
National Research University of Information Technologies,
Mechahics and Optics

Computer Technologies Department

Michael Lukin, Sergey Velder,

Anatoly Shalyto, Bulat Yaminov

Verification of automata-based programs

St.Petersburg

2011

 2

Contents

Preface ... 3

Chapter 1. Validation of systems ... 6

1.1. Validation of systems tasks .. 6

1.2. Simulation ... 9

1.3. Testing ... 9

1.4. Formal verification ... 12

1.5. Model checking ... 18

1.6. Automatic theorem proving ... 23

Section 2. The mathematical apparatus of model

2.1. Modeling .. 25

2.2. Model checking for linear temporal logic .. 26
2.2.1. LTL Syntax ... 26
2.2.2. LTL Semantics ... 27
2.2.3. Verification of LTL using Buchi automata .. 29

2.3. Model checking for branching temporal logic ... 35
2.3.1. CTL syntax ... 37
2.3.2. CTL semantics .. 37

Section 3. Verificators overview .. 39

3.1. SPIN ... 39

3.2. SMV .. 44

Section 4. Verification of automata-based programs....................................... 47

4.1. Automata-based programs .. 47

4.2. Existing products abstract ... 50

4.3. Tools and subjects of verification .. 54
4.3.1. Automatic teller machine model .. 54
4.3.2. Properties of ATM to verify .. 57

4.4. Tools utilizing existing verifiers .. 58
4.4.1. Converter ... 58
4.4.2. Unimod.Verifier .. 63
4.4.3. FSM Verifier ... 70

4.5. Autonomous verifiers ... 77
4.5.1. CTL Verifier .. 77
4.5.2. Automata Verificator ... 88

Conclusion ... 92

Bibliography .. 94

Preface
Validation concept

In everyday life information technology are increasingly used both directly

(by using computers and internet) and indirectly (by using TV, microwaves,

mobile phones, cars, public transport etc). In 1995 it was estimated that a

person interacts daily with 25 devices processing information. We also

know that 20% of the cost of developing vehicles, trains and planes account

for computer components. Due to the high integration of information

technologies to all applications we have to increasingly rely on the

reliability of software and hardware. It is natural to assume that there must

not be situations when the phone is faulty or when the VCR is

unpredictable and incorrectly responds to commands sent from the control

panel. Nevertheless, these errors are in a certain sense insignificant.

However, errors in systems that are critical for safety, such as, for example,

nuclear power or flight control systems are not acceptable. The main

problem for such systems is that their complexity is rapidly increasing and,

consequently, the number of possible errors.

Even if we ignore the aspects of security, errors can still be very

expensive, especially if they occur after the product is released to the

market. There are several striking examples of such adverse effects. For

example, the error in the team division of floating point numbers in the Intel

Pentium caused damage of about $ 500 million. Major damage was caused

by the crash of Ariane-5 rocket, which probably occurred due to an

error in the flight control program.

Therefore, validation of the systems (the process of validation of

specifications, design and product) is an activity increasingly important.

Validation is a way to maintain the quality control systems.

Of particular importance is ensuring the quality of software. Modern

programming practice shows that the systems are checked by people (expert

analysis) and dynamic testing. Support of these processes, even by relatively

simple tools, not to mention the methods and tools with the serious

mathematical base, is currently imperfect.

In view of the increasing size and complexity of systems, it is important to

ensure the validation process systems using techniques and tools that

facilitate the automatic analysis of correctness, as, for example, manual

verification can be as inaccurate as the program itself.

 4

Methods of validation systems

The most important methods of validation are expert analysis, testing,

simulation, formal verification and validation of models. Will focus on two

of them.

Testing is an effective way to verify that a given implementation of a system

fit to the abstract specification. Testing can only be used after the

implementation of the prototype system.

Formal verification, as opposed to testing is based on a mathematical proof

of the correctness of programs.

Both of these methods can be supported and partially supported by the tools.

For example, in testing there is a growing interest in developing algorithms

and software for automatic generation and selection of tests on a formal

specification of the system. The basis for formal verification is a program

for automated theorem proof and test evidence, but even their use usually

requires highly skilled users.

Model checking

The book covers a different validation method: model checking. This is an

automated method which for a given model of system behavior with a finite

number of states and logical properties, recorded in a suitable logical

formalism (usually in the temporal logic), checks the validity of this

property in this model. Model checking can be used to verify both hardware

and software. The success of a number of projects using this method of

verification increases the interest in it. For example, Intel has launched

several research laboratories verification of new chips. An interesting aspect

of model checking is that it supports partial verification: the system can be

tested by a partial specification when considering only a subset of all claims.

The subject of the book review

The book is dedicated to the concepts, algorithms and tools for model

checking software.

Ideas of testing models have such mathematical foundation as logic,

automata theory, data structures, algorithms on graphs.

 5

The book is structured as follows. The first chapter is about general issues of

validation of software systems. We consider the formulation of the problem

of validation and define the role of validation in software. Also different

types of validation are distinguished, the basic concepts and definitions for

each of them are given.

The second chapter outlines the theoretical issues of model checking, we

introduce the different formalisms of temporal logics and model checking

algorithms are described for the specifications expressed in these temporal

logics. There are two types of models: Kripke models and Petri nets. Also

some mathematical results concerning the properties of these models are

presented.

Three types of test models are described: for linear and branching temporal

logics and temporal logic for real-time. The first two capture the functional

and qualitative aspects of the system, and the third is also to conduct a

quantitative analysis.

The third chapter demonstrates the model-checking algorithms on examples

of specific tools. A short description of the syntax of these tools and

examples of the implementation of communication algorithms are given.

Also there are results of testing models of these algorithms.

The presentation of general issues validation, the mathematical formalism

and examples of verification models in first three chapters are according to a

course of lectures of P. Cato [1].

The fourth chapter is devoted to the verification of program models that are

based on automata approach [2]. The main feature of these programs is that

the model behavior of the program, presented as a system of control

automata state for which code is generated, is built by the developer already

at the design stage, rather than on the final program, as proposed to do with

the traditional method of using model checking. These programs come in

line with other engineering developments (such as airplanes and cars), for

which the models are first created, and then based on them goods are

manufactured, and not vice versa.

This edition is a translation of the main sections, made by M. Lukin, a

monograph by the same authors with the same name, which is published by

the publishing house “Nauka”, Saint-Petersburg in 2011.

 6

Chapter 1. Validation of systems

1.1. Validation of systems tasks

Introduction and motivation

The systems which are connected with the information processing more and

more often provide critical services. They are used in a some conditions

when failure could lead to the fatal consequences. Information processing

widely used in such systems as nuclear power plant or chemical reactors. In

these systems the errors are very dangerous. Another example of widely-

distributed systems which are critical to safety is irradiative medical gadget.

So we could say that robustness and safety of information processing is a

key factor in these systems.

How can we ensure safety of program systems? Usually program

development begins from analisys of the acceptance criteria. After passing

of several development phases the prototype is come out. Validation is the

process of evaluating software during or at the end of the development

process to determine whether it satisfies specified requirements. In a

diagram form the strategy of validation strategy is represented in fig. 1.1 [1].

Fig. 1.1. Schematic view of posterior validation

What is the general practice solution to the question when to validate?

Clearly that the error checking only in the end of the development is not

acceptable: if an error is found, required a lot of effort to fix it, because the

whole development process must be passed again, to see where and how the

error could occur. Such operations are usually expensive. Therefore, it is

advisable to validate “on the fly” – in the process of developing system, as it

significantly reduces the cost of development. Schematically, this process is

shown in Fig. 1.2.

Fig. 1.2. Schematic view of “on-the-fly” validation

 7

In practice, in order to ensure that the final result actually does what was

prescribed there are two methods: expert analysis and testing. Researching

on development programs show that 80% of all projects use expert analysis.

Expert analysis is a fully manual activity in which a prototype or its part is

researched by a team of experts who were not involved in the development

of the system components. Testing is an important method of validation to

validate the received implementations. However, tests are usually generated

manually, and there is little attention given to instrumental support.

Validation of system is an important step in their development: most of the

projects spent more time and effort on validation than on development.

Mistakes can be very expensive. For example, the error in the Denver

baggage handling system delayed the opening of a new airport to nine

months (expense – $ 1.1 million per day).

Validation of the system as a part of development process

Interviews with specialists of a number of companies engaged in software

development, has once again shown that the validation of systems must be

integrated into the development process at an early stage. This is true, in

particular, from an economic point of view, but now most of the errors are

found during testing, where software modules are already composed and the

whole system is studied.

Formal methods

For quality assurance of complex software systems it is required the use of

modern methods and tools that support the validation process. The currently

applied methods of validation are highly specialized and based on

specifications formulated in natural language. Therefore, this book examines

approaches to validation based on formal methods. When using such

techniques design systems should be defined in terms exact and

unambiguous specifications that provide the basis for systematic analysis.

List the basic approaches to validation:

1. Simulation.

2. Testing.

 8

3. Formal verification.

4. Model checking (verification on model).

Later we will briefly discuss the first three approaches, but the main theme,

as noted above, is model checking.

Reactive Systems

This book focuses on the validation of reactive systems. Reactive systems

are characterized by continuous interaction with the environment. They take

the inputs from its environment and usually with little delay, react to them.

Typical examples of this class of systems are operating systems, aircraft

control systems, vehicles and processes, communication protocols, etc. For

example, the control of chemical processes on a regular basis takes the

control signals such as temperature and pressure at different points of the

process. Based on this information, the program may decide to include a

heating element, turn off the pump, etc. If you have a dangerous situation,

for example, the pressure in the tank outside certain limits, the control

program must perform certain actions. Typically, such reactive systems are

quite complex.

As noted above, the correctness of reactive systems is crucial. To build a

working rocket system correctly requires a clear methodology, which

distinguishes the following phases.

1. On the basis of an exhaustive analysis of the requirements its

specification should be formed.

2. Conceptual design gives an abstract specification of the project. This

specification can be checked for consistency and compliance. This

validation process can be supported by formal verification, simulation

and model testing – such processes, in which the model of an abstract

design specification (for example, a system of state machines) can be

exhaustively tested.

3. When a credible specification is obtained, move to a system that

implements an abstract specification. In this testing is a useful method

of checking the implementation for compliance original requirements.

 9

1.2. Simulation

Simulation is based on a model that describes the possible behavior of the

system. This model is feasible in a certain sense, while the software tool

(called a simulator) can determine the system behavior in relation to some

scenarios. In this way the user gets a certain understanding of how the

system responds to stimulus. Scripts can be supplied by the user or a tool

such as, for example, a generator, which constructs random scenarios.

Simulation is mainly useful for rapid, initial assessment of project quality. It

is not well suited to find subtle bugs as simulation of all possible scenarios is

impractical (and frequently impossible).

1.3. Testing

As noted above, a widely used traditional way of validation of project

correctness is testing [6]. In testing system used in the form in which it is

implemented (program, device, or combination of them). Certain values of

the input data, called tests are served to its entrance, and the response of the

system is studied. After it we check whether the response of the system

corresponds to the required output. Principles of testing are almost the same

as in the simulation. Their major difference lies in the fact that testing is

done on the current system implementation, and simulation – on a model of

system.

Testing is a validation method that is widely used in practice, but almost

always performed on the basis of informal and heuristic methods. As testing

is based on the consideration of only a small subset of possible examples of

system behavior, it can never be complete. E. Dijkstra pointed out that

testing can only show the presence of bugs but not their absence.

Testing, however, can complement the formal verification and validation of

models that run on a mathematical model of the system rather than actual

system. As the testing is used to realization it is useful mainly in the

following cases:

¶ when the correct model of system is difficult to build;

¶ when parts of the system can not be formally modeled (for example,

physical devices);

¶ when the model is proprietary.

Generally, testing is the dominant method of validation systems. It is applied

to a number of tests that are normally received heuristically. In recent years,

 10

however, an interest in the application of formal methods in testing is

increasing. For example, in the field of communication protocols, this type

of research has led to a draft international standard, “Formal methods in

testing fitness”. The testing process is divided into several phases:

1. Test generation. Abstract descriptions of the tests are generated

systematically on the basis of exact and unequivocal set of properties

required in the specification.

2. The choice of tests. The set of samples of abstract descriptions of the

tests are chosen.

3. The implementation of tests. Abstract descriptions of the tests are

transformed into executable tests.

4. Execution of tests. Executable tests are used to test the implementation

by running them on a testing system. Considered and recorded the results

of execution.

5. Test analysis. Logged results are analyzed to determine if they satisfy the

expected results.

6. The different phases of testing can intersect and often intersect in

practice, especially the last.

Testing is a method that can be used as prototypes in the form of systematic

simulation, as well as to the final products. There are two known basic

approaches: the white-box testing, when the internal structure of the

implementation can be observed and sometimes partially controlled

(stimulated), and black box testing. In the second case only communication

between the test system and the environment can be verified, and the

internal structure of the “box” is completely hidden from the tester. In

practical circumstances, testing is somewhere between these two extremes,

and sometimes is called as gray box testing.

List the main types of tests.

1. Unit tests. Test is written for a class, a separate method of this class,

etc. Usually one script of using of class, method, or a module is

checked.

2. Functional tests. Not an element of the code is testing but

functionality. These tests make possible identifying structural errors.

3. Acceptance tests. Verified that the program does exactly what the

customer wanted.

4. Stress Test. Operability testing program under heavy load.

 11

5. Monkey Test. Program is served by the random input data, and its

performance on such data and fault tolerance are tested.

Vulnerabilities are also scanned for. Such tests are particularly

important for server applications.

6. Parallel tests. Verified that the new version works just like the old

one.

7. Regression tests. Written after the error message. The test repeats

scenario in which the error occurred.

Test-driven development

One of the technologies of software development is test-driven development

(TDD). Note that TDD is not a test technology. This process consists of

short iterations of development of programs, each of which consists of the

following steps:

1. Writing test.

2. Compilation of the test. The test should not be compiled. If the test is

compiled, it means that you have created an entity that already exists.

3. Removing compilation errors.

4. Run the test. The test should fail.

5. Writing the code. Written as a simple code as only possible.

6. Run the test. This time the test should be passed.

7. Refactoring (if required).

The second and third steps are performed only after creating new modules or

classes.

When the program uses the equipment which access is difficult to, mock

objects are used or mocks. Mocks are automatically generated stubs. Mocks

also can be used to top-down programming. To create a mock object

frameworks, there are special (RhinoMock, NMock, JMock, etc.).

Properties of development through testing:

¶ approach makes to develop the program from a user perspective;

¶ it makes writing classes, independent of each other;

¶ tests are also documentation to the code;

¶ it takes time to learn this approach in practice.

 12

1.4. Formal verification

Complementary method to the simulation and testing is a rigorous proof that

the system is working correctly. Such mathematical demonstration of the

correctness of the system is called formal verification [11]. The basic idea is

to construct a formal (mathematical) model of the system, which reflects

(specifies) the possible behavior of the system. The requirements of

correctness are written as a formal requirement specification, which reflects

the desired behavior of the system. Based on these two specifications using

formal proof we can verify whether the possible behavior is consistent with

the desired. As there is a verification of a mathematical form, the notion of

consistency can be precise and verification consists in proving the

correctness towards this formal representation.

For formal verification are required:

¶ System model, typically containing a set of states, which keep

information about the values of variables, software counters, etc., and

the ratio of transitions, which describes how the system moves from

one state to another.

¶ Specification method for expressing requirements in a formal way.

¶ The set of rules of evidence, allowing determination of whether the

model meet the formulated requirements.

In order to more precisely understand what is meant, consider the method by

which sequential programs can be formally verified.

Verification of sequential algorithms

This approach can be used to prove the correctness of sequential algorithms

[1, 12], such as quick sort or calculation of the greatest common divisor of

two integers. It begins with the formalization of the desired behavior using

pre-and postconditions based on predicate logic formulas. The syntax of

these formulas can be determined, for example, as follows:

φ ::= p | ×φ | (φ Ù φ).

Here p is basic proposal (for example, “x equals 2”), the symbol “×” is

denial, and the symbol “Ù” is disjunction. Other logical connectives can be

defined as follows: φ Ø ψ = ×(×φ Ù ×ψ), true = φ Ù ×φ, false = ×true and

 13

φ ψ = ×φ Ù ψ. For simplicity, we omit the existential and universal

quantifiers.

A precondition describes the set of starting conditions studied (valid values

of inputs), and post-condition – the set of desired final states (the required

values of the outputs). When pre-and postconditions are formalized, the

algorithm is coded in an abstract pseudo-code, and step by step, we prove

that it meets specifications.

To build the proof we use the formal system which is a set of inference

rules. These rules are usually associated with program building (algorithm).

They are written as follows:

{φ} S {ψ}.

Here, φ is a precondition, S is a software operator and ψ is postcondition.

Triple {φ}, S, {ψ} is known as the triple Hoare and named in honor of one

of the pioneers in the field of formal verification of computer programs.

There are two interpretations of Hoare triples, depending on whether partial

or total correctness is considered.

¶ The formula {φ} S {ψ} is called partially correct if each stopping

calculation of S, starting in a state wherein φ is running, finish in the

state in which ψ is running.

¶ Formula {φ} S {ψ} is called totally correct if every calculation of S,

starting in a state in which φ is running, stop and finish in the state in

which ψ is running.

Thus, in the case of partial correctness we make no assumptions about the

calculation of S, which did not stop and hang up. In further explanation the

partial correctness is considered, if not stated otherwise.

The main idea of the approach of Hoare is to prove the correctness of

programs at the syntactic level, using only the triples of determined above

forms. Deterministic sequential programs are designed according to the

following grammar:

S ::= skip | x := E | S; S | if B then S else S fi | while B do S od.

 14

Here, skip is no operation, x: = E is assignment expression E to variable x

(we assume that x and E have the same type), S; S is a composition of

operators. The last two are alternative and iteration, respectively (B is

Boolean expression).

The rules of inference should be read as follows: if all conditions located

above the line are true, then the corollary under the dash is also true. For

rules with a condition it is necessary to write only the result. These inference

rules are called axioms. A formal system for sequential deterministic

programs is shown in table 1.1.

