

Published in Proceedings of “Software Engineering Conference (Russia) – 2006” (SEC (R) 2006). Russia,
Moscow, 2006, pp. 20–23.

A GRAPHICAL NOTION OF STATE-BASED CLASSES' INHERITANCE

Danil Shopyrin
Transas Technologies

Saint-Petersburg State University of
Information Technologies,

Mechanics and Optics
email: danil.shopyrin@gmail.com

Anatoly Shalyto
Saint-Petersburg State

University of Information
Technologies, Mechanics and

Optics
email: shalyto@mail.ifmo.ru

Abstract
The paper proposes a novel graphical notion of state-based

classes' inheritance. The proposed graphical notion allows
generalization, decomposition, structurization and incremental
extension of state-based classes' behaviour using inheritance.

Keywords: Finite state machines, object-oriented design,
inheritance.

1. Introduction

The most widely known finite state machines based
graphical notion is the Statecharts visual formalism [1]. A lot
of the modern finite state machines based graphical notions are
founded on it. Statecharts formalism uses the extended model
of traditional finite state machines [2]. The traditional model is
enriched by hierarchy that is introduced using nested states
(corresponds to XOR logical operation) and parallelism that is
introduced using orthogonal states (corresponds to AND logical
operation).

One of the main shortcomings of the Statecharts and
subsequent notions is the fact that behaviour diagrams are too
much cumbersome to be used in real size projects. This
shortcoming is (partially) eliminated in the SWITCH-
technology [3]. Behaviour diagrams that are used in the
SWITCH-technology are much more compact because they are
used together with communication schemas.

Finite state machines are also frequently used in object-
oriented systems where they become to be state-based classes.
The behaviour of a state-based class depends on its explicitly
dedicated current control state and is implemented using finite
state machines. The State Design Pattern is the most widely
known approach to design and implement state-based classes
[4]. There are a lot of State Design Pattern extensions and
modifications browsed in [5].

1.1. Inheritance of state-based classes

Inheritance is one of the main paradigms of object-oriented
programming. Inheritance allows derived class to receive

properties and characteristics of the base class, normally as a
result of some special relationship between the base and the
derived [6]. Only new properties of derived class are declared.
Properties of the base class get to the derived class
incrementally (i.e. automatically).

Inheritance can also be used in state-based classes design
and implementation [7–9]. But the particular problem of the
state-based classes' inheritance visualization isn't widely
discussed in the literature. The new graphical notion of state-
based classes' inheritance is presented in this paper. The
proposed graphical notion allows generalization,
decomposition, structurization and incremental extension of
state-based classes' behaviour using inheritance. Note that
some questions of inheritance semantics are omitted. The main
goal of the paper is to show how the state-based classes'
inheritance can be graphically viewed.

2. Formal definition of state-based classes

Formally, a state-based class A can be defined by triple
<I, S, J>, where:

• I – is a set of state-based class's interface methods;
• S – is a set of state-based class's control states;
• J – is a set of transitions between control states.

There is a function beg(S) ∈ S defined on the set of control
states that returns the initial state. For each control state s ∈ S
following functions are defined:

• dex(s) – is an action that is done at exit from the state s;
• den(s) – is an action that is done at enter to the state s;
• dact(s) – is an activity that is done at the state s.

A transition j ∈ J can be defined by quintuple
<from, to, ev, cond, do>, where:

• from(j) ∈ S – is an origin state of the transition;
• to(j) ∈ S – is a target state of the transition;
• ev(j) ∈ I – is a causal call of state-based class interface

method;
• cond(j) ∈ {true, false} – is a condition that must be true

to allow the transition;
• do(j) – is an action that must be performed when the

transition is happened.

The transition j0 ∈ J is happened if and only if all the
following conditions are satisfied:

• current control state of the state-based class is from(j0);
• method ev(j0) of the state-based class’s interface is

called;
• condition cond(j0) is satisfied.

In this case, the following sequence of doings is done:
• action dex(from(j0)) is performed;
• action do(j0) is performed;
• current control state is set to to(j0);
• action den(to(j0)) is performed.

