Опубликовано в материалах 2-й межвузовской научной конференции по проблемам информатики СПИСОК-2011, с. 370-372.

Тихомиров А. В.

Санкт-Петербургский государственный университет информационных технологий, механики и оптики

Генерация клеточных автоматов на основе обучающих примеров при помощи генетического программирования

Краткое вступление, постановка проблемы

B распространено настоящее время широко использование клеточных автоматов для симуляции многих физических процессов, например: диффузия энергии, разнообразные химические реакции, рост кристаллов и т.д использование Однако клеточных затрудняется тогда, когда физическая система известна, а описывающий ее клеточный автомат нет, или построение его обычными эвристическими методами затруднительно, так большое автомат может иметь состояний. число переходов, условий и действий на переход [5].

Цель настоящей работы – устранить этот недостаток, используя генетическое программирование.

Цель работы

Целью настоящей работы является разработка алгоритма автоматической генерации клеточных автоматов с заранее неизвестными числом переходов и условий на них при помощи генетического программирования.

Постановка задачи

Задана двумерная плоскость определенной размерности с координатной сеткой, которая делит плоскость на квадраты

[6, 7]. При этом задаются данные для различных временных шагов, т.е. состояние системы в начале, несколько промежуточных состояний и конечное состояние системы.

Каждая ячейка плоскости управляется одинаковым автоматом.

Цель поставленной задачи — вырастить клеточный автомат, который наиболее точно описывает заданную физическую систему.

Базовые положения исследования

Классический генетический алгоритм представляет собой эвристический метод поиска и оптимизации решений для задач моделирования, используя операции генерации случайного решения, скрещивания (комбинирование нескольких решений) и мутации (случайное изменение части известного решения). Общий принцип работы классического генетического алгоритма напоминает биологическую эволюцию.

Промежуточные результаты

В работе предложен улучшенный вариант классического генетического алгоритма для достижения поставленной цели.

В работе освещены следующие аспекты алгоритма:

- структура хромосомы клеточного автомата;
- генерация начального поколения;
- генетические операторы;
 - о операторы скрещивания;
 - о операторы мутации;
 - о дополнительные операторы;
- проблема вырождения популяции особей и методы ее решения;
- вычисление функции приспособленности и влияние на нее размерности клеточного автомата;

• алгоритм отбора нового поколения и исследование его влияния на время работы алгоритма.

Проведено сравнение скорости работы алгоритма со временем полного перебора всех возможных вариантов автоматов.

Полученные результаты

примера была Лля тестового поставлена вырастить клеточный автомат, зная только состояния клеток на каждом конкретном шаге расчетов. Эталонный клеточный автомат, сделанный для проверки, содержит 5 состояний, 8 переходов и 8 условий на переходах. Система в среднем автомат, который является эквивалентным выращивает 700-1000 поколений, искомому за при ЭТОМ среднее количество перебранных клеточных автоматов составляет 30000-45000.

Для ускорения процесса генерации было сделано автоматы, у которых что какого-либо ИЗ истинно условие у нескольких переходов, состояния являются корректными. На них было наложено условие, что при нескольких вариантах перехода, переход осуществляется в состояние с меньшим индексом.

После упрощения полученного клеточного автомата и сравнения его с эталоном было установлено, что эти автоматы являются идентичными.

Получившийся клеточный автомат содержит избыточные переходы, по которым никогда не происходит перехода. Однако при исследовании было установлено, что если задавать условие минимизации в генетических операторах и выборе нового поколения, то время работы системы сильно увеличивается.

Быстродействие предложенного способа сильно зависит от начальных настроек, таких как пропорции между генетическими операциями, величина начальной популяции и многими другими.

Заключение

В работе предложен метод генерации клеточных автоматов произвольного количества состояний. Он позволяет автоматически получать клеточные автоматы, которые довольно точно описывают данные о физической системе на входе. Также этот метод позволяет получать клеточные автоматы, которые получить эвристическими методами затруднительно

Литература

- 1. Тоффоли Т., Марголус Н. Машины клеточных автоматов. Мир, 1991.
- 2. Frish U. Lattice gas hydrodynamics in two and three dimensions // Complex Systems. 1987. V. 1. P. 649–707.
- 3. Wolfram S. Cellular automation Fluids // J.Stat.Phys. 1986. V. 45. P. 471–526.
- 4. Фон Нейман Дж. Теория самовоспроизводящихся автоматов: Пер. с англ. М.: Мир, 1971.
- 5. Царев Ф.Н., Шалыто А.А. Применение генетического программирования для генерации автомата в задаче об «умном муравье». http://is.ifmo.ru/genalg/ ant ga.pdf
- 6. Наумов Л.А. Метод введения обобщенных координат и инструментальное средство для автоматизации проектирования программного обеспечения вычислительных экспериментов с использованием клеточных автоматов. Дис... канд. техн. наук: 05.13.12. СПб, 2007. 283 с.
- 7. Скаков П.С. Классификация поведения одномерных клеточных автоматов. http://is.ifmo.ru/papers/_skakov_master.pdf