Table 1.1. Formal system for partial correctness of sequential programs

Axiom for skip {} {}j jskip

Axiom for assignment []{ } {}: :x k x kj j= =

Sequental composition
{}{}{}{}

{}{}

1 2

1 2

,

;

S S

SS

j c c y

j y

Altenative
{}{}{}{}

{} {}

1 2

1 2

,

BS BS

B S S

j yj y
j y
Ø Ø×

if thenelse fi

Iteration
{}{}

{} {}

BS

B S B

j j

j j

Ø

Ø×whiledood

Consequence
{}{}

{}{}

, ,' 'S ' '

S

jjjyyy

jy

Ý Ý

Inference rule for the operator skip, which does nothing, is quite expected:

in all conditions, if φ is true before the operator, it is also true after it.

According to the axiom for the assignment, start with the postcondition φ

and define the precondition by substituting φ [x: = k]. This substitution

means formula φ, in which all occurrences x are replaced by k.

For example:

{k2 is even and k = y} x: = k {x2 is even and x = y}.

 15

If the proof process begins with an analysis of post-conditions, it is usually

used in series to parts of the program so that in the end we can prove the

precondition for the program.

The rule of the sequential composition uses intermediate predicate χ, which

characterizes the final state of the S1 and the initial condition S2.

The rule of alternative uses a boolean expression B, whose value determines

what exactly is executed: S1 or S2.

The rule for iteration requires explanation. It determines that predicate φ is

performed after the end of “while B do S od”, if the validity of φ can be

maintained during the each execution of the loop body S. This explains why

φ is invariant. One major difficulty in proving the correctness of programs

using this approach consists in finding suitable invariants. In particular, this

complicates the automation of such proofs.

All the rules are focused on such syntax that to each syntactic construction

corresponds rule of inference. This is different from the rules of the

investigation, which establishes a link between verification of programs and

logic.

The rule of investigation allows to increase precondition and weaken

postcondition. At the same time it facilitates the application of other rules. In

particular, this rule allows you to replace the pre-and post-conditions to

equivalent ones. However, it should be noted that the proof of the

implication of the form φ Ý φ' in general is undecidable.

Now let us discuss the total correctness. Proof system in table 1.1. is not

enough to prove that the sequential program stops. The only syntax, which

can lead to crashes (not stopping) calculations is iteration. To prove the

presence of the halt the inference rule for the iteration can be improved as

follows:

{}{}{}{}

{} {}

, , 0

BS BnNSnNn

BS B

jjj j
j j
Ø ØØ=<Ý²

Ø×whiledood

Here, an auxiliary variable N is not included in φ, B, n or S. The meaning of

this rule lies in the fact that N is the starting value of n, and at each iteration,

the n value decreases, but remains non-negative. This construction

eliminates the endless calculations because n can not decrease infinitely

often without violating the condition n ≥ 0. The variable n is called a variant.

 16

Formal verification of parallel systems

Suppose that for the operators S1 and S2 structure S1 || S2 means parallel

composition of these operators. The main application for formal verification

of parallel programs is the following inference rule:

{}{}{}{}

{}{ }

1 2

1 2

,

||

S ' S '

' S S '

j y j y

jj yyØ Ø

This rule allows to verify the parallel systems in the same way as a

consistent, considering the parts of a program separately. Due to the

interaction between S1 and S2, at least through access to shared variables or

message exchange, this rule is, unfortunately, is false in general. Many

efforts have been made to obtain inference rules of a described form. There

are several reasons why this is not easy to achieve.

The insertion of parallelism leads to the insertion of nondeterminism. This

means that for parallel programs that communicate using shared variables,

the behavior of the input-output depends on the order in which these shared

variables are accessed.

For example, if S1 is x := x + 2, S2 is x := x + 1; x := x + 1 and S3 is x := 0,
value of x after S1 || S3 can be 0 or 2, and value of x after S2 || S3 can be 0, 1
or 2. Different values of x depend on the order executing statements in the
S1 and S3 or S3 and S3. Moreover, despite the fact that the input-output
behaviorof S1 and S2 is identical (increase x in 2), there is no guarantee that
this will be true in a parallel context.

Parallel processes can potentially interact at any point of their performance,

not just at the beginning of the calculation. If you want to make a conclusion

about how parallel programs interact, it is not enough to know the properties

of their starting and final states. It is also necessary to be able to form

judgments about what happens during the computation. Thus, the properties

must refer not only to the starting and final states, but also on the

calculations themselves.

The main problem of the classical approach to the verification of concurrent

and reactive systems is that, as explained above, that verification is fully

focused on the idea of how the program computes the function from inputs

to outputs. At the same time some valid inputs are given and desired outputs

 17

are produced. For parallel systems calculation is usually not complete, and

correctness depends on the behavior of the system over time, and not only

from the final calculation result (if it ever ends). Global properties of

parallel programs often can not be formulated in terms of relations between

inputs and outputs.

Various attempts have been made to generalize the classical formal

verification of concurrent programs. Due to the interaction between the

components the rules of inference are usually quite complex, and full

development of a formal system for parallel systems that can communicate

using shared variables or by (synchronous or asynchronous) messaging

becomes difficult. Therefore, for real systems, proving in this style is usually

very large and complex. It is required to consider user interaction and

control from it (in particular, in the form of finding suitable invariants). As a

result, such proof is very cumbersome, resistant to bugs, and arrange them in

an understandable manner is difficult.

Temporal logic

As noted above, the correctness of reactive systems is considered in relation

to the behavior of systems during the time, not only to the relationship

between inputs and outputs (pre-and post conditions) calculations, since the

calculation of reactive systems is usually not complete. Consider, for

example, the communication protocol between two agents (a sender and a

receiver), which are connected by two-way communication channel. In this

case, the property “If the process P sends a message he would not send the

next message until confirmation will be received” can not be formulated in

terms of pre-and postconditions.

In order to facilitate the formal specification of such properties,

propositional logic should be extended by operators that refer to the

behavior of the system over time. U (until) and G (globally) – are examples

of statements that refer to a sequence of states (such as, for example,

calculations). In this case φ U ψ means that the property φ is performed in

all states until you reach a state in which the ψ is performed, and G φ means

that always, in all future states φ is performed. Using these operators, we

can formalize the above-described property of protocol, for example, as

follows:

G [sndP(m) ×sndP(nxt(m)) U rcvP(ack)].

 18

In other words, if a message m is sent by process P, then this process does

not transmit the following message nxt (m), until it receives confirmation.

Logics, advanced by operators, which allow to express properties of

computation (in particular, that can express properties of mutual order

between events), are called temporal logic. These logic in computer science

were introduced by Pnueli [15, 16]. Temporal logic is a widely used method

of specification for expressing properties of computing of reactive systems

at a rather high level of abstraction.

In the same way as in the verification of sequential programs, we can

construct inference rules for temporal logic (for reactive systems), and prove

the correctness of these systems by the same approach as was shown for

sequential programs using predicates. Disadvantages of the method of

verification of proof, which requires a great deal of human labor, the same

as checking for parallel systems: proof is bulky, cumbersome and requires a

high level of user control.

This book show a different type of formal verification method, which is

based on temporal logic, but, in general, requires less user involvement in

the verification process. It is called model checking.

1.5. Model checking

The main idea of the method, called model checking [1, 17, 18], is to run the

algorithms executed by the computer to check the correctness of systems.

Using this approach, the user enters a description of the model system

(possible behavior) and a description of the specification requirements

(desired behavior), and machine holds the verification. If an error is found,

the tool (verifier) provides a counterexample showing that under what

circumstances the error can be detected. A counterexample is a scenario in

which the model behaves in an undesirable way. He indicates that the model

is not valid and should be corrected. This allows the user to detect the error

and correct model specification before continuing verification. If no errors

are found, the verification can be completed or the user can specify the

model (taking into account more design decisions, so that the model

becomes more concrete and realistic) and repeat the verification process.

The scheme of model checking is shown in Fig. 1.3.

 19

Fig. 1.3. Model checking

Algorithms for testing models are usually based on an exhaustive review of

the set of all states of the model system: for each state of the system is

checked, “Does it behave correctly” – satisfies a required property. In the

simplest form, this method is known as attainability analysis. For example,

suppose it is required to find out whether the system can reach a state in

which the computation can not continue (so-called blocking). In this case, is

sufficient to determine all the attainable states and determine whether there

is an attainable state in which the computation is blocked. Attainability

analysis is applicable only to prove the absence of locks and invariant

properties that are performed during the whole computation. This is not

enough, for example, for communication protocols, for which one of the

important properties is the following: if the message is sent, it must ever be

received. These types of properties are not covered by standard test of

feasibility.

Protocols are modeled by sets of finite state machines that communicate by

asynchronous message exchange [19]. Starting from the initial state of the

system, which is expressed in terms of states of interacting automata and

message buffers, all the states of the system are determined, which can be

achieved by exchanging messages. Model checking can be considered as the

 20

successor to these early methods of review of all states for protocols. It

allows you to check a wider class of properties and manages a set of states

much more effective than earlier methods.

Methods of model checking

There are two known approaches of model checking. They differ in how to

describe the desired behavior which is a specification of requirements.

Logical or mixed approach. In this case, the desired system behavior is

described by the language of numerous properties in a suitable logic

(temporal or modal). The system is usually modeled as a finite state

machine, in which states reflect variables and control positions, and

transitions indicate how system could change one state to another. The

system is correct in relation to requirements if the given set of initial states

fulfills these requirements.

Behavioral or uniform approach. In this case both desirable and possible

behaviors are defined in the same notation (machine), and as a criterion for

the correctness equivalence relations are used (or pre-orders). Equivalence

relations usually fix representation of the form “behaves like”, while the

preorder relations indicate the submission of the form “behaves at least

like”. As there are different views about what it means for two processes

“behave the same way” (or “to at least like”), it defines various notions of

equivalence and preorder. One of the most well-known concepts of

equivalence is a double modeling, in which the two machines model each

other, if one machine can simulate every step of the other machine and vice

versa. Frequent presentation of pre-order is the inclusion of languages. The

automata A is included in the automata B, if all the words allowable by A,

shall also be permitted by B. The system is considered correct if desired and

possible behavior are equivalent (or ordered) in relation to studied

equivalence (or preorder).

Despite the fact that both of these approaches are conceptually different,

connection between them can be set as follows. Logic induces an

equivalence relation on systems like this: two systems are equivalent if and

only if they satisfy the same formulas. Using this concept, we can establish

the relationship between logic and equivalence relations. For example, we

know that two machines model each other if they satisfy the same formulas

of the logic CTL, widely used in the process of model checking. The

 21

relationship between the two approaches is clear now: if two models satisfy

the same properties (this is checked using a logical approach), they are

behaviorally equivalent (this can be checked using a behavioral approach).

The backward path is more interesting, as is generally impractical to inspect

all properties in a certain logic, but verification of equivalences, such as dual

modeling can be done efficiently.

This book uses logical approach [20]. Since there is essentially verified that

the description of the system is a model of temporal logic formulas, this

logical approach is originally called model checking. An exhaustive review

of the set of states guaranteed end because of the finiteness of the model.

The advantages of model-checking

¶ This is a common approach with applications to verification of

hardware, software, communication protocols, multi-agent systems,

embedded systems, etc.

¶ Approach supports partial verification: the project can be verified by a

partial specification when considering only a subset of all claims. This

approach provides a high efficiency because you can limit the

validation test of the most important properties while ignoring the less

important test, but computationally more expensive claims.

¶ Inlining test patterns into the design process does not require more

time than the simulation and testing. In some cases the use of model-

checking leads to a reduction of development time. In addition, the

use of appropriate methods, model checking programs can work with

rather large state spaces.

¶ Program to test the models could potentially be used regularly by

specialists in systems development with the same ease with which

used, for example, compilers, as model checking does not require a

high degree of user interaction.

¶ Reliable mathematical basis: modeling, semantics, logic and automata

theory, data structures, algorithms on graphs.

Limitations of model checking

The major limitations of model checking:

¶ It applies mainly to the management applications, in which the

components interact with each other. It is less suited to data

applications as well as in such applications infinite state spaces are

usually introduced.

¶ When using the model checking only the model of the system is

verified, not the system itself. The fact that the model has certain

properties, does not guarantee that the final implementation will have

the same properties (to verify the final implementation additional

methods such as systematic testing are needed). Simply put, any

validation using model checking is as good as the model system.

¶ Finding a suitable abstraction (such as a model system, and suitable

properties in temporal logic) requires appropriate qualification (but

less than evidence-based verification).

¶ Like any tool, software for model checking can be unreliable.

However, as the basis for model checking are standard and well-

known algorithms, the reliability of such programs is usually no big

problem. In some cases, the correctness of the most difficult parts of

the software model checking has been proved with the use of

automatic theorem proving programs.

¶ Model checking does not allow to verify the generalizations. If, for

example, the protocol is verified for one, two and three processes

using model checking, it does not give any result for a different

number of processes. Model checking is practical only for special

cases. Model checking, however, can help to formulate the theorem

with arbitrary parameters, which can later be proven using formal

verification.

It is impossible to reach absolutely guaranteed correctness of systems of

real-size. Despite these limitations, we can say that model checking greatly

increases the level of confidence in systems.

As in model checking the basic idea is to describe the behavior of the system

by finite automata, under certain conditions, the number of states can go

beyond the size of available memory. This, in particular, may be for parallel

and distributed systems in which there are many system states. The size of

the set of states of such systems in the worst case is proportional to the

product of the sizes of the sets of states of individual components. The

problem of excessive increase in the number of states is called the

combinatorial explosion problem [17]. As shown below, the use of

 23

automata-based programming [2] allows you to look at this problem from

another point of view.

1.6. Automatic theorem proving

Automatic theorem proving can be used effectively in areas where

mathematical abstractions of tasks are available. For the case of validation

systems specification and realization of system are regarded as formulas, for

example, φ and ψ, written in a certain logic. The checking that the

implementation satisfies the specification reduces to checking formulas

ψ φ. This means that behavior of implementation that satisfies ψ, is a

possible behavior of the system specification, and therefore satisfies φ. Note

that the specification of the system can allow other behavior that is not

realized. To prove ψ φ programs of automatic theorem proving are used.

Verification of the proof is an area closely related to the proof of theorems.

User can send proof of theorem to the program to check the evidence.

Software responds whether that proof is true. Programs of verification of

evidence do a simpler problem than programs of automatic theorem proof.

Therefore, they can work with more complicated proofs.

In order to reduce the amount of search in proof theorems, it makes sense to

interact with the user, who may be knowledgeable about the best strategy for

constructing a proof. Usually such interactive systems help in searching for

evidence by maintaining a list of actions that need to be done, and provide

clues how yet not proved theorems can be proved. Moreover, every step of

the proof is verified by the system. As a rule, for evidence it must be made a

lot of small steps, and high level of user interaction is required. Usually

people overlook small parts of the evidence (“trivial”, “same”), while the

program requires an explicit presence of these parts. The verification

process using the automatic theorem proof software is slow and laborious. In

addition, the using instruments typically require quite high qualification of

users.

The logic used by programs of proof theorems and programs of test

evidence, usually is a variant of first-order predicate logic. In this logic there

is an unlimited set of variables, the set of functional and predicate symbols

of specified ary. Ary indicates the number of arguments of the functional or

predicate symbol. Term is a variable or a string of the form f (t1, ..., tn),

 24

where f is a function symbol of ary, n and ti are terms. Constants can be

considered as a function of ary 0. Predicate has the form P (t1, ..., tn), where

P is a predicate symbol of ary n, and ti – terms.

Propositions of first-order logic are predicates, logical combinations of

proposal or proposals, provided with quantification of the existence or

universality. In a typed logic, there are also many types, and each variable

has a type (as a program variable x has type int). Each function symbol has a

lot of argument types and result type, and each predicate symbol has many

types of arguments, but not the type of result. For this reason, in this logic,

quantifications are also typed.

Algorithmic components of programs of proof theorems are the methods of

application inference rules and the consequences of receiving. Important

approaches used by programs for this are a natural deduction (e.g., if φ1 and

φ2 are true we can conclude that φ1 Ø φ2 are also true), resolution and

unification (a procedure that is used for comparing two terms with each

other by providing all permutations of the variables in which terms are the

same). In contrast to traditional model checking, theorem proof can work

directly with infinite sets of states and check the validity of properties with

arbitrary values of the parameters.

These methods are not sufficient to find the evidence of given theorem, if

the evidence exists. The tool should have a strategy that says how to find

evidence. This strategy may offer the using of inference rules from the end,

starting with the proposal, which is required to prove. The strategies that

people use to find evidence are not formalized. Strategies used by programs

proofs of theorems are based on the traversal algorithm in width and in

depth.

Finally, programs of proving theorems are not very useful in practice: the

problem of proving of theorems is exponentially complex. Sentence of

length n can have a proof of exponential size of n. Searching for this proof

requires exponential time on its length. Therefore, in general, theorem proof

is double exponentially in relation to the length of proof proposition. For

interactive programs of theorem proving, this complexity is greatly reduced.

List the differences between theorem proving and model checking:

¶ Model checking is fully automatic and fast.

 25

¶ Model checking can be applied to partial implementations. Therefore,

it can provide useful information about correctness of the system even

if the system is not fully defined.

¶ Model checking programs have user-friendly interface and are easy to

use, while the use of software test evidence requires a rather high

qualification of the users in order to guide and accompany the process

of verification. In particular, it is difficult to introduce someone to the

logical language of program proving of theorems, which is usually

the expressive logic of higher order.

¶ Model checking is useful to management applications, such as

reactive systems. Proving of the theorems is applicable to work with

infinite sets of states, and therefore it can be used for data processing

applications.

¶ In case of success proving of theorems gives (almost) the highest

level of accuracy and reliability of the evidence.

¶ Model checking can generate counterexamples that can be used to

assist in debugging.

¶ When using the model checking, the project is checked for a fixed

(and finite) set of parameters. The using of programs of proving

theorems is possible for arbitrary values of the parameters.