2.1. Formal definition of state-based classes
inheritance

Let’s consider inheritance of state-based classes. All states
and transitions of the base class implicitly get to a derived
class. Furthermore, derived class can extend and modify the
behaviour of the base class. Modification of base class
behaviour is founded on states overriding. Some states from
the base class can be marked as overridden. Transitions from
the overridden state to other states can be somehow modified.
For example, the target state of the transition can be changed.
Derived class can also extend logic of the base class by adding
new states and transitions.

If the state-based class D is a descendant of the state-based
class B, then following conditions are satisfied:

• interface Ib of the base class B is the subset of the
interface Id of the derived class D, Ib ⊆ Id;

• states set Sb of the base class B is the subset of the states
set Sd of the derived class D, Sb ⊆ Sd;

• initial states of base and derived classes are equal,
beg(Sb) ≡ beg(Sd);

• for every transition jb ∈ Jb of the base class B there is a
transition jd ∈ Jd of the derived class D, such as
from(jd) ≡ from(jb), ev(jd) ≡ ev(jb) and cond(jd)≡cond(jb).

If transition jb of the base class B is overridden by transition
jd of the derived class D, then following conditions are
satisfied:

• origin states of transitions are the same,
from(jd) ≡ from(jb);

• casual calls are the same, ev(jd) ≡ ev(jb);
• conditions are the same, cond(jd) ≡ cond(jb);
• target states or actions are different, to(jd) ≠ to(jb) or

do(jd) ≠ do(jb).

2.2. Formal definition of state groups

Structuring of state-based logic is done using state groups
[1]. State groups unite states in which the state-based class has
some similar behaviour. State groups can be nested in each
other.

State groups can have group transitions also called beams.
Beams are similar to transitions but initial state isn’t specified
for them. A beam b ∈ B can be defined by quadruple
<to, ev, cond, do>. There is a function beams(s) ⊆ B defined

for each state s ∈ S. The set beams(s) is conform to the set of
transitions originated in the state s.

State group g ∈ G can be defined by triple
<gbeams, msub, gsub>, where:

• gbeams(g) ⊆ B is the subset of beams corresponded to
the state group g;

• msub(g) ⊆ S is the subset of states included in the state
group g;

• gsub(g) ⊂ G is the subset of state groups nested in the
state group g.

For each state group g∈G following statements are true:
• ∀ s ∈ msub(g), gbeams(g) ⊆ beams(s) – for each state s

that is included in state group g, the beams set
gbeams(g) is the subset of the beams(s);

• ∀g0 ∈ gsub(g), gbeams(g) ⊆ gbeams(g0) – for each state
group g0 that is a subgroup of the state group g, the
beams set gbeams(g) is the subset of the gbeams(g0);

• ∀g0 ∈ gsub(g), ∀ s ∈ msub(g0), s ∈ msub(g) – if state s
is included in state group g0 and g0 is a subgroup of state
group g, then state s is also included in state group g;

• ∀ g0, g1 ∈ G, if g0 ∈ gsub(g1) and g ∈ gsub(g0), then
g ∈ gsub(g1) – if state group g0 is a subgroup of the
state group g1 and state group g is a subgroup of the
state group g0, then state group g is also a subgroup of
state group g1.

3. Graphical notion of inheritance

The proposed graphical notion is an extended version of
SWITCH-technology behaviour diagrams. Main elements of
the proposed notation are shown on the fig. 1.

Fig. 1. Main elements of the graphical notion

The matter of the proposed graphical inheritance notation is
as follows. Base class is declared in the title of the derived
class (see fig. 2 for details). Inheritance of state-based classes
is founded on overriding of states of the base class. Overridden
states of the base class are marked by bold point. Some
transitions from overridden state to other states can be

overridden in derived class. Overridden transitions are
originated in the mentioned bold point. Derived class can also
contain new states and transitions that aren't presented in the
base class. There is a similar overriding syntax for state groups
and beams.

Fig. 2. Graphical notion of multiple inheritance

4. An illustrative example

As an illustrative example of the proposed graphical notation
usage let's consider classes' family that provides access to a
file:

• ReadFile that provides access only for reading;
• WriteFile that provides access only for writing;
• ReadWriteFile that provides access for reading,

writing and reading/writing.
Mentioned classes have state-based nature with states

closed, opened etc. Behaviour diagrams of these classes
are shown on the fig. 3.

