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ABSTRACT 

In this paper, we describe the method of finite state machine 
(FSM) induction using genetic algorithm with fitness function, 
cross-over and mutation based on testing and model checking. 
Input data for the genetic algorithm is a set of tests and a set of 
properties described using linear time logic. Each test consists of 
an input sequence of events and the corresponding output action 
sequence. In previous works testing and model checking were 
used separately in genetic algorithms. Usage of such an approach 
is limited because the behavior of system usually cannot be 
described by tests only. So, additional validation or verification is 
needed. Calculation of fitness function based only on verification 
do not perform well because there are very few possible values of 
fitness function (verification gives only “yes” or “no” answer). 
The approach described is tested on the problem of finite state 
machine induction for elevator doors controlling. Using tests only 
the genetic algorithm constructs the finite machine working 
improperly in some cases. Usage of verification allows to induct 
the correct finite state machine.  

Categories and Subject Descriptors 

I.2.2 [Artificial Intelligence]: Automatic Programming – program 

synthesis, program verification. 

General Terms 

Algorithms, Experimentation, Verification. 

Keywords 

Genetic algorithm, model checking, finite state machine, 
automata-based programming, testing.  

1. INTRODUCTION 
In genetic programming, fitness function is usually evaluated by 
running the program on a number of test cases. Such an approach 
is connected with a number of difficulties. The main of them is 
that it is impossible to guarantee the behavior of the system on the 
test-cases not included into the training set. So, programs created 

using genetic programming or genetic algorithms based on tests 
cannot be used without additional testing or verification. If during 
this testing or verification some faults are found, program or test 
cases should be modified manually. Usually, it is not important, 
but in mission-critical systems this situation creates additional 
barrier to usage of such methods. 

One of the solutions to the problem described is the usage of 
program verification techniques on the stage of fitness function 
evaluation. A practical method of verification is model checking 
[1, 2]. Usage of this method implies that the program should be 
transformed into a finite state model (so called Kripke model) and 
properties to be verified should be written in temporal logic. The 
result of verification is either the counterexample or the 
confirmation of the fact that properties hold.  

For traditionally designed programs transformation of program to 
model and of counterexample from terms of model to terms of 
program can be rather difficult. These difficulties do not arise if 
the program is designed using automata-based 
programming [3, 11, 12]. Features of automata-based programs 
allow for automatically converting them into models which can be 
used for model checking. Counterexamples can be also converted 
automatically from the terms of model to the terms of program. 

2. AUTOMATA-BASED PROGRAMMING 
Automata-based programming is the programming paradigm in 
context of which it is proposed to design and implement the 
software system as a system of interacting automated controlled 
objects. Each automated controlled object consists of a finite state 
machine (FSM) and a controlled object (see Figure 1). 

 
Figure 1. Automated controlled object. 

FSM has a set of states, a transition function and an actions 
function. Controlled object has commands and requests 
(implemented by its methods) and a set of computational states. 

FSM takes events and input variables as input. They can come 
from other parts of the system as well as from the controlled 
object. After receiving an event or an input variable the FSM 
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makes transition on which some output action is sent to controlled 
object. Output action can also be performed on entering the state. 
Output actions can change the computational state of the 
controlled object. 

The main idea of automata-based programming is to distinguish 
control states and computational states. The number of control 
states is not large so they can be drawn on transition graph, each 
of them differs qualitatively from others and they define actions. 
The number of possible computational states can be very large 
(and even infinite), they differ from each other quantitatively and 
define only results of actions but not actions themselves. 

In this paper, we focus on automata-based programs with only one 
automated controlled object. We suppose that the controlled 
object, events and output actions are predefined and our task is to 
design the FSM. 

3. FSM INDUCTION 
Induction of FSMs with genetic algorithms has been studied by 
several researchers. In [8] two approaches to induction of FSMs 
from examples were compared. One of them is Evidence-Driven 
State Merging (EDSM) and another one is based on evolutionary 
algorithms. FSM is represented using the table of transitions. 
Lucas and Reynolds take into consideration only automata over 
binary alphabet, so, the total number of finite state machines with 
n states is equal to n2n. The total size of search space is 2n·n2n 
because each state can be either accepting or non-accepting.  