Model checking is not considered as a “best” approach compared with the

proving of theorems. These methods complement each other because each

of them has certain advantages. Attempts were made to integrate these

methods in order to get the effect of combining the advantages of both

approaches.

Section 2. The mathematical apparatus of model

2.1. Modeling

Model checking method does not work with program directly. It works with

model of program. In this section is described how to create model.

At first the specification for the program is created. So long as model

checking method works with model, the model must have all the properties

which are described in the specification. However inessential details are not

needed. For instance if in the specification of lift control system described

 26

that the lift doors must be closed in time of moving, then speed of lift is

inessential.

In this book the most interesting systems are reactive systems [17]. These

systems can not be modeled in terms of input-output because they can work

indefinitely long. So for these systems their time behavior is verified. For

this the notion state of the system is introduced. State of the system is its

instant description with fixed values of all variables in the system. Work of

reactive system can be imagined as transitions between states.

Formally we can represent work of this system as Kripke model [17].

Firstly introduce the notion of set of atomic propositions. Atomic

proposition is a proposition such that inner structure can not change. Atomic

propositions are basic propositions. Set of atomic propositions is denoted by

AP.

Examples of atomic propositions:

¶ “x > 0”

¶ “x = 5”

Kripke model over the set of atomic propositions AP is a triple (S, R, Label)

such that:

¶ S is a nonvoid set of states;

¶ R Ì S ³ S is a total transitions relation on S, which associates an

element s Í S the set of its possible successors;

¶ Label: S 2
AP

 associates each state s Í S atomic propositions

Label(s), that are true in s.

Relation R Ì S ³ S is total, if it associates each state s Í S at least one

successor ("s Í S: $s' Í S: (s, s') Í R).

2.2. Model checking for linear temporal logic

2.2.1. LTL Syntax

Following definition defines set of basic formulae which can be expressed in

linear temporal logic (LTL).

Let AP is set of atomic propositions. Then:

1. p is formula for each p Í AP.

 27

2. If φ is formula, then ×φ is formula.

3. If φ and ψ are formulae, then φ Ù ψ is formula.

4. If φ is formula, then X φ is formula.

5. If φ and ψ are formulae, then φ U ψ is formula.

Set of formulae constructed using these rules is called LTL formulae.

Note: set of formulae that constructed using the three first rules defines set

of all propositional logic formulae. Therefore propositional logic is a subset

of LTL.

The LTL syntax can be defined in Backus-Naur form:

φ ::= p | ×φ | (φ Ù φ) | X φ | (φ U φ).

Logical operators satisfy the following:

φ Ø ψ = ×(×φ Ù ×ψ),

φ ψ = ×φ Ù ψ,

φ ª ψ = (φ ψ) Ø (ψ φ).

true equals φ Ù ×φ, false equals ×true. Temporal operators G (Globally,

“always”) and F (Future, “some time in future”) by definition put:

F φ = true U φ,

G φ = ×F ×φ.

All the states satisfy true therefore F φ means that φ come true some time in

future. G φ means that “it is wrong that some time in future ×φ come true”.

Therefore it means that φ always is true.

2.2.2. LTL Semantics

Shown above definition gives a method to construct LTL formulae but does

not give an interpretation. Formally X φ means that φ is true in the next

state, F φ means that φ will be true (now or in some moment in future). But

what do the words “state”, “next state” and “some moment in future”

means? The formal interpretation (it usually called semantics) helps us

 28

unambiguously determine these terms. The formal meaning of properties in

temporal logic is defined in terms of model.

Definition. LTL-model is a triple M = (S, R, Label) such that:

1. S is a nonvoid set of states;

2. R: S S maps the state s Í S the single next state R(s) (next

function).

3. Label: S 2
AP

 maps each state s Í S atomic propositions

Label(s), which are true in s.

Example. Let AP = {x = 0, x = 1, x ≠ 0} is a set of atomic propositions, S =

{s0, …, s3} is a set of states, R(si) = si+1 for 0 ≤ i < 3 и R(s3) = s3 is a next

function and Label(s0) = {x ≠ 0}, Label(s1) = Label(s2) = {x = 0}, Label(s3)

= {x = 1, x ≠ 0} is a label function. In the model M = (S, R, Label) the

atomic proposition “x = 0” is true only in states s1 and s2, the atomic

proposition “x ≠ 0” is true only in states s0 and s3, the atomic proposition

“x = 1” is true only in state s3.

The meaning of formulae in logic is defined in terms of formula

satisfiability relation. Let ╞═ be formula satisfiability relation.

Formula satisfiability relation means that M, s╞═ φ if and only if когда φ is

true in the state s of the model M. When the model M is obvious from the

context, we will write s╞═ φ instead of M, s╞═ φ.

Define LTL semantics. Let R
0
(s) = s, R

 n+1
(s) = R(R

 n
(s)) for each n ≥ 0. Let

p Í AP is atomic proposition, M = (S, R, Label) is LTL model, s Í S and

φ, ψ are LTL formulae. By definition, put

s╞═ p Ú p Í Label(s);

s╞═ ×φ Ú ×(s╞═ φ);

s╞═ (φ Ù ψ) Ú (s╞═ φ) Ù (s╞═ ψ);

s╞═ X φ Ú R(s)╞═ φ;

s╞═ (φ U ψ) Ú $ j ≥ 0: R
 j
(s)╞═ ψ Ø ("0 ≤ k < j: R

 k
(s)╞═ φ).

For instance, consider semantics of F φ.

s╞═ F φ

Ú {by definition of F}

 29

s╞═ true U φ

Ú {semantics U}

$ j ≥ 0: R
 j
(s)╞═ φ Ø (" 0 ≤ k < j: R

 k
(s)╞═ true)

Ú {simplify}

$ j ≥ 0: R
 j
(s)╞═ φ.

Therefore F φ is true in the state s if and only if there is exists one of next

states such that φ is true in that state or φ is true in the state s.

Model checking and satisfiability

In the first section the informal definition of model checking problem was

given. Now we can give the formal definition:

Suppose the finite model M, the state s and the formula φ. Is M, s╞═ φ true?

The task of model checking should not be confused with the more traditional

problem of the satisfiability in logic. Satisfiability problem can be

formulated as follows:

Suppose the property φ. Do exist the model M and the state s such that

M, s╞═ φ?

The satisfiability problem for LTL is solvable. Therefore the model checking

problem is solvable too.

2.2.3. Verification of LTL using Buchi automata

There are several methods to represent LTL formula as transitional graph for

model checking. One of this methods uses Buchi automata.

Let AP is a set of atomic propositions. The Buchi automaton over the

alphabet 2
AP

 is the quadruple A = (Q, q0, d, F) such that

¶ Q is a finite set of states;

¶ q0 is the start state;

¶ d Ì Q ³ 2AP
 ³ Q is a total transition relation;

¶ F Ì Q is a set of accept states.

We describe the algorithm due to Gerth, Peled, Vardi and Wolper [16, 17]

for constructing a Buchi automaton from LTL formula.

 30

Let R (Release) be a temporal operator such that

φ R ψ = ×(×φ U ×ψ).

It satisfies the following identity:

φ R ψ ¹ ψ Ø (φ Ù X(φ R ψ)).

This algorithm requires LTL formula to be in negative normal form.

Conversion to negative normal form:

1. Change all sub formulae like F φ to true U φ.

2. Change all sub formulae like G φ to false R φ.

3. Using Boolean identities remove all logical operators except ×, Ù,

Ø.

4. Sink all negations inside temporal operators using following

identities:

1. ×(φ U ψ) ¹ ×φ R ×ψ,

2. ×(φ R ψ) ¹ ×φ U ×ψ,

3. ×X φ ¹ X ×φ.

For algorithm we need following data structures:

¶ UID is unique identifier;

¶ Formula is LTL formula;

¶ Node is a vertex of transition graph of Buchi automaton.

The format of UID and Formula is not significant so describe a Node

structure (listing 2.1).

Listing 2.1. Structure Node

struct Node

{

 UID id;

 list<NodeID> incoming;

 list<Formula > old;

 list<Formula> new;

 list <Formula > next ;

};

Incoming is a list of predecessor vertices (edges lead from this nodes to

considered node). In the fields: old, new and next there are lists of sub

formulae of source formula.

 31

The function CreateAutomaton (listing 2.2) creates the transition graph of

Buchi automaton from formula f.

Listing 2.2. Function CreateAutomaton

list <Node> CreateAutomaton (Formula f)

{

 Node n;

 n. incoming = { init };

 n.old = Å;

 n.new = {f};

 n.next = Å;

 return expand (n, Å) ;

}

Function Expand is shown in listing 2.3.

Listing 2.3. Function Expand

list <Node> Expand (Node currentNode , list <Node> nodes)

{

 if (currentNode . new == Å)

 {

 if ($ Node r Í nodes: r.old == currentNode.old

 && r.next == current Node.next)

 {

 r.incoming = r.incoming Ç currentNode.incoming;

 return nodes;

 }

 else

 {

 Node newNode;

 newNode.incoming = {currentNode};

 newNode.old = newNode.next = Å;

 newNode.new = currentNode.next;

 Expand(newNode, nodes Ç {currentNode});

 }

 }

 else // currentNode.new is not void .

 {

 Choose Formula n ʠʟ currentNode.new;

 currentNode.new = currentNode.new \ {n};

 if (n Í currentNode.old) Expand(currentNode, nodes);

 else

 {

 if (n == false or !n Í currentNode.old) return

nodes;

 if (n Í AP or !n Í AP or n == true)

 // node replacement .

 {

 32

 node newNode;

 newNode.incoming = currentNode.incoming;

 newNode.old = currentNode.old Ç {n};

 newNode.new = currentNode.new;

 newNode.next = currentNode.next;

 Expand(newNode, nodes);

 }

 if (n has the form f Ù g)

 // Replacement of node currentNode by node newNode.

 {

 node newNode1, newNode2;

 newNode1.incoming = currentNode.incoming;

 newNode1.old = currentNode.old Ç {n};

 newNode1.new = currentNode.new Ç {f};

 newNode1.next = currentNode.next;

 newNode2.incoming = currentNode.incoming;

 newNode2.old = currentNode.old Ç {n};

 newNode2.new = currentNode.new Ç {g};

 newNode2.next = currentNode.next;

 Expand(newNode2, Expand(newNode1, nodes));

 }

 if (n has the form f U g)

 // f U g ė g Ù (f Ø X (f U g)).

 // Splitting .

 {

 node newNode1, newNode2;

 newNode1.incoming = currentNode.incoming;

 newNode1.ol d = currentNode.old Ç {n};

 newNode1.new = currentNode.new Ç {f};

 newNode1.next = currentNode.next Ç {f U g};

 newNode2.incoming = currentNode.incoming;

 newNode2.old = currentNode.old Ç {n};

 newNode2.new = currentNode. new Ç {g};

 newNode2.next = currentNode.next;

 Expand(newNode2, expand(newNode1, nodes));

 }

 if (n has the form f R g)

 // f R g ė g Ø (f Ù X (f R g)).

 // Splitting .

 {

 node newNode1, newNode2;

 newNode1.incoming = currentNode.incoming;

 newNode1.old = currentNode.old Ç {n};

 newNode1.new = currentNode.new Ç {f};

 newNode1.next = currentNode.next;

 newNode2.incoming = currentNode.incoming;

 33

 newNode2.old = currentNode. old Ç {n};

 newNode2.new = currentNode.new Ç {f, g};

 newNode2.next = currentNode.next Ç {f R g};

 Expand(newNode2, expand(newNode1, nodes));

 }

 if (n has the form f Ø g)

 // Replacement of node currentNode by node newNode .

 {

 node newNode;

 newNode.incoming = currentNode.incoming;

 newNode.old = currentNode.old Ç {n};

 newNode.new = currentNode.new Ç {f, g};

 newNode.next = currentNode.next;

 Expand(newNode, nodes);

 }

 if (n has form X f)

 // Replacement of node currentNode by node newNode.

 {

 node newNode;

 newNode.incoming = currentNode.incoming;

 newNode.old = currentNode.old Ç {n};

 newNode.new = currentNode.new;

 newNode.next = currentNode.next Ç {f};

 Expand(newNode, nodes);

 }

 }

 }

}

Model checking using Buchi automaton

Let there be given Kripke model and LTL formula whose execution on the

model is needed to be checked. The general idea of the algorithm is as

follows:

¶ From the denial of LTL formula equivalent Buchi automaton is

constructed.

¶ Kripke model is also converted into a Buchi automaton.

¶ Third Buchi automaton is constructed as the intersection of the first

two. This state machine will allow the paths of the original model

which does not satisfy the LTL formula.

¶ If a language allowed by the constructed automaton-intersection is

empty then verification is successful. Otherwise the path allowed by

the automaton-intersection is a counterexample.

 34

First we construct a Buchi automaton corresponding to the verifying LTLn

formula. Recall what it represents. Buchi automaton is a finite automaton

over infinite words. Buchi automaton transitions are marked by predicates of

the original formula LTL. Automaton works as follows. At each step it takes

a regular set of values of the predicate of the sequence, reflecting the history

of the program. Using these values the automaton computes marks on the

transitions from the current state. If there are more than one active transition,

then automaton nondeterministically chooses one of them. The example of

Buchi automaton constructed from LTL formula is shown in fig. 2.1.

Formula “GF p” means that “p will be true indefinitely many times”.

¬ pTrue

¬ p

Fig. 2.1. The Buchi automaton for formula “GF p”

The next stage of verification is conversion Kripke model to Buchi

automaton [17]. The example of Kripke model and corresponding Buchi

automaton is shown in fig. 2.2.

After that the intersection of two these Buchi automata is constructed.

Therefore it accepts only sequences of predicates that are accepted by the

Kripke model and Buchi automaton. This intersection is a Buchi automaton.

If the acceptance path is exists then:

¶ it is a possible scenario of the model;

¶ it violates verifying LTL formula.

Therefore it is a counter-example.

 35

s2

s1s0

q

p
p, q

s2

s1s0

p, q

q

p

p, q

p, q

s

a b

Рис. 2.15. Example of Kripke model (а) and corresponding Buchi automaton (б)

2.3. Model checking for branching temporal logic

A. Pnueli introduced the temporal logic into computer science for

specification and verification of reactive systems [15]. Above LTL was

considered - an important representative of the temporal logic. This logic is

called linear, because when it is used a qualitative notion of time is linear: at

any given time, there is only one child state, and therefore only one future.

Formally speaking, this follows from the fact that the interpretation of

temporal logic formulas, using the satisfiability relation ╞═, defined in

terms of a model in which the state s has exactly one child R (s). Thus, for

each state s model generates unique infinite sequence of states s, R (s),

R (R (s)), ... The sequence of states is the calculation. As the semantics of

linear temporal logic is based on such “generating sequence” models, the

temporal operators X, U, F and G in fact describe the sequence of events

along the one time way (one computing system).

In the early 80s for specification and verification was proposed another type

of temporal logic, which is based not on the linear but on the branching

notion of time. This logic is formally based on models, in which at each

 36

moment there may be several different possible futures. Given this notion of

branching time temporal logic, this class is called branching temporal logic.

Consequently, R (s) is a (nonempty) set of states, not one state, as in LTL.

Presentation of the semantics of branching temporal logic, therefore, is

based on a tree of states instead of a sequence. Each path in this tree should

present one possible computation. The tree itself represents all possible

computations. More precisely, a tree, suspended in a state s, represents all

possible infinite computations which start in state s.

Temporal operators in the branching temporal logic allow expressing

properties (all or some) of the calculations in the system. For example, the

property of EF φ means that there is a computation along which runs F φ.

The essence of this property is that there is at least one possible

computation, in which, ultimately status, performing φ is achieved.

However, this does not exclude the fact that there may be computations, for

which this property does not hold - calculations in which φ is never hold.

The property AF φ for example, differs from this existential property of

calculations the fact that it requires that all computations satisfy the property

of F φ.

The existence of two types of temporal logic (linear and branching) led to

the development of two “schools” of model checking. Despite the

advantages and disadvantages of each of them, there are two reasons that

justify consideration in this book both a model checking for linear and

branching temporal logic:

¶ The expressive power of many linear and branching temporal logics is

uncompared. This means that some of the properties expressible in

linear temporal logic can not be expressed in some branching

temporal logic and vice versa.

¶ Traditional methods used for efficient model checking for linear

temporal logic are very different from the methods used for branching

temporal logic. This leads, in particular, to quite different estimates of

complexity.

This section focuses on model checking for branching temporal logic CTL

(Computational Tree Logic). Importantly, it can be considered as an

analogue of the branching LTL, for which it is possible an effective model

checking.

Section outlines based on rate [1], and provides examples of [4, 26].

 37

2.3.1. CTL syntax

Define syntax of Computational tree logic (CTL). Let APp Í . By definition

put Backus-Naur form

φ ::= p | ×φ | (φ Ù φ) | EX φ | E[φ U φ] | A[φ U φ].

The following atomic operators are used:

¶ EX (in the next state for some path);

¶ E (for certain path);

¶ A (for all paths);

¶ U (until).

X and U are linear temporal operators. They express properties on a fixed

path. The quantifier E expresses a property on a certain path. The quantifier

A expresses a property on all paths. The quantifiers E and A can be used

only in combination with X or U. The operator AX is not atomic and is

defined below. Boolean operators true, false, Ø, and ª have standard

definitions.

From F φ = true U φ follows:

EF φ = E[true U φ];

AF φ = A[true U φ].

EF φ means “φ comes true potentially”. AF φ means “φ is inevitable”.

2.3.2. CTL semantics

As marked above, the interpretation of LTL is defined in terms of sequence

of states. CTL refers to many computational paths. So to adequately

represent branching the concept of sequence was changed to concept of tree.

CTL model is a model that generates tree. Like model CTL model is a triple

M = (S, R, Label). The only difference is that R is a total relation instead of

total function.

Example. Let AP = {x = 0, x = 1, x ≠ 0} is a set of atomic propositions, S =

={s0, …, s3} is a set of states with following marks:

 38

Label(s0) = {x ≠ 0},

Label(s1) = Label(s2) = {x = 0},

Label(s3) = {x = 1, x ≠ 0},

transition relation R is following:

R = {(s0, s1), (s1, s2), (s1, s3), (s3, s3), (s2, s3), (s3, s2)}.