Fig. 3. Logic of file access classes (without inheritance)

The behaviour of these classes can be generalized and

structured using inheritance. The root element of the appearing
hierarchy is the abstract class that generalizes access to a file.

Behaviour diagrams of file access classes that are built using
inheritance are shown on the fig. 4.

Further, let's consider the behaviour diagram of the state-
based class AppendFile that is a descendant of the state-
based class ReadWriteFile (fig. 5). The state-based class
AppendFile adds new control state appending that
allows to append data to a file. Note that AppendFile class
is built incrementally, i.e. without any changes in the base
class. The behaviour diagram from the fig. 5 is equal to the
diagram on the fig. 6 that is built without inheritance. Note
how duplication can be dramatically reduced by usage of
inheritance.

Fig. 4. Logic of file access classes (with inheritance)

Fig. 5. Logic of AppendFile class (with inheritance)

Fig. 6. Logic of AppendFile class (without inheritance)

Some quantitative adjectives are given in the table below.
The count of used states, state groups and transitions is
computed for state diagrams with and without usage of
inheritance. Note that count of transitions is significantly
reduced when state-based classes' inheritance is used (table).

Table. Inheritance effectiveness

Count Without
inheritance

With
inheritance

States 13 5
Overridden states – 4
State groups – 2
Overridden state groups – 4
Transitions 42 12
Total 55 27

Conclusion

The proposed graphical notation is quite simple but
powerful. It allows to present inheritance of state-based classes
in incremental, intuitive, easy to understand manner. In many
cases it allows to significantly reduce the duplication.

One of the shortcomings of the proposed graphical notation
is that additional primitives such as overridden states and
transitions are introduced. Another shortcoming is that state-
based classes’ hierarchies appear not so often.

It is significant that two methods of state-based classes'
implementation that are isomorphous to the described
graphical notation are proposed:

• on the base of virtual methods [10];
• on the base of virtual inner classes [11].

Both of proposed implementation methods conforms to the
main principles of object-oriented programming and can be
used within different modern object-oriented languages. It
increases the practical value of the proposed graphical notion.

References

[1] Harel D. Statecharts: A visual formalism for complex
systems //Sci. Comput. Program. 1987. Vol. 8, pp. 231–
274.

[2] Automata Studies / Shannon C.E., McCarthy J. Princeton
University Press, 1956. – 296 pp.

[3] Shalyto A. SWITCH-technology. Algorithmization and
programming of logic control problems. SPb.: Science, –
1998. – 628 pp. (in Russian). http://is.ifmo.ru/books/switch/1

[4] Gamma E., Helm R., Johnson R., Vlissides J. Design
Patterns – Elements of Reusable Object-Oriented
Software. Addison–Wesley. 1995. – 395 pp.

[5] Adamczyk P. The Anthology of the Finite State Machine
Design Patterns / Proceedings of the Pattern Languages of
Programming conference (PLoP), 2003.

[6] Danforth S., Tomlinson C. Type theories and object-
oriented programming //ACM Comput. Surv. Vol. 20,
№ 1. 1988, pp. 29–72.

[7] Sane A., Campbell R. Object-Oriented State Machines:
Subclassing, Composition, Delegation, and Genericity
/Proceedings of OOPSLA '95. 1995, pp. 17–32.

[8] Lee J., Xue N., Kuei T. A note on state modeling through
inheritance // SIGSOFT Softw. Eng. Notes. Vol. 23. 1998.
№ 1, pp. 104–110.

[9] Harel D., Kupferman O. On Object Systems and
Behavioral Inheritance // IEEE Trans. Softw. Eng. Vol. 28.
2002. № 9, pp. 889–903.

[10] Shopyrin, D. Object-oriented implementation of finite
state machines on the base of virtual methods
//Information-control systems. 2005. Vol. 3, pp. 36–40.

[11] Shopyrin, D. Method of state machines design and
implementation on the base of virtual inner classes
//Information technologies of modeling and control. 2005,
Vol. 1(19), pp. 87–97. (In Russian).
http://is.ifmo.ru/works/ruvstate/

