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Abstract 
The paper proposes a novel graphical notion of state-based 

classes' inheritance. The proposed graphical notion allows 
generalization, decomposition, structurization and incremental 
extension of state-based classes' behaviour using inheritance. 
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1. Introduction 

The most widely known finite state machines based 
graphical notion is the Statecharts visual formalism [1]. A lot 
of the modern finite state machines based graphical notions are 
founded on it. Statecharts formalism uses the extended model 
of traditional finite state machines [2]. The traditional model is 
enriched by hierarchy that is introduced using nested states 
(corresponds to XOR logical operation) and parallelism that is 
introduced using orthogonal states (corresponds to AND logical 
operation). 

One of the main shortcomings of the Statecharts and 
subsequent notions is the fact that behaviour diagrams are too 
much cumbersome to be used in real size projects. This 
shortcoming is (partially) eliminated in the SWITCH-
technology [3].  Behaviour diagrams that are used in the 
SWITCH-technology are much more compact because they are 
used together with communication schemas. 

Finite state machines are also frequently used in object-
oriented systems where they become to be state-based classes. 
The behaviour of a state-based class depends on its explicitly 
dedicated current control state and is implemented using finite 
state machines. The State Design Pattern is the most widely 
known approach to design and implement state-based classes 
[4]. There are a lot of State Design Pattern extensions and 
modifications browsed in [5]. 

1.1. Inheritance of state-based classes 

Inheritance is one of the main paradigms of object-oriented 
programming. Inheritance allows derived class to receive 

properties and characteristics of the base class, normally as a 
result of some special relationship between the base and the 
derived [6]. Only new properties of derived class are declared. 
Properties of the base class get to the derived class 
incrementally (i.e. automatically).  

Inheritance can also be used in state-based classes design 
and implementation [7–9]. But the particular problem of the 
state-based classes' inheritance visualization isn't widely 
discussed in the literature. The new graphical notion of state-
based classes' inheritance is presented in this paper. The 
proposed graphical notion allows generalization, 
decomposition, structurization and incremental extension of 
state-based classes' behaviour using inheritance. Note that 
some questions of inheritance semantics are omitted. The main 
goal of the paper is to show how the state-based classes' 
inheritance can be graphically viewed. 

2. Formal definition of state-based classes 

Formally, a state-based class A can be defined by triple 
<I, S, J>, where: 

• I – is a set of state-based class's interface methods; 
• S – is a set of state-based class's control states; 
• J – is a set of transitions between control states. 

There is a function beg(S) ∈ S defined on the set of control 
states that returns the initial state. For each control state s ∈ S 
following functions are defined: 

• dex(s) – is an action that is done at exit from the state s; 
• den(s) – is an action that is done at enter to the state s; 
• dact(s) – is an activity that is done at the state s. 

A transition j ∈ J can be defined by quintuple 
<from, to, ev, cond, do>, where:  

• from(j) ∈ S – is an origin state of the transition;  
• to(j) ∈ S – is a target state of the transition;  
• ev(j) ∈ I – is a causal call of state-based class interface 

method;  
• cond(j) ∈ {true, false} – is a condition that must be true 

to allow the transition;  
• do(j) – is an action that must be performed when the 

transition is happened. 



 

The transition j0 ∈ J is happened if and only if all the 
following conditions are satisfied:  

• current control state of the state-based class is from(j0);  
• method ev(j0) of the state-based class’s interface is 

called;  
• condition cond(j0) is satisfied.  

In this case, the following sequence of doings is done:  
• action dex(from(j0)) is performed;  
• action do(j0) is performed;  
• current control state is set to to(j0);  
• action den(to(j0)) is performed. 

2.1. Formal definition of state-based classes 
inheritance 

Let’s consider inheritance of state-based classes. All states 
and transitions of the base class implicitly get to a derived 
class. Furthermore, derived class can extend and modify the 
behaviour of the base class. Modification of base class 
behaviour is founded on states overriding. Some states from 
the base class can be marked as overridden. Transitions from 
the overridden state to other states can be somehow modified. 
For example, the target state of the transition can be changed. 
Derived class can also extend logic of the base class by adding 
new states and transitions. 

If the state-based class D is a descendant of the state-based 
class B, then following conditions are satisfied: 

• interface Ib of the base class B is the subset of the 
interface Id of the derived class D, Ib ⊆ Id;  

• states set Sb of the base class B is the subset of the states 
set Sd of the derived class D, Sb ⊆ Sd;  

• initial states of base and derived classes are equal, 
beg(Sb) ≡ beg(Sd);  

• for every transition jb ∈ Jb of the base class B there is a 
transition jd ∈ Jd of the derived class D, such as  
from(jd) ≡ from(jb), ev(jd) ≡ ev(jb) and cond(jd)≡cond(jb).  