Consider CTL model M = (S, R, Label). It is shown in fig. 2.16 (a).

s2

s0 s1

s3

{x = 0}

{x = 0}

{x ≠ 0}

{x = 1, x ≠ 0}

s2

s1

s0

s2 s3

s3 s2 s3

s3 s2 s3s2 s3

A b

Рис. 2.17. Example of CTL-model (a)

and a prefix of one of it‟s computational trees (b)

Example. Consider CTL model at fig. 2.16 (a). Finite prefix of infinite tree

is shown in fig. 2.16 (b). Examples of paths are:
0 1 2 3

s s s s
w

, ()0 1 2 3
s s s s

w

 and

()
*

0 1 3 2 3
s s s s s

w
.

Semantics of CTL is also defined in terms of formula satisfiability relation

(╞═).

Let p Í AP is atomic proposition, M = (S, R, Label) is CTL model, s Í S and
φ, ψ – CTL formulae. By definition, put:

s╞═ p Ú p Í Label(s);

s╞═ ×φ Ú ×(s╞═ φ);

s╞═ (φ Ù ψ) Ú (s╞═ φ) Ù (s╞═ ψ);

s╞═ EX φ Ú $σ Í PM(s): σ[1]╞═ φ;

s╞═ E[φ U ψ] Ú $σ Í PM(s): ($j ≥ 0: σ[j]╞═ ψ Ø

 39

 Ø ("0 ≤ k < j: σ[k]╞═ φ));

s╞═ A[φ U ψ] Ú "σ Í PM(s): ($j ≥ 0: σ[j]╞═ ψ Ø

 Ø ("0 ≤ k < j: σ[k]╞═ φ)).

The Interpretation of temporal operators AX φ, EF φ, EG φ, AF φ and

AG φ can be produced from the definition.

Section 3. Verificators overview

3.1. SPIN

SPIN [46] supports model checking and design of asynchronous process

systems. There are four kinds of process interaction:

¶ rendezvous channels [46];

¶ buffered channels;

¶ shared variables;

¶ combined method.

SPIN supports an interactive and random simulation. In the interactive

simulation non-deterministic choices are made by user. In the random

simulation non-deterministic choices are made randomly.

SPIN accepts design specifications written in the verification language

PROMELA (a PROcess Meta Language). The correctness claims must be

specified in the synax of standard Linear Temporal Logic (LTL).

The basic structure of the SPIN model checker isillustrated in Fig. 3.1. The

verification algorithms are based on convertation from LTL formula to the

Buchi automaton.

 40

Fig. 3.1. The structure of SPIN simulation and verification [46]

The syntax of PROMELA like the syntax of C language. The PROMELA

model consists of the following components:

¶ type declaration (user-defined data-types);

¶ channel declaration;

¶ variable declaration;

¶ process declaration;

¶ the init process.

User-defined data types can be introduced by typedef declaration.

Typedef declarations are like structures in C:

 41

Listing 3.1. Typedef

typedef myType

{

 int i;

 byte arr[5]

};

User-defined data types can be used as elements of other user-defined data

types:

Listing 3.2. Typedef

typedef myOtherType

{

 myType t;

 short s

};

PROMELA has five built-in variable types:

bit [0…1];

bool [0…1];

byte [0…255];

short [-2
16

–1…2
16

–1];

int [-2
32

–1…2
32

–1].

All variables should be declared. The default initial value of basic variables

is 0. There are three ways which variable can be given a value:

assignment;

argument passing;

message passing;

Arrays are supported by PROMELA. Start index of arrays is 0.

The process can be considered as a procedure which runs in a separate

thread. It has a local state which consists of process counter and local

variables‟ values. The process declaration:

 42

Listing 3.3. Declaration and definition of the process

proctype proc(int a; int b)

{

 byte b; /* local variable */

 /* process body */

}

The body of a process consists of a sequence of statements. A statement can

be in one of two states: executable and blocked. The executable statement

can be executed immediately. The blocked statement cannot be executed. An

assignment is always executable. All expressions are the statements.

Expression is executable if it evaluates to non-zero:

4 <= 8 is always executable.

a > 14 is executable if a greater than 14. Otherwise it‟s blocked.

x – 1 is executable if x ≠ 1.

A printf statement is always executable. It is equivalent to printf function in

C. It is not evaluated during verification.

The skip statement is always executable. It does nothing. The only result is

increment of process counter.

The processes can have parameters and local variables. The active

modificator means that the process is run in the initial system state.

Processes are created using run statement:

Listing 3.4. Process running

init

{

 run proc(1, 5);

}

The number of processes is bounded. This is because PROMELA defines

finite state systems. The limit of active precesses in SPIN is 255. So run

statement is only executable if it can create the process.

The control-flow constructions:

Listing 3.5. If construction

 if

 :: guard1 - > S1

 :: guard2 - > S2

 43

 ...

 :: else - > Sk

 fi

The do construction is a loop.

Listing 3.6. Do construction

 do

 :: guard1 - > S1

 :: guard2 - > S2

 ...

 :: else - > Sk

 od

These constructions are based on Dijkstra‟s guarded commands [47]. Each

construction must have at least one option. Each option consists of double

colon, guard statement and other statements. An option can be selected only

if the guard statement is executable. If there are several executable guard

statements, one of them will be selected non-deterministically. If there are

no executable guard statement these construction are blocked.

Listing 3.7. If example

if

 :: a < 0 - > x = x + 1;

 :: a == 0 - > x = x + 2;

 :: a >= 0 => x = x + 3;

fi;

In this example when a is equal to 0 the second (a = = 0) and the third (a >= 0)

guard statements are both executable. Therefore one of these statements will

be selected non-deterministically.

Listing 3.8. Do example. Exponentiation by squaring: ae mod m

x = a;

int p = 1;

int q = a;

int n = e;

do

 ::n > 0 - >

 44

 if

 :: (n % 2) == 1 - > p = (p *

q) % m ; n = n - 1;

 :: else - > skip;

 fi;

 q = (q * q) % m;

 n = n/2;

 :: else - > break;

od;

PROMELA allows to use message passing channels. Channels are declared

using keyword chan just like data variables in PROMELA. The instruction

chan a, b[4];

declares aninitialized channel a and an array of uninitialized channels b.

Listing 3.9. Declaraions with initializations

chan a = [10] of {int, byte};

chan b[4] = [0] of {short};

We declared the channel a which can store up to 10 messages. Each

message is defined as a pair of int and byte. The second line of listing 3.9

declares an array of rendezvouz channels.

3.2. SMV

The tool SMV (Symbolic Model Verifier) [49] supports the verification of

co-operating processes which interact via shared variables. Firstly this tool

was developed for automatic verification of synchronous hardware circuits.

It was also very useful for verification of communicational protocols. It was

also used for big program systems, for example, in aviation [50]. In SMV

processes may be run in synchronous or asynchronous modes. This

verification tool supports model checking for CTL formulae. Let‟s show on

the examples how systems may be specified and verified using SMV.

Description of SMV and examples are developed in accordance with the

course [1].

The specification in SMV input language consists of descriptions of

processes, descriptions (local and global) of variables, descriptions of

 45

formulae and formulae‟ specifications, which should be verified. The main

module is named main like in C language. The global structure of SMV

specification is given in listing 3.10.

Listing 3.10. Structure of SMV specification

MODULE main

VAR variables are d efined here

ASSIGN global variables are assigned here

/* optional */

DEFINITION the definition of virified properties

SPEC verified CTL - specification

MODULE /* submodule 1 */

MODULE /* submodule 2 */

.............

The basic components of systems specification in SMV are:

Data types. The only types of data provided by SMV are bounded integer

scopes and enumerated types.

Descriptions and initialization of processes. The process named P is defined

this way:

 MODULE P (formal parameters)

VAR local variab les

ASSIGN starting assignations to variables

ASSIGN assignation to variables on transitions

 This construction describes the module also named P, for which there are

two methods of instance definition:

1. The instanse of Pasync process will be executed in asynchronous

mode:

VAR Pasync: process P(parameters)

2. The instance of Psync process will be executed in synchronous

mode:

VAR Psync : P(ʧʘʨʘʤʝʪʨʳ)

 46

 The difference between synchronous and asynchronous modes is

discussed below.

Assignation to variables. In SMV the process is considered as a finite state

machine and is defined by enumeration for each (global and local) variable

the starting value (values in the start state) and the value which will be

assigned to variable in the next state. The latest value is usually depending

on current values of variables. For example, next(x):= x+y+2 assignes

to x variable x+y+2 value in the next state. For x variable the assignation

init(x):= 3 means that x primarily posseses the value equal to 3. The

assignation next(x):= 0 assigns 0 value to x variable in the next state.

Assignations can be indeterministic. For example, next(x):= {0, 1}

means that the next x value equal to 0 or 1. Assignasion also can be

conditional. For example, the assignation

 next(x) := case b = 0: 2;

 b = 1: {7, 12}

 esac;

assigns to x variable value 2 if b equal to 2 and (indeterministic) value 7 or

12 if b equal to 1. If x is a variable in the instance of Q process it is written

as Q.x.

The assignation to global variables are permitted only if these variables are

parameters in the process instance.

Synchronous and asyncronous modes. In acynchronous mode all the

assignments to variables are executed in one atomic step. Intuitively this
means that the one global clock is existing and every their tick every module

makes a step. In every specified moment of time the process is either
executed or not executed. Assignment to a variable next value is made only

in case of process is executed. If the process is not executed than the value
of a variable in the next step stays unchangeable.
In asynchronous mode the new value is assigned only to variables of an

“active” process. Therefore, pending every tick of the global clock one
process is chosen indeterministically for executing, and one step of this

process is executed (while other unchosen processes maintain their state).

CTL-formulae specification. For CTL-formulae specification SMV uses

symbols & for conjunction, | for disjunction, - > for implication and ! for

negation. The checking program of SMV models is checking if all the

possible start states fullfill the specification.

 47

Section 4. Verification of automata-based
programs

4.1. Automata-based programs

In this section the automata-based programming technology is described.

The automata-based programs can be verified more easy and effective than

other programs [2, 51].

In this approach we sort out the input effects providers and automatized

controlled objects. Each controlled object contains control system (system of

state machines). Controlled object implements the output effects which are

initiated by the control system and forms input effects. These input effects

implement feedback from controlled object to control system. The input

effects are also formed by external environment (by user or by adjacent

system). The input effects can be two types:

¶ short-term events;

¶ input variables.

Fi g. 4.1. Scheme of automatized controlled object

The typical computability model is Turing machine (Fig 4.2). Every

alghorithm can be implemented on it. Despite of this, in practice it is very

laborious process. Automata-based programming uses the aspects of this

mathematical model which are useful for practical programming.

 48

a b

Fig. 4.2. Turing Machine: classic (а)

and modified (b) representation

State is a base conception of automata-based programming. All states must

be singled out explicitly.

Input effects are considered as tools for changing states. Output effects can

be formed by state machines either in states or between states (in

transitions).

There are two kinds of states: control states and computational states. In the

Turing machine the finite state machine with a few states can control infinite

states on the tape. In the sequel we will use the notion “state” as “control

state”.

Example of automata-based program is shown in fig. 4.3.

 49

Fig. 4.3. Transition graph of finite state machine, which control lift doors

This state machine controls lift doors. Work is started when doors are in

Closed state. When user pushes the Open button(e11 event) door release is

started (o1.z1). When event of opening (e2) is received state machine

does to Opened state. The process of door closing goes in much the same

way. e12 is button Close event, o1.z2 is starting of door closing

mechanism. If an obstacle prevents doors from closing e3 event is occurred.

So state machine goes to Opening state and the doors are being opened. Also

an error can be occurred (e4 event) which makes state machine to go to

Error state. If alert signal is enabled (o2.x1) then call emergency service is

made. Error state is created to demonstrate facilities of verification so state

machine can go to this state only from Opening state.

There are three kinds of state machine interaction.

1. Nesting: one state machine is nested into the state of another.

2. Calling: one state machine call another state machine.

3. Interaction by states: one state machine checks in what state FSM

is.

In object-oriented automata-based programs interaction by states is not used.

 50

4.2. Existing products abstract

In the beginning of research in state contract for “Verification of automata-

based programs” theme [53] patent search was conducted [54].

Subjects of patent search are:

¶ model checking;

¶ temporal logic;

¶ preventing errors by testing and debugging.

By the result of analisys abstract of products was created. The main products

are enumerated in table 4.1.

Table 4.1. Abstract of main products

Title Assignment, description

Bogor Perform a model for language BIR. Supports most basic
ways of working with multithreading. BIR language is

easy to use of object-oriented programming paradigm.It
has a GUI based on Eclipse™.

Cadena Cadena is an Eclipse™-based extensible integrated
modeling and development framework for component-
based systems. Cadena's meta-modeling capabilities can

be used to formally capture the definition of widely used
component models such as the CORBA Component

Model (CCM), Enterprise Java Beans (EJB), nesC (a
component model for sensor networks built on TinyOS).

Meta-models can include attributes that represent settings
and parameters for underlying middleware frameworks on

which systems will be deployed.

CADP
(Construction
and Analysis of
Distributed
Processes)

CADP is a toolbox for the design of communication
protocols and distributed systems. CADP offers a wide set

of functionalities, ranging from step-by-step simulation to
massively parallel model-checking. It is the only toolbox

to offer:

Compilers for several input formalisms, e.g.:

High-level protocol descriptions written in the ISO
language LOTOS [International Standard 8807]. The

toolbox contains two compilers (CAESAR and

 51

CAESAR.ADT) that translate LOTOS descriptions into C

code to be used for simulation, verification, and testing
purposes;

Low-level protocol descriptions specified as finite state

machines;

Networks of communicating automata, i.e., finite state
machines running in parallel and synchronized together

(either using process algebra operators or synchronization
vectors).

Several equivalence checking tools (minimization and

comparisons modulo bisimulation relations), such as
BCG_MIN and BISIMULATOR.

Several model-checkers for various temporal logic and
mu-calculus, such as EVALUATOR and XTL.

Several verification algorithms combined together:

enumerative verification, on-the-fly verification, symbolic
verification using binary decision diagrams,

compositional minimization, partial orders, distributed
model checking, etc.

Plus a bunch of other tools with advanced functionalities

such as visual checking, performance evaluation, etc.

CADP is designed in a modular way and puts the
emphasis on intermediate formats and programming

interfaces (such as the BCG and OPEN/CAESAR
software environments), which allow the CADP tools to

be combined with other tools and adapted to various
specification languages.

CBMC
(A Bounded
Model Checker
for C/C++
programs)

The product checks the model for languages ANSI C и
C++ . It allows you verify the output of the border arrays,
safety pointers, exceptions, and user assertions. Supports

the most important elements of ANSI C: multidimensional
arrays, pointer arithmetic, fractional fixed-point

arithmetic, etc.

GEAR (A game
based model
checking tool
capable of

CTL, modal &-
calculus and

Graphical environment, which allows you to build models
and perform their verification using logic CTL and

µ-calculation. There is a lot of visual material for
studying. Collaborates with project Specification patterns,

which is an organization of repository of the various
requirements of correctness.

 52

specification
patterns)

Java
Pathfinder

Verifies the executable Java byte code. Can find
execution paths that lead to an unhandled exception,

locks, etc. Check the program up to 10 000 lines of code.
It is used in NASA Ames Research Center.

LTSA
(Labelled
Transition
System
Analyser)

The product is intended for the verification of distributed

and parallel systems (concurrent systems). They are
defined by LTS (Labelled Transition System) and FSP
(Finite State Processes). Correctness requirements are

specified as finite state machines (in the earlier version
supported by the formula LTL). There are plugins, for

example, for verification of web services and a graphical
interface.

MOPS (Model
Checking
Programs for
Security
Properties)

The verifier models extracted from the program code
written in C. Correctness requirements are defined in a
special form and correspond to the assertions of so-called

“defensive programming”. Contains a ready base of such
statements, it is planned to write a graphical user

interface.

NuSMV
(A New
Symbolic
Model
Сhecker)

This is an updated version of the verifier SMV – symbolic
verifier models (Symbolic Model Checker). It performs

the verification by combining BDD (Binary Decision
Diagrams) and model checking based on SAT (SAT-based

model checking). Supported methods of specifying the
requirements of correctness: CTL, LTL.

ORIS (Uses

a CTL-like
temporal logic
with real-time
bounds, action
and state
based)

Performs symbolic verification of systems given in the

form of hierarchical automata for which the requirements

of a well.

SMV (Symbolic
Model
Checker)

Performs symbolic verification of systems given in the

form of hierarchical automata for which the requirements

of correctness are defined in temporal logic CTL. Argued

that the system can be defined as detailed and abstract.

Uses the transformation of machines into the Kripke

model.

 53

SPIN Performs verification of the model for language

PROMELA. This language supports only discrete data

types and functions for working with multithreading. Uses

the logic LTL.

UPPAAL

(Uppaal Model
Checker)

Environment for modeling and verification of real-time

systems. Uses the network time machine, advanced data

types (bounded integers, arrays, etc.). Modeling languages

Έ Timed Automata. Correctness requirements are

specified in the sublanguage TCTL.

VIS

(Verification

Interacting
with Synthesis)

Performs verification of the model using the hierarchical

finite state machines and language Verilog. Verifiable

statements are defined by logic CTL.

dSPIN Expanding the tool SPIN. Allows verifying distributed

and parallel systems more effectively. This tool extends

the capabilities of the tool SPIN. Implements some new

features in addition to the study algorithms of state and

space reduction in the number of states used in SPIN:

pointers, dynamic allocation/deallocation, recursive

functions, function pointers, garbage collection,

symmetrical reduction. Sufficiently powerful input

language (an extension of language PROMELA).

DBRover Monitor execution time (runtime monitor) for temporal

rules, written in languages LTL and MTL. This is an

automatic, remote and the graphical version of tools

TemporalRover. Contains an editor of temporal formulas,

generator and code compiler, simulator. Modeling

languages: Ada, C, C + +, Java, VHDL and Verilog.

