] Shopyrin D. G., and Shalyto A. A., “Graphical notation
for automata classes inheritance” // Programming. 2007. #5,
pp. 62–74. http://is.ifmo.ru/works/_12_12_2007_shopyrin.p
df

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://is.ifmo.ru/works/_12_12_2007_shopyrin.p
http://is.ifmo.ru/works/_12_12_2007_shopyrin.pdf
http://is.ifmo.ru/works/_12_12_2007_shopyrin.pdf
http://www.uml.org/#UML2.0
http://agilewebdevelopment.com/plugins/acts_as_state_machine
http://agilewebdevelopment.com/plugins/acts_as_state_machine
http://www.rubyrailways.com/rails-rumble-observations-part-ii-trends-in-gemplugin-usage/
http://www.rubyrailways.com/rails-rumble-observations-part-ii-trends-in-gemplugin-usage/
http://github.com/technoweenie/restful-authentication/tree/master
http://github.com/technoweenie/restful-authentication/tree/master
http://www.rubyonrails.com/
http://www.secr.ru/?pageid=4548&submissionid=5270

	1. Introduction
	2. Graphical Notation Being Used
	3. Problem Statement
	4. The Implementation of Inheritance using Act as State Machine Library
	5. The Implementation of Inheritance Using State Machine on Steroids Library
	6. Side-by-Side Comparison of Acts as State Machine and State Machine on Steroids Libraries
	7. Conclusions
	8. References