To reduce the size of search space Lucas and Reynolds proposed a 
“smart state labeling” algorithm to determine which states of FSM 
are accepting and which are not. The size of reduced search space 
is equal to n2n. Comparison of (1+1) evolutionary strategy with 
EDSM shows that it outperforms EDSM when the number of 
states is relatively small. 

In [9] Lucas and Reynolds develop their approach further. They 
propose two new methods of mutation which they called sampled 
and quick-sampled mutation. They compared four algorithms – 
plain (which do not use state labeling), smart state labeling, 
sampled and quick-sampled. Results of experiments showed that 
sampled algorithm has the best performance.  

In [10] Lucas applied (1+1) evolutionary strategy to induction of 
finite state transducers from the set of tests. Lucas and Reynolds 
used three types of fitness function: based on strict comparison of 
strings, based on Hamming distance [4] and based on edit 
distance (Levenshtein distance) [7]. Experiments showed that the 
edit distance function shows the best performance. 

In [6] Johnson used verification (model checking) for fitness 
evaluation. He used (1+λ) evolutionary strategy as optimization 
method and computational tree logic to represent temporal 
properties. Input data for the evolutionary algorithm consisted of a 
set of temporal properties. To calculate the value of fitness 
function model was checked against each of the properties and the 
result is the number of properties which are true. 

4. VERIFICATION OF AUTOMATA-

BASED PROGRAMS  
To describe requirements for automata-based program we use 
linear temporal logic (LTL) language. Time in this logic is 
considered to be discrete and linear. LTL syntax contains 
propositional variables Prop, Boolean operators (and, or, not) and 

temporal operators. Temporal operators (X – neXt, F – in the 

Future, G – Globally in the future, U – Until, R – Release) are 
used to compose statements about future. 

Verifier which we use in this paper takes as input the model to be 
verified and an LTL-formula. The output of verification process is 
either the counterexample (a path in a Kripke model) or the 
confirmation of that the property holds for the model. This verifier 
is described in [2] and [13]. 

5. GENETIC ALGORITHM 
Input data for the algorithm consists of the set of possible events; 
the set of possible output actions; the set of tests (is denoted by 
Tests, each test consists of the sequence of input events Input[i], 
and the corresponding sequence of output actions Answer[i]); the 
set of LTL-formulae describing the requirements for the finite 
state machine; the number Ns of states of FSM; the desired 
number Nt of FSM transitions. 

In ideal case the output of the algorithm is the FSM with Ns states 
and Nt transitions that passes all tests and satisfies all LTL-
formulae. In non-ideal case this FSM may have more transitions 
or pass not all tests or satisfy not all LTL-formulae. 

The initial population consists of N randomly generated FSMs 
with Ns states. The main reproduction strategy is elitism – 
individuals are sorted in descending order according to their 
fitness function values and part of most fit goes directly to the 
next generation. After that the following process is repeated until 
next generation size becomes equal to N. Two individuals from 
the current generation are selected and then mutation or cross-
over is applied to them. Both individuals-results of this operation 
are added to the next generation. 

6. FITNESS FUNCTION EVALUATION 
Fitness function evaluation is based on running the FSM on all 
tests and checking the finite state machine against all LTL-
formulae. Each sequence Input[i] is given as input to the FSM and 
the obtained sequence of output actions Output[i] is recorded. 
After that the value FF1 is calculated: 
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Here by ED(A, B) is denoted the edit distance. Note that the value of 
FF1 is always between 0 and 1 and greater values correspond to 
better compliance of finite state machine with tests. To take the 
number of transitions into account the following value is calculated: 
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Here by cnt the number of transitions in finite state machine is 
denoted, by T is denoted the “cost” of passing all tests (in 
experiments T is equal to 100), M is an arbitrary number greater 
that the number of possible transitions in FSM with N states and 
given set of events (in experiments M is equal to 100). 