Supported languages of requirements of correctness: LTL,

MTL (Metric Temporal Logic), etc.

Reactis Tester Models and testing rocket systems. Modeling languages:

Simulink / Stateflow.

Temporal

Rover

Perform requirements formulated in the language of LTL

with constraints of real time (with real time constraints).

Generates executable code for specifications written in the

form of comments. Supports the validation of the

properties of the form “after the occurrence of an event e

value of x in 5 percent of cases does not change, and its

 54

average value is greater than 100 for one hour or until

such time when the event e1 happens twice”. Input

languages: Ada, C, C + +, Java, VHDL, Verilog.

Supported methods of specifying the requirements of

correctness: LTL, MTL (Metric Temporal Logic), etc.

There is also a project StateRover, which is based on this

tool, but is newer and powerful. StateRover has more

opportunities than Temporal Rover and operates on a

subset of UML. It can generate code in languages Java, C,

C + +. It has a powerful GUI, implemented as a plugin

for Eclipse ™.

4.3. Tools and subjects of verification

4.3.1. Automatic teller machine model

Automatic teller machine (ATM) is device for automatization operations of

issuance and transfer money. Client is identified by his banking card and

corresponding PIN. ATM performs the following operations:

¶ identifies client;

¶ allows to inspect available funds;

¶ allows to draw out;

¶ connects with bank.

ATM model consists of two state machines. State machine AClient controls

user interface. State machine AServer performs account operations and

connects with bank. In addition there are following event providers and

controlled objects.

Event providers:

¶ HardwareEventProvider – generated by hardware system events;

¶ HumanEventProvider – events which are initiated by user;

¶ ServerEventProvider – answers from server;

¶ ClientEventProvider – requests to server.

Controlled objects:

¶ FormPainter – provides form visualisation;

¶ ServerQuery – sends requests to server;

 55

¶ ServerReply – sends answers from server.

ATM model was developed using UniMod tool which is created in

SPbIFMO SU [58, 75, 76]. Connection scheme is represented on fig. 4.4.

Рис. 4.4. Connection scheme of ATM model

 56

Transition graph of AClient state machine is represented in fig. 4.5.

Transition graph of Aserver state machine is represented in fig. 4.6.

Fig. 4.5. AClient state machine

 57

Fig. 4.6. AServer state machine

4.3.2. Properties of ATM to verify

Each verification tool will check following two properties.

The first property (call it Σ) is “User can not receive money if he did not

enter correct PIN”. This assertion must be true in ATM so the verification

result must be successful. Let us reformulate this assertion: “It can not be

that user did not enter correct PIN before he receive money”. Verbal

formula is translated to LTL-formula directly:

×(×[enter correct PIN] U [payment]).

As represented in fig. 4.5 payment occurs in o1.z10 action. So long as one

of verification tools can not check execution of output actions we will use

that fact that this action is executed only in “10. Payment” state. When user

enters PIN correctly e10 event is occurred. Therefore formula takes the

form:

×(×e10 U (AClient in “10. Payment”))

In CTL this assertion is formulated in much the same way:

×E[×e10 U (AClient in “10. Payment”)].

The second assertion (Ω) is “User is sure to receive money”. This assertion

must not to be true in ATM model. So verification tools must represent

 58

counter-examples for this assertion. Verbal formula is translated to LTL-

formula directly:

F[payment].

As considered before payment occurs in only one state so formula takes the

form:

F(AClient in “10. Payment”).

In CTL:

AF(AClient in “10. Payment”).

4.4. Tools utilizing existing verifiers

4.4.1. Converter

Common description

Converter [77–79] utilizes may be the most known verifier: SPIN [46, 80].

This tool uses LTL for verification. Model for checking is described in

PROMELA language.

The Converter tool standard tasks for this case:

¶ Conversion of automata-based system into PROMELA language;

¶ definition of predicates for assertions formulation;

¶ conversion of counter-example into terms of source system.

Atomic states extraction

The described in PROMELA language model contains following variables in

which model state is stored:

int lastEvent; This variable stores a number of last processed event;

int stateAi; This variable stores a number of current state of state

machine Ai .

In this approach the atomic state of automata-based system is set of current

states of each state machine and last processed event.

 59

Checking assertions

This verification tool checks formulae which are written in LTL. There are

two kinds of predicates:

lastEvent = e1 is true when last processed event is e1;

stateAi = 1 is true when the number of current state in Ai state

machine in described in PROMELA model equals 1. Note: this number is

not a name in source system, so user need to find it in described in
PROMELA model manually.

Counter-example conversion

In case of finding error SPIN can “replay” the counter-example in the

model. It means that SPIN will execute PROMELA model as a real program.

Converter uses this feature. Information about current model state is printed

very transition. So when SPIN replies counter-example this information is

printed to standard output. Example of this output is represented in

listing 4.1.

Listing 4.1. Output of сounter-example by Converter

State Test 1 : init

Going to state Test 2 : s0

Event = e2

State Test 2 : s0

Going to state Test 33 : s1 - 1

Event = e3

State Test 33 : s1 - 1

Detailed tool description

Converter works with automata-based programs which are developed using

UniMod tool. This tool, as mentioned before, provides creating automata-

based programs visually and execution of them. Automata-based program is

represented as UML-diagram. Controlled objects and event providers are

developed in Java.

UniMod allows to save automata-based program as XML file. This file is

used as input for Converter.

 60

Distribution kit is provided with all necessary libraries and SPIN tool. The

only required thing is to install gcc or compatible compiler C and include

path to the gcc to the PATH environment variable.

This command runs Converter tool:

run.cmd <XML file of system> <report file>

 <LTL- formula >

Where

XML file of system – automata-based system to verify (developed in

UniMod and saved as XML file);

Report file – path to file where will report about verification will be

put;

LTL- formula – formula with assertion to verify, for example,

" !(<>{lastEvent == e1}) " .

For LTL-formulae following notation is used:

[] – Globally (always);

<> – Future (some time in future);

U – Until ;

V – Reverse until p V q is equivalent to !(!p U !q) ;

! – negation;

&& – logical AND;

|| – logical OR;

- > – implication;

<- > – equivalency.

ATM-model verification

Converter works with UniMod models. Therefore no additional conversions

needed. We need only to generate XML file with model description from

UniMod graphical user interface.

Verification of the first property. Firstly we need to generate a XML file with

model description. Let it be Bankomat.xml . Converter creates an

identifier for every state of state machines in system so these identifiers are

 61

needed in LTL formulae. To learn what identifier will be assigned to “10.

Payment” state we need to run Converter with no formula:

run.cmd Bankomat.xml report.txt ""

As a result model.ltl file will be generated. At the beginning of this file

correspondence between state identifiers and names (listing 4.2).

Листинг 4.2. Result of verification with no formula

...

#define STATE_10 10 /*8. ɺʚʦʜ ʩʫʤʤʳ*/

#define STATE_11 11 /*10. ɺʳʜʘʯʘ ʜʝʥʝʛ*/

#define STATE_12 12 /*9. ɿʘʧʨʦʩ ʜʝʥʝʛ*/

...

So we learnt that to “10. Payment” state has “11” identifier. Now we can

write formula for Converter:

!(!{lastEvent == e10} U {stateAClient == 11}).

So the input parameters for Converter will be following:

run.cmd Bankomat.xml report.txt "(!{lastEvent ==

e10} U {stateAClient == 11})"

The result of verification is stored in repor t.txt file (listing 4.3).

Listing 4.3. Result of verification Σ assertion

Converter v. 0.50

warning: for p.o. reduction to be valid the never claim

must be stutter - invariant

(never claims generated from LTL formulae are stutter -

invariant)

(Spin Version 4.2.8 ï 6 January 2007)

 + Partial Order Reduction

Full statespa ce search for:

 never claim +

 assertion violations + (if within scope of claim)

 acceptance cycles + (fairness disabled)

 invalid end states - (disabled by never claim)

State - vector 32 byte, depth reached 139, errors: 0

 62

 129 states, store d

 8 states, matched

 137 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

Important information consists in “errors: 0” line. It means that there

are no errors found in model. The result of verification is correct.

Verification of the second property (Ω):

run.cmd Bankomat.xml report.txt

 "(!<>{stateAClient == 11})"

As a result there is following information in report.txt file (only

significant lines):

Listing 4.4. Результат верификации свойства Ω банкомата

...

State - vector 28 byte, depth reached 33, errors: 1

...

Never claim moves to line 267 [(!((stateAClient==11)))]

 State AClient 1 : s1

 Going to state AClient 13 : 1. Insert card

 State AClient 13 : 1. Insert card

 Goi ng to state AClient 6 : s2

 Event = e0

 State AClient 6 : s2

spin: trail ends after 34 steps

...

The report contains the counter-example for verifying assertion. It is easy to

read this file and complementary conversion is not needed. The ATM starts

working in the state s1. It goes to state “1. Insert card”. After that user

pushes the power off button and event e0 is arisen. So the ATM goes to the

terminal state and powers off. Therefore user never gets the money. So this

counter-example is correct.

 63

4.4.2. Unimod.Verifier

General description

UniMod.Verifier [77, 81, 82] uses verifier Bogor [83]. The input language of

verifier Bogor is named BIR and can be extended by new types of data.

These data types are classes with internal states. User can call actions which

can change the internal state of the class and request values of class

variables.

Possibility of input language extension allows abstracting away from

unnecessary details of verifying model. In theory it reduces amount of

model states and therefore speeds up verification process.

In UniMod.Verifier a new class was implemented. This class performs only

one operation: step (process next event). This operation nondeterministically

chooses an event and sends it to automata-based program.

The main advantage of this approach is that the description of the program

in the Bogor input language is became trivial and the same for any

automata-based program. The logic of the model and the states storage are

implemented in software and once for all automata-based systems. No need

to generate a new intermediate input data for each verifying system.

In addition, in UniMod.Verifier is used another original solution. In other

verifiers (for example, Converter) there are different implementations of

state machines in the original program and model. Therefore there is no

guarantee that original program and model will work equally. In

UniMod.Verifier we can say that Bogor verifies state machine directly in the

UniMod. The interaction between UniMod and Bogor in UniMod.Verifier in

diagram form is shown in fig. 4.7.

UniMod.Verifier

UniModДополнения

Дополнение

к интерпретатору

UniMod

Расширение

входного языка

BIR

Интерпретатор

автоматных

программ

Bogor

Алгоритм

верификации

Автоматная

программа

Fig. 4.7. Interaction between UniMod.Verifier components

 64

Atomic states extraction

Every class which extends BIR must return to verifier a number or a set of

numbers which encode its current state. Automata extension defined in the

verifier UniMod.Verifier, is programmed to return the current set of states of

automata as a condition of the entire machine-gun program. Thus, in this

verifier machine transitions are not split to the elementary states.

Verified properties

UniMod.Verifier works with LTL. As a predicate automaton BIR language

extension provides the following features:

¶ wasEvent(e) returns True, if in the last step event e was chosen to

process and False otherwise;

¶ wasInState(sm, s) returns True, if state machine sm before the last step

was in s state;

¶ isInState(sm, s) returns True, if after the last step automata sm is in

state s;

¶ cameToState(sm, s) returns True, if after the last step state machine

sm changed state to s. Equals

(isInState(sm, s) && !wasInState(sm, s));

¶ cameToFinalState() returns True, after the last step the main state

machine came into final state. This means that the program finished

its work;

¶ wasAction(z) returns True, if action z was invoked;

¶ wasFirstAction(z) returns True, if the first invoked action was z;

¶ wasLastAction(z) – returns True, if the last invoked action was z;

¶ getActionIndex(z) return number of action in the list of invoked

actions during the last step. This predicate is used to formulate

statements that specify how to call action control objects in the

automata-based program;

¶ wasTrue(g) returns True, if during the last step one of transitions was

marked by condition g and g was True. Example of condition:

g = !o1.x1 && o1.x2;

¶ wasFalse(g) returns True, if during the last step one of transitions was

marked by condition g and g was False.

 65

Counter-example conversion

UniMod.Verifier works directly with automata-based program so conversion

is not needed.

Tool description

Let us describe how to work with UniMod.Verifier.

Firstly we need to formulate property. Formula is written to unimod.bir

file. This file contains model information besides formula.

¶ LTL.always – (G) globally, always;

¶ LTL.eventually – (F) sometimes in future;

¶ LTL.next – (X) in the next step;

¶ LTL.until – (U) until;

¶ LTL.weakUntil – (W) until or always;

¶ LTL.release – (R) release: p R q = ×(×p U ×q);

¶ LTL.negation – negation;

¶ LTL.equivalence – equivalence;

¶ LTL.implication – implication;

¶ LTL.conjunction – AND;

¶ LTL.disjunction – OR.

Formula is written as a function (listing 4.5).

Listing 4.5. Example of function with LTL-formula

fun NoPinNoMoney () returns boolean =

 LTL.temporalProperty(

 property.createObservableDictionary(

 property.createObservableKey("correct_pin",

AutomataModel.wasEvent(model, "e10")),

 property.createObservableKey("give_money",

AutomataModel.wasAction(model, "o1.z10"))

),

 LTL.weakUntil (

 66

 LTL.negation(LTL.prop("give_money")),

 LTL.prop("correct_pin")

)

);

This function expresses !o1.z10 W e10 formula.

After that we call verifier:

verifier.cmd Bankomat.xml NoPinNoMo ney

Bankomat.xml is a file created by UniMod. It contains automata-based

program which we want to verify. NoPinNoMoney is name of function of

LTL-formula (listing 4.5).

Result of verification will be printed to standard output. At the end of

verification UniMod.Verifier prints a message about successful verification

or counter-example.

ATM-model verification

UniMod.Verifier works with XML-description of automata-based program

generated by UniMod (just like as Converter).

Let us verify the first property (“User can not receive money if he did not

enter correct PIN”).

Listing 4.6. Property Σ for UniMod.Verifier

 fun NoPinNoMoney() returns boolean =

 LTL.temporalProperty(

 property.createObservableDictionary(

 property.createObservableKey(" correct_pin " ,

AutomataModel.wasEvent(model, " e10")),

 property.createObservableKey(" give_money " ,

AutomataModel.isInState(model, " /AClient " ,

" 10. ɺʳʜʘʯʘ ʜʝʥʝʛ"))

),

 LTL.negation (

 LTL.until (

 LTL.negation(LTL.prop(" correct_pin ")),

 67

 LTL.prop(" give_money ")

)

)

);

In this function we define predicates correct_pin (event e10 was occured)

and give_money (AClient state machine is in state “10. Payment”). After that

we write LTL formula !(!<correct_pin> U <give_money>).

Command-line instruction for verification of this property:

verifier.cmd Bankomat.connectivity NoPinNoMoney

As a result the following information will be printed:

Listing 4.7. Result of verification of property Σ

(W) Unknown option

edu.ksu.cis.projects.bogor.module.Isearcher.maxErrors

Transitions: 1, States: 1, Matched States: 0, Max

Depth: 1, Errors found: 0, Used Memory: 2MB

Transitions: 63, States: 41, Matched States: 22, Max

Depth: 14, Errors found: 0, Used Memory: 1MB

Total memory before search: 708 ʘ688 bytes (0,68 Mb)

Total memory after search: 1 ʘ134ʘ712 bytes (1,08 Mb)

Total search time: 688 ms (0:0:0)

States count: 41

Matched states count: 22

Max depth: 14

Done!

Verification successful!

As expected, in the last line was said that there are no errors.

Let us verify the second property (“User is sure to receive money”). Its LTL

formula is shown in listing 4.8.

Listing 4.8. LTL formula for Ω property for UniMod.Verifier

 fun AlwaysMoney() returns boolean =

 68

 LTL.temporalProperty (

 property .createObservableDictionary (

 property .createObservableKey("give_money",

AutomataModel.isInState(model, "/AClient",

"10. ɺʳʜʘʯʘ ʜʝʥʝʛ"))

),

 LTL.eventually (LTL.prop ("give_money"))

);

Start verification process (save result to verifier.out file):

verifier.cmd Bankomat.connectivity AlwaysMoney

 > verifier.out

After verification we will get following result (there are only significant

lines in listing 4.9):

Listing 4.9. The result of verification of property Ω

Generating error trace 0...

Done!

1 traces were found.

Replaying the trace with least states (#0).

Replaying trace by key: 0

Stack of transitions leading to the error:

Model [step [0] event [null] guards [null]

transitions [null] actions [null] states [null]]

fsaState [bad$accept_init]

Model [step [0] event [] guards [] transitions []

actions [] states [(/AClient:9. Money

query /AServer) ï (Top); (/AClient:5. Balance query

/AServer) ï (Top); (/AClient:3.

ɸʚʪʦʨʠʟʘʮʠʷ/AServer) ï (Top); (/AClient) ï (Top)]]

fsaState [bad$accept_init]

Model [step [1] event [*] guards [] transitions

[s1#1. Insert card #*#true] actions [o1.z1] states

[(/AClient:9. Money query /AServer) ï (Top);

(/AClient:5. Balance query /AServer) ï (Top);

(/AClient:3. Authorization /AServer) ï (Top);

(/AClient) ï (1. Insert card)]] fsaState

[bad$accept_init]

 69

Model [step [2] event [e6] guards [true - >true]

transitions [1. Insert card #2. Enter PIN #e6#true]

actions [o1.z2] states [(/AClient:9. Money

query /AServer) ï (Top); (/AClient:5. Balance

query /AServer) ï (Top); (/AClient:3.

Authorization /AServer) ï (Top); (/AClient) ï (2.

Enter PIN)]] fsaState [bad$accept_init]

Model [step [3] event [e2] guards [true - >true]

transitions [2. Enter PIN #13. Card return #e2#true]

actions [o1.z13] states [(/AClien t:9. Money

query /AServer) ï (Top); (/AClient:5. Balance

query /AServer) ï (Top); (/AClient:3.

Authorization /AServer) ï (Top); (/AClient) ï (13.

Card return)]] fsaState [bad$accept_init]

Model [step [4] event [e7] guards [true - >true]

transitions [13. Card return #1. Insert

card #e7#true] actions [o1.z1] states [(/AClient:9.

Money query /AServer) ï (Top); (/AClient:5. Baance

query /AServer) ï (Top); (/AClient:3.

Authorization /AServer) ï (Top); (/AClient) ï (1.

Insert card)]] fsaState [bad$accept_init]

Done!

As expected verifier.out contains a counter-example. This counter-

example corresponds to following situation:

6. ATM starts working. AClient state machine goes to “1. Insert card”

state.

7. User inserts a card (e6 event).

8. AClient state machine goes to “2. Enter PIN” state.

9. User pushes “Cancel” button.

10. AClient state machine goes to “2. Card return” state.

11. User removes the card (e7 event).

12. AClient state machine goes to “1. Insert card” state.

So verifier found a cycle. If this cycle is repeated indefinitely, user will not

receive money. Therefore this result is counter-example.

 70

4.4.3. FSM Verifier

General description

FSM Verifier [65, 77] is based on NuSMV verifier which uses SMV as input

language. Operation with it consists of a few standards for this case steps:

1. Convert automata-based program to SMV language.

2. Write specification for program in temporal logic language.

3. Run NuSMV.

4. Convert counter-example to terms of automata-based program.

Statemachines system

SMV-model

Specification

CTL-formula

NuSMV input

Counter-example for model

Counter-example for

statemachines system

Рис. 4.8. Scheme of FSM Verifier work

 71

The state machines system which FSM Verifier verifies is written in its own

format. The system consists of set of state machines with output effects on

their transitions and states. For each state machine a set of events to process

is specified. Each transition can contain an event and a condition. Condition

is a logical formula. Its‟ predicates are input variables (x1, x2, …) and

expressions like Ai in sj (is true when Ai is in state sj). The input variables

can be Boolean only. Transition can also contain the sequence of output

effects like o.zi() and a command like Ai.ej() for transfer of control to other

state machines.

Atomic states extraction

FSM Verifier separates an intermediate state each time when state machine

performs one of following actions:

¶ invoke an output effect;

¶ Invoke other state machine.

The example of intermediate states extraction is shown in fig. 4.9.

Рис. 4.9. Intermediate states extraction.

Source transition (a), transformed transition (b)

Verified properties

FSM Verifier allows verifying temporal formulae using following

predicates:

 72

¶ Ak is in state sj;

¶ zi output effect was invoked;

¶ event ei was occurred.

NuSMV verifier and therefore FSM Verifier allow verifying properties

formulated in CTL temporal logic. AF f, AG f, A [f U g] temporal operators

are allowed in formulae. In addition standard logical operators are allowed.

Counter-example conversion

The report about error in verification which is returned by NuSMV verifier

contains a counter-example in terms of created model of automata-based

program. The counter-example contains sequence of intermediate states

leading to error. Each intermediate state unambiguously defines state or

transition of source system. So it is easy to convert counter-example to

terms of source system. Detailed implementation of this method is described

in [65].

Tool description

The distribution kit of this tool contains two files:

¶ verifier.jar. Program for conversion state machine system to model in

SMV language;

¶ counterexample.jar. Program for counter-example conversion.

In addition following programs are needed for tool working:

¶ NuSMV verifier;

¶ Java Runtime Environment.

All of these programs can work both of Windows and Linux.

The input of FSM Verifier is state machines system written in XML format.

Structure of input file was developed for FSM Verifier and is not supported

by the other verification tools. This structure can be found in [77].

Formula with specification is written in the XML file with model as plain

text (listing 4.10).

Листинг 4.10. Запись формулы в верификаторе FSM Verifier

 <specification>

 73

 <string>AG (A0.s1 - > AF A1.s1)</string>

 </specification>

For verification we need to run following instructions:

¶ For creating model from automata-based system and specification

(both are written in inputfile.fsm). The model is written to input.smv

file:

java ïjar fsmverifier.jar inputfile.fsm > input.smv

¶ For invoking NuSMV verifier:

NuSMV input.smv > verifier.out

¶ For counter-example conversion:

java ïjar counterexample . jar verifier . out inputfile . fsm

The result is printed into standard output as a table in HTML format. Each

row contains the following information:

¶ step number;

¶ name of active state machine;

¶ processing event;

¶ name of current state of each state machine;

¶ performing action;

¶ values of output effects.

ATM-model verification

The format of XML file of automata-based program developed in UniMod

differs from input format for FSM Verifier. To convert it to the format for

FSM Verifier the special algorithm is used.

There is a possibility to assign any name to states in the UniMod. But

FSM Verifier can not work with some symbols in the names so FSM Verifier

gives new names to states. In addition names of some special events.

As a result of conversion of state machine AClient “10. Payment” got the

identifier s11, so the predicate AClient in “10. Payment” takes the form

AClient.s11. Also in the FSM Verifier tool in writing the predicate of this

event is required to write which state machine handles it. In Fig. 4.5, 4.6, is

shown that the event e10 is processed by AClient state machine only.

Formula for property Σ is represented in listing 4.11.

 74

Listing 4.11.Formula for property Σ

 <specification >

 <string>!E[!AClient.e10 U AClient.s11]</string>

 </specification>

Convert the ATM model from UniMod format to Bankomat.fsm file (in

FSM Verifier format) and write the specification here. Run the following

command:

java ïjar verifyer . jar Bankomat . fsm

The result of this command is out.smv file. Run NuSMV verifier for this file:

NuSMV out.smv

The result of this command is shown in listing 4.12.

Listing 4.12. Result of property Σ verification

ʉ: \ Verifiers \ FSM Verifier>NuSMV out.smv

*** This is NuSMV 2.4.3 (compiled on Tue May 22 14:08:54

UTC 2007)

*** For more information on NuSMV see

<http://nusmv.irst.itc.it>

*** or email to <nusmv - users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

*** This version of NuSMV is linked to the MiniSat SAT

solver.

*** See

http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat

*** Copyright I 2003 - 2005, Niklas Een, Niklas Sorensson

-- specification ! E [! AClient . e10 U AClient . s11] is

true

As expected in the last line said that property Σ is true.

Verification of Ω property. CTL formula for this property is shown in listing

4.13.

Listing 4.13. Formula for Ω property

 <specification>

 <string>AF AClient.s11</string>

 75

 </specification>

Input for NuSMV generation:

java ïjar verifyer . j ar Bankomat . fsm

running of NuSMV:

NuSMV out . smv

The significant part of the result is shown in listing 4.14.

Listing 4.14. The significant part of Ω property verification

ʉ: \ Verifiers \ FSM Verifier>NuSMV out.smv

*** This is NuSMV 2.4.3 (compiled on Tue May 22

14:08:54 UTC 2007)

*** For more information on NuSMV see

<http://nusmv.irst.itc.it>

*** or email to <nusmv - users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

*** This version of NuSMV is linked to the MiniSat SAT

solver.

*** See

http:/ /www.cs.chalmers.se/Cs/Research/FormalMethods/Min

iSat

*** Copyright I 2003 - 2005, Niklas Een, Niklas Sorensson

-- specification AF AClient.s11 is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type : Counterexample

- > State: 1.1 < -

 AClient.State = 0

 AServer.State = 0

 Active = 0

 Event = 0

AClient.s9 = 0

 76

...

NuSMV found a counter-example. Let us save the NuSMV „s output to file:

NuSMV out.smv > verifier.out

After that convert counter-example to terms of automata-based program:

java ïjar counterexample.jar verifier.out Bankomat.fsm

The result of conversion is out.html file. This file contains table shown in

table 4.2.

Table 4.2. Counter-example for Ω property of ATM model

Step Active Event AClient AServer Action

1 AClient – s1 s1 –

2 AClient eAlways s1 s1 o1.z1

3 AClient – s13 s1 –

4 AClient e6 s13 s1 o1.z2

5 AClient – s9 s1 –

6 AClient e2 s9 s1 o1.z13

7 AClient – s7 s1 –

8 AClient e7 s7 s1 o1.z1

9 AClient – s13 s1 –

To understand this counter-example we need to learn the correspondence

between names in source program and given by FSM Verifier. The

correspondence is following:

¶ s1 is start state;

¶ s13 is “1. Insert card”;

¶ s9 is “2. Enter PIN”;

¶ s7 is “13. Card return”.

This counter-example corresponds the following situation:

1. ATM starts working. AClient state machine goes to state “1. Insert

card”.

 77

2. User inserts a card (event e6).

3. AClient state machine goes to state “2. Enter PIN”.

4. User pushes the button “Cancel”.

5. AClient state machine goes to state “2. Card return”.

6. User removes the card (event e7).

7. AClient state machine goes to state “1. Insert card”.

So this counter-example is equivalent to counter-example generated by

UniMod.Verifier.

4.5. Autonomous verifiers

4.5.1. CTL Verifier

General description

CTL Verifier tool [63, 77, 84] does not use any other verifiers. In this tool

the algorithm of CTL formulae verification was implemented. There is no

need to convert the automata-based program to the input language of any

verifier. However it is required to convert the program into the Kripke

model which is verified by CTL Verifier. The result of verification will be

also expressed in terms of Kripke model. Therefore there is a counter-

example conversion in this method.

Atomic states extraction

Consider Label marking set (Label Ì S ³ AP) for Kripke model

M = (S, R, Label). Instead of R(s, t) we will write s t.

Consider program, which model is set by state machines system which

interact by nesting. We need to convert this model to a single Kripke model.

This model must describe the whole behavior of source system.

Firstly for set of state machines topological sorting with respect nesting is

performed. This relationship must not have cycles. Otherwise the model will

have unlimited size. The Kripke model is generated inductively for each

state machine in system. The state machines are processed in order formed

by topological sorting. This order provides that in time of processing of each

state machine all of nested machines will be processed.

 78

Method of full transition graph

Method described in this section is the most expressive in the sense that it

provides verification of properties which include all of the aspects of

automata-based programs behavior. It allows working with system of

parallel state machines. We will consider this case.

Let {Y1, Y2, …} be the set of names for all states, {e1, e2, …} be the set for

events, {x1, x2, …} be the set of input effects, {z1, z2, …} be the set of output

effects, Names be the set of state machines‟ names, InState, InEvent and

InAction be control atomic propositions for easy recognition vertices which

are created from states, events and output effects.

Then by definition put the set of atomic propositions

AP = {Y1, Y2, …} Ç {e1, e2, …} Ç {x1, x2, …} Ç {z1, z2, …} Ç

Ç {InState, InEvent, InAction} Ç Names.

Now construct Kripke model in parts. Firstly construct parts such that they

correspond to states of state machine. We must process the output effects

and the nested into these states state machines. After that adding of

information about transitions into the model. At first step put set S be equal

to a set of the source state machine‟s states and for each s state add two

marks: (s, s) и (s, InState) into the Label relationship.

After that for each s state perform following operation. Let s contains the

zs[1], …, zs[u] output effects such that zs[1], …, zs[u] are true under the entrance

of state s. Construct {r1, …, ru} states and transitions: r1 r2, …, ru–1 ru,

ru s. Add (rk, zs[k]), (rk, InAction) marks into Label relationship for each k

= 1, …, u. In the sequel each transition going to the state s we redirect to

state r1.

Example is shown in fig. 4.10.

 79

Y

z1, z2, …, zn

z1,

InAction

z2,

InAction
… zn,

InAction

Y,

InState

A B

Fig. 4.10. A state with the output effects

before conversion (a) and after conversion (b)

We shall say that this operation is called output variables and states

division.

Let state machines AY,1, AY,2, …, AY,v are nested into the state Y of the

external state machine (for these state machines the Kripke model has

already constructed by the inductive hypothesis). Let us construct the Kripke

model for the state Y. Add the Kripke model to model for the state Y of all of

the state machines AY,1, AY,2, …, AY,v (copy all of the states, transitions and

marks of nested state machines‟ models to the external state machine‟s

Kripke model).

Add a transition from terminal state of the state machine AY,i to the AY,i for

i = 1, …, v – 1.Add a transition from terminal state of the state machine AY,v

to the state Y. Example is shown in fig. 4.11.

AY,1

AY,1

Finish

AY,1

Start

AY,2

AY,2

Finish

AY,2

Start

AY,v

AY,v

Finish

AY,v

Start
… Y

InState

Fig. 4.11. Nested state machines processing

Note: There are might be several copies of one state machine nested into

another state machine. In this case for each copy a separate Kripke model is

created.

This algorithm will be illustrated by the example of ATM model. This

model consists of two state machines: AClient and AServer, AServer is

nested into AClient. Conection scheme is represented on fig. 4.4. Transition

graph of AClient state machine is represented in fig. 4.5. Transition graph of

Aserver state machine is represented in fig. 4.6. For this system the Kripke

model is too large. So we represent it if fig. 4.12 in a simplified form.

 80

Рис. 4.12. Transition graph of ATM model

After states we need to process transitions. Consider set V of all Boolean

variables in the source state machine. It consists of input effects and output

effects. For each state p and binary sequence α such that can be assigned to

elements of V. Define the scenario such that it must be happen in case that

value of V is α. This scenario can be described in natural language the

following manner. In the state p happened following events: ei[1] , …, ei[s] .

And input variables xj[1] , …, xj[t] (and only they) were true. After that

zk[1] , …, zk[u] output effects were invoked and the state machine went to the

state q. For each scenario like this (call it r) create addition states: {re, r1, …,

ru}, additional transitions: p re, re r1, r1 r2, …, ru–1 ru, ru q

and add marks (re, ei[i*]), (re, xj[j*]) (re, InEvent), (rk*, zk[k*]), (rk*, InAction) for

each i* = 1, …, s, j* = 1, …, k and k* = 1, …, u. into Label.

 81

Conversion of state machine into Kripke model is illustrated by the example

of ATrig state machine. Atrig emulates operation of RS-trigger [85]

(fig. 4.13, 4.14).

Y = 0

!S

R

S & !R

R

Y = 1

!R

Рис. 4.13. Transition graph of ATrig

InState,

Y = 0

InEvent,

R, S

InState,

Y = 1

InEvent,

R, S

InEvent,

R

InEvent,

R

InEvent,

S

InEvent,

S

InEvent

InEvent

Рис. 4.14. Kripke model for ATrig state machine

Method of reduced transition graph

In this method by definition put

AP = {Y1, Y2, …} Ç {e1, e2, …} Ç {x1, x2, …} Ç {!x1, !x2, …} Ç

Ç {z1, z2, …} Ç {InState, InEvent, InAction} Ç Names.

Start like method of full transition graph. Let S is a set of states of source

state machine. For each SsÍ add two marks: (s, s) and (s, InState) into the

Label relation. As described in method of full transition graph perform

division of output variables and states. Separate states from nested state

machines.

Processing of transitions. Consider the following set:

{x1, !x1; x2, !x2; x3, !x3; …}.

 82

We can say that it is a set of all the literals of input variables. We should

distinguish between symbols “×” and “!”. First of them means performing

of logical negation. Second means symbol (part of “!xi” string). Put

hj[j*] = xj[j*] or !xj[j*] . Then for each transition r of source state machine such

that it leads for state p to q state with following mark:

ei & hj[1] & hj[2] & hj[3] & … & hj[m] / zi[1], …, zi[n]

Add {re, r1, …, rn} states and

p re, re r1, r1 r2, …, rn–1 rn, rn q

transitions into the model.

Add following marks into the Label relation: (re, ei), (re, InEvent), (rk, zi[k]),

(rk, InAction) for each k = 1, …, n and (re, hi[1]), (re, hi[2]), …, (re, hi[m]).

Example of this conversion is shown in fig. 4.15.

Y = 1

Y = 2

ei & x2 & !x4 & !x5 / z1, z2, …, zn

a

InState,

Y1

InEvent,

ei,

x2, !x4, !x5

InAction,

z1

InAction,

z2

… InAction,

zn

InState,

Y2

b

Fig. 4.15. Transition before conversion (a) and after (b)

At the end of the processing add mark with atomic proposition

corresponding state machine‟s name into Label relation, just like previous

method.

This method is demonstrated by the example of the state machine of lift

doors control (fig. 4.3). Construct the Kripke model for this state machine.

In fig. 4.16 the Kripke model is shown.

 83

InEvent,

e11

InAction

o1.z1

InState,

Opening

InEvent,

e2

InState,

Opened

InEvent,

e3

InAction,

o1.z1

InState,

Closing

InAction,

o1.z2

InEvent,

e12

InEvent,

e2

InState,

Closed

InEvent,

e4

!o2.x1

InEvent,

e4,

o2.x1

InState,

Error

InAction

o2.z1

Fig. 4.16. Kripke model

Example of Kripke model for system of interacting state machines is shown

in fig. 4.17, 4.18.

A1

e
A1.Y1

call A2

A1.Y2

call A2

A2

e & A1.Y2 & !x
A2.Y1

call A3

A2.Y2

call A3

A3

e & x & A1.Y1 & A2.Y1
A3.Y1 A3.Y2

Рис. 4.17. System of interacting by nesting state machines

with conditions of external state machine‟s states

 84

1

A3.Y1

A3, InState,

2

A3.Y2

A3, InState,

3

e, x

A3, InEvent,

5

A3.Y1

A3, InState,

6

A3.Y2

A3, InState,

7

e, x

A3, InEvent,

9

e, !x

A2, InEvent,

11

A3.Y1

A3, InState,

12

A3.Y2

A3, InState,

13

e, x

A3, InEvent,

16

A3.Y2

A3, InState,

17

e, x

A3, InEvent,

18

A2.Y2

A2, InState,

19

e, !x

A2, InEvent,

20

A1.Y2

A1, InState,

21

e

A1, InEvent,

4

A2.Y1

A2, InState,

8

A2.Y2

A2, InState,

10

A1.Y1

A1, InState,

14

A2.Y1

A2, InState,

15

A3.Y1

A3, InState,

Рис. 4.18. Kripke model for this system

Checking of CTL formula

Semantics of CTL in this method slightly differs from standard: Before

verification it should be cast to the canonical form. Firstly all the double

negations should be deleted (by the changing expressions ×× f to f). After

this write two negations before all the input variables in formula: hi ×!hi.