Such a structure of fitness function means that between two finite 
state machines behaving identically on tests the finite state 
machine with fewer transitions will have the greater value of FF1. 
Also the finite state machine that passes ideally all tests will have 
the greater value of fitness function than the finite state machine 
that does not pass one of the tests. Fitness depends on the number 
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of transitions because its minimization forces to delete the 
transitions not used in tests. It its minimization partially solves the 
over-fitting problem because with fewer transitions has more 
“general” behavior.The final value FF of fitness function is 
calculated using results of LTL-formulae checking:  
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Here by F is denoted the “cost” of “passing” all formulae (equal 
to 10 in experiments), n1 is the number of LTL-formulae which 
are true for the FSM and n2 is the total number of LTL-formulae. 

7. INDIVIDUAL REPRESENTATION  
Individual representation contains three parts: the number of 
states; the number of initial state; an array containing descriptions 
of states. Description of each state is the array of descriptions of 
outgoing transitions. Each transition has three fields: the event 
associated with this transition; the number of state which this 
transition goes to; the number of output actions on it. Output 
actions themselves are not encoded in the individual. They are 
determined using transitions labeling algorithm. For example, the 
individual given on Figure 2 has the following representation: 
{2, 0, {{A, 1, 0}, {T, 1, 1}}, {{T, 1, 1}, {M, 0, 2}}}. 

 
Figure 2. Example of the individual. 

Transition labeling is done analogically to the state labeling algorithm 
from [8]. The transition is labeled with a sequence of actions which 
occurs most frequently on it in tests. Formally, for each transition T 
and each sequence of output actions zs we calculate C[T][zs] – the 
number of times sequence of output actions zs should be generated on 
transition T in tests. After that each transition is labeled with the 
sequence z for which the value C[T][z] is maximal. 

8. CROSS-OVER  
Let us denote “parent” FSMs as P1 and P2 and “offspring” FSMs 
as S1 and S2. For initial states S1.is and S2.is one of the 
following will be true: S1.is = P1.is and S2.is = P2.is; or S1.is = 
P2.is and S2.is = P1.is. Since all FSMs have the same number of 
states cross-over is performed for each state number separately. 
Let us denote the list of transitions from state i of FSM A as 
A.T[i]. The “transitions cross-over” can be performed using one of 
the methods.  First of them is “traditional cross-over”: 

1. A list containing all transitions from both P1.T[i] and 
P2.T[i] is constructed. 

2. A random permutation is applied to this list. 
3. One the following variants is chosen at random: 

a. S1.T[i] will contain first |P1.T[i]| elements of 
the list and S2.T[i] – remaining elements (by 
|L| is denoted length of list L). 

b. S1.T[i] will contain first |P2.T[i]| elements of 
the list and S2.T[i] – remaining elements (by 
|L| is denoted length of list L). 

Second method is “test-based cross-over”: 

1. In FSMs P1 and P2 we mark transitions which are used 
in processing 10% of tests for which the difference 
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answer is minimal. This step is done during the 
calculation of fitness function. 

2. Transitions marked during the previous step are copied 
to S1.T[i] (from P1.T[i]) and to S2.P[i] (from P2.T[i]). 

3. A list L containing all non-marked transitions both from 
P1.T[i] and P2.T[i] is constructed. 

4. A random permutation is applied to this list. 
5. List S1.T[i] is appended with first transitions from list L 

until reaches the size |P1.T[i]|. All remaining transitions 
are added to the list S2.T[i]. 

Results of verification are also used on the stage of cross-over. If 
there is at least one LTL-formula that does not hold for the FSM 
then the longest counter-example is taken. If during the cross-over 
the transition from this counter-example is processed and this 
transition is not marked (in test-based crossover) then with 
probability of 10% is changed the number of output actions 
associated with this transition and the number of state to which 
this transition goes. After both traditional and test-based cross-
over duplicated transitions deletion is applied to FSMs S1 and S2. 

After the cross-over the finite state machine can have two 
transitions from one state with the same event (duplicated 
transitions). In order to delete them the following operations are 
done: the list of transitions is scanned and whether a transition 
with event which is already used encounters it is deleted. 

9. MUTATION 
To perform the mutation each of the following operations is 
applied to the finite-state machine with the probability equal to 
0.05: change of initial state to randomly chosen one; change of 
each transition; addition or deletion of transition for each state. 
During the mutation results of verification are used in the similar 
way as during the cross-over. That means that if it is chosen to 
delete a transition from some state then if there is a transition from 
the counter-example it is deleted. Otherwise, the transition is 
chosen at random.  

To change the transition one of following operations is chosen 
with equal probabilities: change of the state to which the 
transition leads by the randomly chosen; change of the event 
associated with the transition by the randomly chosen; change of 
the number of output actions associated with this transition – it is 
either increased or decreased by one, but cannot become negative 
or exceed MA (in experiments MA=3). Also if a transition 
belongs to the counter-example it is changed in the similar way as 
during cross-over. After the mutation duplicated transition 
deletion (described in the previous section) is applied to the finite 
state machine. 

10. RESULTS 
The genetic algorithm described in this paper was on problem of 
designing finite state machine controlling the doors of elevator. In 
this problem there are five events: e11 – button “Open the doors” 
pressed, e12 – button “Close the doors” pressed, e2 – doors are 
successfully opened, e3 – an obstacle prevents doors closing, e4 – 
doors jammed. There are also three output actions: z1 – start 
opening doors, z2 – start closing doors, z3 – call to emergency 
service. The test set in this problem contains nine tests (see Table 
1 for example of tests). 
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Table 1. Tests for FSM controlling the elevator doors 

Input sequence Output sequence 

e11, e2, e12, e2 z1, z2 

e11, e2, e12, e2, e11, e2, e12, e2 z1, z2, z1, z2 

e11, e2, e12, e3, e2, e12, e2 z1, z2, z1, z2 

If we use only tests to design the finite state machine with genetic 
algorithm we can get as a result the finite state machine (see 
Figure 3) which passes all tests but works improperly in some 
cases – this finite state machine can generate an output action 
“start opening doors” when doors are open or it can generate an 
output action “start closing doors” when the doors are jammed. 

 
Figure 3. Finite state machine constructed using only tests. 

Requirements for the FSM for elevator doors are expressed using 
five LTL-formulae (two of them are given in Table 2). 

Table 2. LTL-formulae for FSM controlling the elevator doors 

LTL-formula Output sequence 

G(wasEvent(ep.e11) => 
wasAction(co.z1)) 

If button “Open the doors pressed” 
then start opening doors 

G(wasEvent(ep.e4) <=> 
wasAction(co.z3)) 

Call to emergency service is done if 
and only if doors are jammed 

Using these LTL-formulae together with tests as a specification 
we can construct the finite state machine (see Figure 4) that works 
properly in all cases. 

 
Figure 4. FSM constructed using tests and LTL-formulae. 

To measure the performance of the algorithm 1000 runs were made 
for induction from tests only and from test and LTL-formulae. 
Following values of algorithm parameters were used in these 
experiments: population size – 2000; the number Ns of states of 
FSM – 6; the desired number Nt of FSM transitions – 7; elite size – 
10%; mutation probability – 5%. For each run the number of fitness 
function calculations was recorded (see Table 3 for statistics). In 
test-based induction the correct FSM was constructed only in 9 
cases of 1000, in verification and test-based in all 1000 cases.  

Table 3. Number of fitness function calculations 

 
Test-based 

induction 

Verification and 

test-based induction 

Average 7.479 × 104 7.246 × 105 

Minimal 2.184 × 104 7.054 × 104 

Maximal 2.999 × 105 5.492 × 106 

Standard deviation 2.54 × 104 7.729 × 105 

11. CONCLUSION 
In this paper, we described the method of FSM induction using 
genetic algorithm with fitness function, cross-over and mutation 
based on testing and model checking. The input data for the 
algorithm described is a tests set and LTL-formulae set. The main 
idea of this method is the reduction of search space with transition 
labeling algorithm, the test based cross-over and mutation which 
uses results of LTL-formula verification. 

This method was applied the problem of elevator doors control 
FSM induction. In it usage of verification helped to induct the 
correct FSM that could be hardly constructed using tests only. 

Future work includes development of cross-over methods that 
uses results of verification. 

The research was supported by Ministry of Education and Science 
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