After these modifications we can verify CTL formula using methods for

CTL language. The reason of this modification is following: we must ensure

that every reference to unchecked in this transition input variables.

Verified properties

As predicates in CTL Verifier can be used following conditions:

¶ State machines A is in state s;

¶ event e is processing;

¶ input variable x is true or false;

¶ output effect z is invoked;

CTL Verifier uses only following temporal operators: EX, EG, EU. Other

temporal operators can be expressed by these ones using the following

terms:

¶ AX g = !EX !g;

¶ EF g = 1 EU g;

¶ AF g = !EG !g;

 85

¶ AG g = !EF !g = !(1 EU g);

¶ f AU g = !((!g EU !(f || g)) || EG !g).

Counter-example conversion

After work of verifier we should determine satisfiability of CTL formulae.

Scenario for every sub formula is a path in the Kripke model. This path

illustrates validity or invalidity for this sub formula. The problem is to

represent the scenario in the Kripke model in the source automata-based

system.

For described above method this operation is performed unambiguously.

Proof. Consider Kripke model states such that they contain atomic

proposition Y = or auxiliary atomic proposition InState. These states are

converted to corresponding source system‟s states unambiguously. Path

between these states is a “line” of the event and output effects. Any of these

intermediate states unambiguously determines the main state that starts this

line. The events are restored unambiguously from this “line”. The output

effects are also restored unambiguously from this “line”.

Tool description

The input for CTL Verifier is a state machines system, which described in a

text format. This format is developed specially for this tool and is not used

by other programs.

The input file also contains CTL formula with specification. CTL formula

must be written inductively by construction. For example, “EG !e1” formula

is written in listing 4.

Listing 4.15. EG !e1

[Properties]

f 1 = e1

f2 = !f1

f3 = $EG f2

Verification is performed by the following command:

CTLVerif.exe <input file >

 [<output file> [<output folder>]]

 86

CTL Verifier works only under Windows.

The result is following information:

¶ List of predicates that used in the constructed Kripke model;

¶ The Kripke model. All the atomic states are enumerated.

¶ For each formula the list of states such that formula is met in these

states. If the formula contains the temporal operator and is proved by

a cycle of states, the list of states is printed. For example,

1 34 35 (3 38 39 5 109 110 8 91 92 15 85 86 20 82 83);

¶ If the output folder is specified, then the counter-example in terms of

source system is printed. One file with counter-example for each

formula.

ATM-model verification

We need to convert the UniMod-program to format of CTL Verifier. The

converting algorithm was developed for CTL Verifier. This algorithm makes

changes to system such that state names changing, union of all the

termination states to one, et cetera.

Result of conversion of the ATM model is Bankomat.dat file. The state

“10. Payment” state of AClient state machine got s10 name. Section with

property Σ of this file is represented in listing 4.16.

Listing 4.16. The property Σ

[Properties]

; !(! e10 EU s10)

f 1 = e10

f 2 = ! f 1

f 3 = s10

f 4 = f 2 $ EU f 3

f 5 = ! f 4

Start the verifier:

CTLVerif.exe Bankomat.dat out.txt out

Information of Kripke model is stored in out.txt file. In the out folder f1, f2,

f3, f4 and f5 files were created. File f5contains the result of verification for

property Σ. The first four lines of this file are shown in listing 4.17.

 87

Listing 4.17. Result of verification of property Σ

$ 1: ACli ent InState s0

 28: AClient InAction o1. z1

 29: AClient InState s12

 30: AClient InAction o1. z7

The first line reports that formula f5 is true in the start state (s0) of the main

state machine (AClient). state s0 corresponds state s1 in source program.

Therefore the source program satisfies the property Σ.

Verify the Ω property. The CTL formula is AF s10. Convert it: AF s10 =

!EG !s10. Write it to the Bankomat.dat file (listing 4.18).

Листинг 4.18. The property Ω

[Properties]

; AF s10 = ! EG !s10

f1 = s10

f 2 = ! f 1

f3 = $EG f2

f4 = !f3

Run the verifier:

CTLVerif.exe Bankomat.dat out.txt out

There are only three states that satisfy formula f4. There is no start state

among them.

Listing 4.19. The result of property Ω verification

 4: AClient InAction o1. z10

 5: AClient InState s10

 106: AClient e13 In Event

If the start state does not satisfy the formula f4, then it satisfies its negation.

The negation of formula f4 is formula f3. So prove for the formula f3 is a

counter-example for the formula f4. This counter-example is shown in

listing 4.20.

Listing 4.20. Counter-example for the property Ω

[1]

$ 1: AClient InState s0

 89: * AClient InEvent

 88

 28: AClient InAction o1. z1

 29: AClient InState s12

 108: AClient e0 InEvent

 109: AClient InAction o1. z0

Cycle :

% 80: AClient InState s5

This counter-example in terms of source program is shown in listing 4.21.

Листинг 4.21. Counter-example of the property Ω in terms of source program

$ 1: AClient InState s1

 89: * AClient InEvent

 28: AClient InAction o1.z1

 29: AClient InState "1. Insert card "

 108: AClient e0 InEvent

 109: AClie nt InAction o1.z0

Cycle :

% 80: AClient InState s2

This counter-example corresponds the following scenario:

1. ATM starts working. The sstate machine AClient goes to “1. Insert

card” state.

2. User turns it off (event e0).

3. The state machine AClient goes to the terminal state and stays in this

state forever.

So user never gets the money.

4.5.2. Automata Verificator

General description

In this verifier [64] the algorithm of double depth-first search is

implemented. This algorithm allows verifying LTL formulae described

using Buchi automaton. The feature of this tool is multithreading

implementation of double depth-first search algorithm.

Automata Verificator works with programs that developed using UniMod.

 89

Atomic states extraction

In considered verifier the atomic state is defined as a set of current states of

state machines in the system.

Verified properties

The predicates list is similar to the predicates list of UniMod.Verifier:

¶ wasEvent;

¶ wasInState;

¶ isInState;

¶ cameToFinalState;

¶ wasAction;

¶ wasFirstAction;

The meaning of these predicates is similar to UniMod.Verifier. User can use

names of states, events and actions of source program even if they contain

space symbols and other special symbols.

In addition user can create his own predicates. For this effect user should

develop a class in Java that contains a method with annotation

“@Predicate”.

Counter-example conversion

There is no need to convert counter-example.

Tool description

Automata Verificator was developed as Java-classes and is not represented

as a program that can be executed from command line. So authors

developed a class that allows to run this program from command line and

built with all the classes of Automata Verificator.

This tool works with XML-files created using UniMod. Let A.xml is a file

with automata-based program, A1 is a main state-machine, and

F(wasEvent(p.e1)) is a formula. The following command runs the

verification:

java ïjar verifier . jar A. xml A1 " F(wasEvent (p. e1))"

 90

The result of work is Buchi automaton that generated from LTL formula and

the result of verification. If program satisfies the LTL formula then message

“Verification successful” is printed. Otherwise the counter-example is

printed.

Listing 4.22. Counter-example that generated by Automata Verificator

LTL: F(isInState(AClient, AClient["10. Payment "]))

initial 0

BuchiNode 0

Ą[!isInState(AClient, 10. Payment)] 0

Accept set 0 [0]

DFS 2 stack:

Ą["<"13. Card return ", "s1">", 0, 0] Ą["<"1. Insert

card", "s1">", 0, 0]

DFS 1 stack :

Ą["<" s1", " s1">", 0, 0] Ą["<"1 . Insert card", " s1">",

0, 0]

Ą["<"2. Enter PIN", " s1">", 0, 0] Ą["<"3.

Authorization", "s1">", 0, 0]

Ą["<"4. Main menu", "s1">", 0, 0] Ą["<"13. Card

return", "s1">", 0, 0]

The counter-example is concatenation of DFS 1 stack and DFS 2 stack.

Before concatenation we should exclude the fist state of DFS 2 stack

because it doubles last state of DFS 1 stack.

Each system‟s state is written in square brackets. It contains the following

information:

1. Set of current system states.

2. Number of current Buchi automaton state.

3. Set of accept states of Buchi automaton.

ATM-model verification

Verify property Σ. Write assertion that event e10 was happened:

wasEvent(p3.e10)

p3 is an event provider that generated event e10 (fig. 4.5). Write assertion

that state machine AClient is in state “10. Payment”:

isInState(AClient, AClient[\ "10. Payment \ "])

 91

Run verification :

java ïjar verifier . jar Bankomat . xml AClient

"! U(! wasEvent (p3. e10), isInState (AClient , AClient [\ "10.

Payment \ "]))"

The result of verification is shown in listing 4.23.

Listing 4.23. The result of verification of property Σ

LTL: ! U(! wasEvent (p3. e10), isInState (AClient ,

AClient ["10. ɺʳʜʘʯʘ ʜʝʥʝʛ"]))

initial 1

BuchiNode 0

 Ą[true] 0

BuchiNode 1

 Ą[!wasEvent(e10)] 1

 Ą[isInState(AClient, 10. ɺʳʜʘʯʘ ʜʝʥʝʛ)] 0

Accept set 0 [0]

Verification successful

As expected, there is no errors.

Verify property Ω:

java ïjar verifier . jar Bankomat . xml AClient

" F(isInState (AClient , AClient [\ "10. ɺʳʜʘʯʘ ʜʝʥʝʛ\ "]))"

The result is shown in listing 4.22. This counter-example corresponds the

following scenario:

1. ATM starts working. AClient goes to “1. Insert card” state.

2. User inserts a card (e6 event).

3. AClient goes to “2. Enter PIN” state.

4. AClient goes to “3. Authorization” state.

5. User enter PIN.

6. AClient goes to “4. Main menu” state.

7. User pushes the cancel button.

8. AClient goes to “13. Card return” state.

9. User takes his card back.

10. AClient goes to “1. Insert card” state.

 92

This counter-example is correct but it differs from found by the other

verifiers‟ counter-examples.

Conclusion
The main problem in the development of software systems is that validation

implemented by a software system is extremely complex. While designing

such systems the most of the time is taken on analysis and debugging rather

than on writing code. There are many methods validation programs, and

they correspond to different classes of them. In this book we have

considered a class of systems that are critical for safety, in validating the

application is inadmissible incomplete induction. Even if you check the

correctness of the basic scenarios of the system, it would still be insufficient

for the recognition system robust. The most profound and difficult to detect

errors can be tolerated in the design phase. Therefore the book is devoted to

methods of testing, which guarantee the correctness of any behavior of the

system (or its model).

However, in order to get one hundred percent proof of the correctness of the

program, you must expend a tremendous effort. The method of formal

verification does not apply to large and complex programs. Specialists in

software development and verification say that they have finished working

with the 15-page report while the program takes a half page. Therefore it is

necessary to observe a certain balance between the expected reliability of

the evidence and by how convenient and efficient it can be obtained.

Most effectively, this balance is observed in the method of testing models,

which exists about 30 years. Its popularity is due, on the one hand, highly

automated proof of correctness, and little involvement of the developer in

the verification process and on the other - the ability to clearly point out the

error in the case when the developer has to deal with the wrong prototype.

The relevance of research in the field of model validation is also confirmed

by the award in 2007 founders of this approach, Turing Award, Edmund

Clarke, Allen Emerson and Joseph Sifakisu. Model checking has amazing

achievement, especially in the verification of hardware. For example, it is

known that model checking would have found a bug in the Pentium I

processors and would prove faithful to fix it by Intel Corporation. Since

then, Intel is one of the most systematically applying this technology

corporations.

The main problem that arises when using model checking is a combinatorial

explosion in the state space model. The first model-checking algorithms

could work with a number of states of about 40 000. Over time, the size of

transition systems that allow effective verification, have increased

significantly. For the implicit representation of the problem was initially

established technology symbolic model checking, based on ordered binary

allow diagrams, and then - testing models of limited depth (bounded model

checking), which increased numerical limits of testing models by several

orders of magnitude. Significant gains were also achieved through the

development of methods for the reduction of partial orders, methods of use

of symmetry in parallel systems and methods of abstraction to scan models.

In the present model-checking technology can verify the program,

approximately of 10 000 lines of code. The most impressive example

demonstrating the ability of symbolic model checking is a verification

protocol cache coherency bus standard IEEE Futurebus + (IEEE 896.1-1991

standard.) Although the development of this protocol was initiated in 1988,

all previous attempts to justify its validity were based solely on informal

reasoning. In the summer of 1992 research team from Carnegie Mellon

University built an exact model of the protocol in the language of SMV, and

then, applying the verification system SMV, showed that the system satisfies

a formal specification of the transitions. They were also able to detect a

number of previously unnoticed errors and localize potentially faulty parts in

the draft protocol. Verification is important for software systems with

complex behavior. For this class of systems, technology development and

verification should be selected already at the design stage.

A good choice for such problems is the automata-based programming

technology. First of all, automata-based programming makes it possible to

successfully decompose the control logic and computation in the

establishment phase of a software system. It allows the use of a visual

graphical notation to describe the complex behavior, thus making the system

less error prone. On the other hand, when applying model checking to an

automaton program construction of the model program for its specification

is greatly simplified compared to traditional approaches to programming.

When using an automaton approach the model of a program, suitable for

verification is already based on the stage of design. Finally, the automaton

programming can decompose the verification program for verifying its

behavior (management) model, which is performed by model checking, and

independent verification of atomic computing effects. If the system is

successfully designed based on automata approach, and the input and output

 94

effects are small, relatively simple lines of code, they can be checked by the

formal verification of operating a dependency output of the algorithm from

its input. Output actions in automata programs can also be verified on the

basis of the approach outlined by Gnesi and Mazzanti [59].

Examples of verification tools in more detail are in the books [93, 94].

Questions of general type of program verification are discussed in the books

[17, 18].

The first work on the verification automata programs, appeared in 2006 first

[87], and then [70]. Research on automata verification of programs is going

on at St. Petersburg State University of Information Technologies,

Mechanics and Optics [53, 63, 77] and in Yaroslavl Demidov State

University. [95, 96]. On the subject begin to defend his [97, 98] PhD theses

have been already defended on this theme.

The authors suppose that this book will draw attention to automata

programming, as approach oriented to verification.

Bibliography
1. Katoen J.-P. Concepts, Algorithms, and Tools for Model Checking.

Lehrstuhl für Informatik VII, Friedrich-Alexander Universität Erlangen-

Nürnberg. Lecture Notes of the Course “Mechanised Validation of

Parallel Systems” (course number 10359). 1998/1999.
http :// fmt . isti . cnr . it /~ gnesi / matdid / katoen . pdf

2. Shalyto A. A. Switch-tehnologiya. Algoritmizatsiya i programmirovanie

zadach logicheskigo upravleniya. SPb.: Nauka, 1998.
http :// is . ifmo.ru/books/switch/1

3. Liggesmeyer P., Rothfelder M., Rettelbach M., Ackermann T.

Qualitдtssicherung Software-basierter technischer Systeme –

Problembereiche und Lцsungsansдtze // Informatik Spektrum. 21: 249–

258, 1998.

4. Baier C., Katoen J.-P. Principles of Model Checking. The MIT Press,

2008.
http://is.ifmo.ru/books/_principles_of_mode l_checking.pdf

5. Harel D., Pnueli A. On the Development of Reactive Systems // Logics

and Models of Concurrent Systems. V. F-13 of NATO ASI Series. NY,

Springer-Verlag, 1985.
http://www.wisdom.weizmann.ac.il/~dharel/SCANNED.PAPERS/

ReactiveSystems.pdf

6. Sinitsyn S. V., Nalyutin N. Yu. Verifikatsiya programmnogo

obespecheniya. M.: BINOM, 2008.

 95

7. ISO/ITU-T. Formal Methods in Conformance Testing. Draft International

Standard, 1996.

8. Beizer B. Black-Box Testing: Techniques for Functional Testing of

Software and Systems. Wiley , 1995.

9. Beck K. Test-driven Development by Example. Addison-Wesley

Professional, 2002.

10. Freeman S., Pryce N., Mackinnon T., Walnes J. Mock Roles, not

Objects. http://www.jmock.org/oopsla2004.pdf

11. Umrigar Z., Pitchumani V. Formal verification of a real-time hardware

design / Proceedings of the 20
th
 Design Automation Conference, 1983.

http://portal.acm.org/ft_gateway.cfm?id=800667&type=pdf&

CFID=112534228&CFTOKEN=12780503

12. Guts A. K. Matematicheskaya logika i teoriya algoritmov. Omsk:

Naslediye, Dialog-Sibir, 2003.

13. Hoare C. A. R. An axiomatic basis for computer programming

// Communications of the ACM. 1969/12, pp. 576–583.
http://se.ethz.ch/teaching/ss2005/0250/readings/Axiomatic_B

asis.pdf

14. Owicki S., Gries D. An axiomatic proof technique for parallel programs

// Acta Informatica. 1976/6, pp. 319–340.
http://www.springerlink.com/content/x12541v1q15570n2/

15. Pnueli A. The temporal logic of programs / 18
th

 IEEE Symposium on

Foundations of Computer Science. 1977, pp. 46–57.
http://www.inf.ethz.ch/personal/kroe ning/classes/fv/f2007/r

eadings/focs77.pdf

16. Thayse A. Approche logique de l‟intelligense artificielle. Donod, 1988.

17. Clarke E., Grumberg O., Peled D. Model Checking. The MIT Press,

1999.

18. Karpov Yu. G. Model Checking: verifikatsiya parallelnyh i

raspreselennyh programmnyh system. SPb.: BHV-Peterburg, 2010.

19. West C. H. Applications and limitations of automated protocol validation

/ 2nd Symposium on Protocol Specification, Testing and Verification.

1982, pp. 361–371.

20. Clarke E. M., Emerson E. A. Synthesis of synchronization skeletons for

branching time logic // Logic of Programs. LNCS 131. 1981, pp. 52–71.
http://www.springerlink.com/content/w1778u28166t2677/

21. Apt K. R., Kozen D. C. Limits for the automatic verification of finite-state

concurrent systems // Information Processing Letters. 1986/22, pp. 307–

309.

 96

22. Konev B. Yu. Vvedenie d modelirovanie i verifikatsiyu apparatnyh

sistem.
http://logic.pdmi.ras.ru/~kulikov/verification/10.pdf

23. Lichtenstein O., Pnueli A., Zuck L. The glory of the past // Logics of

Programs. LNCS 193. 1985, pp. 196–218.
http :// www. springerlink . com/ content /7681 m36026888082/

24. Smelyanskiy R. L. Primenenie temporalnoy logiki dlya spetsifikatsyy

poveleniya programmnyh sistem // Programmirovanie. 1993. № 1, p. 3–

28.

25. Sistla A. P., Clarke E. M. The complexity of propositional linear

temporal logics // Journal of the ACM. 32(3). 1985, pp. 733–749.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9

4.178&rep=rep1&type=pdf

26. Clarke E. M., Draghicescu I. A. Expressibility results for linear time and

branching time logics // Linear Time, Branching Time, and Partial Order

in Logics and Models for Concurrency. LNCS 354. 1988, pp. 428–437.

http://www.springerlink.com/content/5n2702u432119wx8/

27. Kripke S. A. Semantical considerations on modal logic // Acta

Philosophica Fennica 16: 83–94, 1963.
http://condor.wesleyan.edu/courses/2007s/phil390/01/e -

texts/Kripke/Kripke,%20Semantical%20Considerations%20on%

20Modal%20Logic.pdf

28. Emerson E. A., Halpern J. Y. “Sometimes” and “not never” revisited: on

branching versus linear time temporal logic // Journal of the ACM.

33(1). 1986, pp. 151–178.
http://www.cs.cmu.edu/~emc/15 - 820A/reading/p127 -

emerson.pdf

29. Bryant R. Graph-based algorithms for boolean function manipulation

// IEEE Transactions on Computers. C-35. 1986/8, pp. 677–691.
http://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf

30. Mironov A. M. Verifikatsiya program metodom Model Checking.
http :// intsys . msu. ru / staff / mironov / modelchk . pdf

31. Mironov A. M.., Zhukov D. Yu.. Matematicheskaya model I metody

verifikatsii programmnyh sistem// Intellektualnye sistemy. T. 9. 2005.

Vyp. 1–4, p. 209–252.
http :// www. intsys . msu. ru / magazine / archive / v9(1 - 4)/ mironov -

209- 252. pdf

32. Wegener I. Branching Programs and Binary Decision Diagrams. SIAM

monographs on discrete mathematics and applications, 2000.

 97

33. Clarke E. M., Grumberg O., Long D. Verification tools for finite-state

concurrent systems // A Decade of Concurrency–Reflections and

Perspectives. LNCS 803. 1993, pp. 124–175.
http://www - 2.cs.cmu.edu/~modelcheck/ed -

papers/VTfFSCS.pdf

34. McMillan K. L. Symbolic Model Checking. Kluwer Academic

Publishers, 1993.
http://cadence.com/cadence/cadence_labs/Documents/mcmillan_C

MU_1992_Symbolic.pdf

35. Clarke E. M., Emerson E. A., Sistla A. P. Automatic verification of

finite-state concurrent systems using temporal logic specifications
// ACM Transactions on Programming Languages and Systems. 8(2).

1986, pp. 244–263.
http://www.cs.cmu.edu/~modelcheck/ed - papers/AVoFSCSU.pdf

36. Kropf T. Hardware Verifikation. Habilitation thesis. University of

Karlsruhe, 1997.

37. Tarjan R. Depth-first search and linear graph algorithms // SIAM Journal

on Computing. Vol. 1 (1972). No. 2, pp. 146–160.
http://rjlipton.files.wordpress.com/2009/10/dfs1971.pdf

38. Eppstein D. Design and Analysis of Algorithms. Lecture notes for 1996.
http://www.ic s.uci.edu/~eppstein/161/960220.html

39. Alur R., Courcoubetis C., Dill D. Model-checking in dense real-time

// Information and Computation. 104: 2–34, 1993.
http://www.cis.upenn.edu/~alur/Lics90D.ps

40. Alur R., Henzinger T. A. Real-time logics: Complexity and

expressiveness // Information and Computation. 104: 35–77, 1993.
http://www.cis.upenn.edu/~alur/Lics90H.ps

41. Alur R., Henzinger T. A. Back to the future: towards a theory of timed
regular languages / IEEE Symp. on Foundations of Computer Science.

1992, pp. 177–186.
http://www.cis.upenn.edu/~alur/Focs92.ps

42. Yovine S. Model checking timed automata // Embedded Systems. LNCS

1494, 1998.
http://www - verimag.imag.fr/~yovine/articles/embedded98.ps.gz

43. Petri C. A. Kommunikation mit Automaten. Ph. D. Thesis. University of
Bonn, 1962.

44. Esparza J., Nielsen M. Decidability issues for Petri nets – a survey
// Bulletin of the EATCS, 1994.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.3965

 98

45. Boucheneb H., Hadjidj R. Model checking of time Petri nets.
http://citeseerx .ist.psu.edu/viewdoc/download?doi=10.1.1.1

00.6973&rep=rep1&type=pdf

46. Holzmann G. J. The Model Checker SPIN // IEEE Transactions on

software engineering. 1997, V. 23, I. 5.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1

34.7596&rep=rep1&type=pdf

47. Dijkstra E. W. Guarded commands, non-determinacy and formal
derivation of programs // CACM. 18(8), 1975.
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD418.PDF

48. Dolev D., Klawe M., Rodeh M. An O(n log n) unidirectional distributed

algorithm for extrema finding in a circle // Journal of Algorithms.

1982/3, pp. 245–260.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1

29.7495&rep=rep1&type=pdf

49. McMillan K. L. The SMV System. Technical Report CS-92-131.

Carnegie-Mellon University, 1992.
http://www.com p.nus.edu.sg/~cs3234/smvmanual.pdf

50. Chan W., Anderson R. J., Beame P., Burns S., Modugno F., Notkin D.,

Reese J. D. Model checking large software specifications // IEEE

Transactions on Software Engineering. 24(7). 1998, pp. 498–519.
http://www.cs.washingto n.edu/homes/beame/papers/fse.pdf

51. Polikarpova N. I., Shalyto A. A. Avtomatnoe programmirovanie.

Spb.: Piter, 2010. http :// is . ifmo . ru / books /_ book . pdf

52. Hopkroft J., Motwani R., Ullman J. Introduction to Automata Theory,

Languages and Computation. Addison Wesley, 2006.

53. Otchet po kontraktu o verifikatsii avtomatnyh program. Etapy 1, 2. 2007.

http :// is . ifmo . ru / verification /_2007_01_ report - verification . pdf

http :// is . ifmo . ru / verification /_2007_02_ report - verification . pdf

54. Otchet o patentnyh issledovaniyah po 1-mu etapu kontrakta o verifikatsii

avtomatnyh programm.
http :// is . ifmo . ru / verification /_2007_01_ patent -

verification . pdf

55. Gnesi S., Mazzanti F. A model checking verification environment for

UML statecharts / Proceedings of XLIII Congresso Annuale AICA,

2005. http: //fmt.isti.cnr.it/~gnesi/matdid/aica.pdf

 99

56. Volobuev V. N., Kalachinskiy A. V. Opyt ispolzovaniya avtomatnogo

podhoda pri razrabotke pogrammnogo obespecheniya system boevogo

upravleniya // Sistemy upravleniya I obrabotki informatsii. Vyp. 18.

2009, p. 88–92.
http :// is . ifmo . ru / works /_ volobuev . pdf

57. Remizov A. O., Shalyto A. A. Verifikatsiya avtomatnyh program / Sbornik

dokladov nauchno-tehnicheskoy konferentsii “Sostoyanie, problemy I

perspektivy sozdaniyz korabelnyh informatsionno-upravlyaushih

kompleksov. OAO “Kontsern Morinfosistema Agat”. М.: 2010, с. 90–

98.
http :// is . ifmo . ru / works /_2010_05_25_ verific . pdf

58. Gurov V. S., Mazin M. A., Narvskiy A. S., Shalyto А. А. Instrumentalnoye

sredstvo dlya podderzhki avtomatnogo programmirovaniya

// Programmirovanie. 2007. № 6, с. 65–80.
http :// is . ifmo . ru / works /_2008_01_27_ gurov . pdf

59. Zakonov A., Stepanov O., Shalyto A. GA-Based and Design by Contract

Approach to Test Generation for EFSMs / Proceedings of IEEE East-

West Design & Test Symposium (EWDTS`10). St. Petersburg. 2010,

pp. 152–155.
http://is.ifmo.r u/works/_ewdts_2010_zakonov.pdf

60. Klebanov А. А., Stepanov O. G., Shalyto А. А. Primenenie shablonov

trebovaniy k formalnoy spetsifikatsii I verifikatsii avtomatnyh

programm / Trudy seminara “Semantika, specifikatsiya I verifikatsiya

programm: teoriya i prilozheniya”. Kazan, 2010, p. 124–130.
http :// is . ifmo . ru / works /_2010 - 10- 01_klebanov . pdf

61. Barr M. Real men program in C.
http://www.eetimes.com/General/DisplayPrintViewContent?c

ontentItemId=4027479

62. Kolskiy N. I. Yazyk programmirovaniya vstroennyh system: svoboda

vybora ili zhestkiy determinism? // Mir kompyuternoy avtomatizatsii:

vstraivaemye komp‟yuternye sistemy. 2010. № 4, p. 54–60.

63. Vel'der S. E., Shalyto A. A. Verifikatsiya avtomatnyh modeley metodom

redutsirovannogo grafa perehodov // Nauchno-tehnicheskiy vestnik

SPbGU ITMO. 2009. Vyp. 6(64), p. 66–77.
http://is.ifmo.ru/works/_2010_01_29_velder.pdf

64. Egorov K. V., Shalyto A. A. Metodika verifikatsii avtomatnyh programm

// Informatsionno-upravlyayuschie sistemy. 2008. № 5, p. 15–21.
http :// is . ifmo . ru / works /_ egorov . pdf

 100

65. Kurbatskiy E. A. Verifikatsiya programm, postroennyh na osnove

avtomatnogo podhoda s ispol'zovaniem programmnogo sredstva SMV //

Nauchno-tehnicheskiy vestnik SPbGU ITMO. Vyp. 53. Avtomatnoe

programmirovanie. 2008, p. 137–144.
http :// books . ifmo . ru / ntv / ntv /53/ ntv _53. pdf

66. Lukin M. A., Shalyto A. A. Verifikatsiya avtomatnyh programm s

ispol'zovaniem verifikatora SPIN // Nauchno-tehnicheskiy vestnik

SPbGU ITMO. Vyp. 53. Avtomatnoe programmirovanie. 2008, p. 145–

162.
http :// books . ifmo . ru / ntv / ntv /53/ ntv _53. pdf

67. Gurov V. S., Yaminov B. R. Verifikatsiya avtomatnyh programm pri

pomoschi verifikatora UNIMOD.VERIFIER // Nauchno-tehnicheskiy

vestnik SPbGU ITMO. Vyp. 53. Avtomatnoe programmirovanie. 2008,

p. 162–176.
http :// books . ifmo . ru / ntv / ntv /53/ ntv _53. pdf

68. Roux C., Encrenaz E. CTL May Be Ambiguous when Model Checking

Moore Machines. UPMC LIP6 ASIM, CHARME, 2003.
http://sed.free.fr/cr/charme2003.ps

69. Kuz'min E. V. Ierarhicheskaya model' avtomatnyh programm //

Modelirovanie i analiz informatsionnyh sistem. 2006. № 1, p. 27–34.
http :// is . ifmo . ru / verification /_ hamp. pdf

70. Vinogradov R. A., Kuz'min E. V., Sokolov V. A. Verifikatsiya avtomatnyh

programm sredstvami CPN/Tools // Modelirovanie i analiz

informatsionnyh sistem. 2006. № 2, p. 4–15.
http :// is . ifmo . ru / ver ification /_ cpnverif . pdf

71. Vasil'eva K. A., Kuz'min E. V. Verifikatsiya avtomatnyh programm s

ispol'zovaniem LTL // Modelirovanie i analiz informatsionnyh sistem.

2007. № 1, p. 3–14.
http://is.ifmo.ru/verification/_LTL_for_Spin.pdf

72. Vasil'eva K. A., Kuz'min E. V., Sokolov V. A. Verifikatsiya avtomatnyh

programm s ispol'zovaniem LTL.
http :// is . ifmo . ru / verification /_ ltl _aut _ver _1. pdf

73. Kuz'min E. V., Sokolov V. A. Modelirovanie, spetsifikatsiya i

verifikatsiya avtomatnyh programm // Programmirovanie. 2008. № 1,

p. 38–60.
http :// is . ifmo . ru / download /2008 - 03- 12_verification . pdf

74. Kozlov V. A., Komaleva O. A. Modelirovanie raboty bankomata. SPbGU

ITMO, 2006.
http://is.ifmo.ru/unimod - projects/bankomat

75. eVelopers Corporation homepage. http://www.evelopers.com

 101

76. UniMod homepage. http :// unimod . sf . net

77. Otchet po kontraktu o verifikatsii avtomatnyh programm. Etapy 3, 4.

2008.
http :// is . ifmo . ru / verification /_2007_03_ report -

verification . pdf

http :// is . ifmo . ru / verification /_2007_04_ report -

verification . pdf

78. Lukin M. A. Verifikatsiya avtomatnyh programm. Bakalavrskaya rabota.

SPbGU ITMO, 2007.
http://is.ifmo.ru/papers/_lukin_bachelor.pdf

79. Lukin M. A. Verifikatsiya vizual'nyh avtomatnyh programm s

ispol'zovaniem instrumental'nogo sredstva SPIN. Magisterskaya rabota.

SPbGU ITMO, 2009.
http://is.ifmo.ru/papers/_lukin_master.pdf

80. Spin home page. http://spinroot.com

81. Yaminov B. R. Avtomatizatsiya verifikatsii avtomatnyh UniMod-

modeley na osnove instrumental'nogo sredstva Bogor. Bakalavrskaya

rabota. SPbGU ITMO, 2007.
http://is.ifmo.ru/papers /_jaminov_bachelor.pdf

82. Yaminov B. R. Sravnenie metodov verifikatsii UniMod-modeley.

Magisterskaya rabota. SPbGU ITMO, 2009.
http://is.ifmo.ru/papers/_jaminov_master.pdf

83. Bogor home page. http://bogor.projects.cis.ksu.edu

84. Vel'der S. E., Shalyto A. A. Metody verifikatsii modeley avtomatnyh

programm // Nauchno-tehnicheskiy vestnik SPbGU ITMO. Vyp. 53.

Avtomatnoe programmirovanie. 2008, p. 123–136.
http :// books . ifmo . ru / ntv / ntv /53/ ntv _53. pdf

85. Shalyto A. A. Logicheskoe upravlenie. Metody apparatnoy i

programmnoy realizatsii algoritmov. SPb.: Nauka, 2000.
http :// is . ifmo . ru / books / log _upr /1

86. Vel'der S. E., Bednyj Yu. D. Universal'nyj infrakrasnyj pul't dlya bytovoy

tehniki. SPbGU ITMO, 2005.
http :// is . ifmo . ru / projects / irrc /

87. Vel'der S. E. Vvedenie v verifikatsiyu avtomatnyh programm na osnove

metoda model checking. Bakalavrskaya rabota. SPbGU ITMO, 2006
http :// is . ifmo . ru / papers /_ velder _bachelor . pdf

88. Egorov K. V., Shalyto A. A. Razrabotka verifikatora avtomatnyh

programm. // Nauchno-tehnicheskiy vestnik SPbGU ITMO. Vyp. 53.

Avtomatnoe programmirovanie. 2008, с. 177–188.
http://books.ifmo.ru/ntv/ntv/53/ntv_53.pdf

 102

89. Hoffman L. Talking Model-Checking Technology // Communications of

the ACM. 2008. Vol. 51. № 07/08, pp. 110–112.
http://is.ifmo.ru/verification/_model_checking .pdf

90. Hoffman L. In Search of Dependable Design // Communications of the

ACM. 2008. Vol. 51. № 07/08, pp. 14–16.
http://is.ifmo.ru/verification/_v_poiskax_nadejnogo_koda.pdf

91. Biere A., Heule M., Maaren H. van, Walsh T. (eds.) Handbook of

Satisfiability. IOS Press, 2009.

92. Long O. E. Model Checking, Abstraction and Compositional Reasoning.

PhD thesis. Carnegie Mellon University, 1993.

93. Schnoebelen P., Bérard B., Bidoit M., Laroussinie F., Petit A.

Vérification de logiciels: techniques et outils du model-checking.

Vuibert, 1999.

94. Bérard B., Bidoit M., Finkel A., Laroussinie F., Petit A., Petrucci L.,

Schnoebelen P. Systems and Software Verification. Model-Checking

Techniques and Tools. Springer, 2001.

95. Kubasov S. V., Sokolov V. A. Sinhronnaya model' avtomatnoy

programmy // Modelirovanie i analiz informatsionnyh sistem. 2007.

№ 1, с. 11–18. http://mais.uniyar.ac.ru/ru/article/61

96. Vel'der S. E. Primenenie metodov snizheniya razmernosti k zadacham

verifikatsii TCTL i optimal'noy ukladki grafov. Magisterskaya

dissertatsiya. SPbGU ITMO, 2008.
http://is.ifmo.ru/papers/_velder_master.pdf

97. Kubasov S. V. Verifikatsiya avtomatnyh programm v kontekste

sinhronnogo programmirovaniya. Dissertatsiya na soiskanie uchenoy

stepeni kand. tehn. nauk. Yaroslavl'. YaGU im. P. G. Demidova,

2008.http://is.ifmo.ru/disser/kubasov_disser.pdf

98. Vel'der S. E. Verifikatsiya modeley avtomatnyh programm. Dissertatsiya

na soiskanie uchenoy stepeni kand. tehn. nauk. SPbGU ITMO, 2011.