If transition jb of the base class B is overridden by transition 
jd of the derived class D, then following conditions are 
satisfied:  

• origin states of transitions are the same, 
from(jd) ≡ from(jb);  

• casual calls are the same, ev(jd) ≡ ev(jb);  
• conditions are the same, cond(jd) ≡ cond(jb);  
• target states or actions are different, to(jd) ≠ to(jb) or 

do(jd) ≠ do(jb). 

2.2. Formal definition of state groups 

Structuring of state-based logic is done using state groups 
[1]. State groups unite states in which the state-based class has 
some similar behaviour. State groups can be nested in each 
other. 

State groups can have group transitions also called beams. 
Beams are similar to transitions but initial state isn’t specified 
for them. A beam b ∈ B can be defined by quadruple 
<to, ev, cond, do>. There is a function beams(s) ⊆ B defined 

for each state s ∈ S. The set beams(s) is conform to the set of 
transitions originated in the state s. 

State group g ∈ G can be defined by triple 
<gbeams, msub, gsub>, where: 

• gbeams(g) ⊆ B is the subset of beams corresponded to 
the state group g;  

• msub(g) ⊆ S is the subset of states included in the state 
group g;  

• gsub(g) ⊂ G is the subset of state groups nested in the 
state group g.  

For each state group g∈G following statements are true:  
• ∀ s ∈ msub(g), gbeams(g) ⊆ beams(s) – for each state s 

that is included in state group g, the beams set 
gbeams(g) is the subset of the beams(s);  

• ∀g0 ∈ gsub(g), gbeams(g) ⊆ gbeams(g0) – for each state 
group g0 that is a subgroup of the state group g, the 
beams set gbeams(g) is the subset of the gbeams(g0); 

• ∀g0 ∈ gsub(g), ∀ s ∈ msub(g0), s ∈ msub(g) – if state s 
is included in state group g0 and g0 is a subgroup of state 
group g, then state s is also included in state group g;  

• ∀ g0, g1 ∈ G, if g0 ∈ gsub(g1) and g ∈ gsub(g0), then 
g ∈ gsub(g1) – if state group g0 is a subgroup of the 
state group g1 and state group g is a subgroup of the 
state group g0, then state group g is also a subgroup of 
state group g1.  

3. Graphical notion of inheritance 

The proposed graphical notion is an extended version of 
SWITCH-technology behaviour diagrams. Main elements of 
the proposed notation are shown on the fig. 1. 

 

Fig. 1. Main elements of the graphical notion 
 

The matter of the proposed graphical inheritance notation is 
as follows. Base class is declared in the title of the derived 
class (see fig. 2 for details). Inheritance of state-based classes 
is founded on overriding of states of the base class. Overridden 
states of the base class are marked by bold point. Some 
transitions from overridden state to other states can be 



 

overridden in derived class. Overridden transitions are 
originated in the mentioned bold point. Derived class can also 
contain new states and transitions that aren't presented in the 
base class. There is a similar overriding syntax for state groups 
and beams.  

 

 
Fig. 2. Graphical notion of multiple inheritance 

4. An illustrative example 

As an illustrative example of the proposed graphical notation 
usage let's consider classes' family that provides access to a 
file: 

• ReadFile that provides access only for reading; 
• WriteFile that provides access only for writing; 
• ReadWriteFile that provides access for reading, 

writing and reading/writing. 
Mentioned classes have state-based nature with states 

closed, opened etc. Behaviour diagrams of these classes 
are shown on the fig. 3. 

 

Fig. 3. Logic of file access classes (without inheritance) 
 
The behaviour of these classes can be generalized and 

structured using inheritance. The root element of the appearing 
hierarchy is the abstract class that generalizes access to a file. 

Behaviour diagrams of file access classes that are built using 
inheritance are shown on the fig. 4. 

Further, let's consider the behaviour diagram of the state-
based class AppendFile that is a descendant of the state-
based class ReadWriteFile (fig. 5). The state-based class 
AppendFile adds new control state  appending that 
allows to append data to a file. Note that AppendFile class 
is built incrementally, i.e. without any changes in the base 
class. The behaviour diagram from the fig. 5 is equal to the 
diagram on the fig. 6 that is built without inheritance. Note 
how duplication can be dramatically reduced by usage of 
inheritance. 

 

Fig. 4. Logic of file access classes (with inheritance) 
 
 

Fig. 5. Logic of AppendFile class (with inheritance) 
 
 

Fig. 6. Logic of AppendFile class (without inheritance) 
 



 

Some quantitative adjectives are given in the table below. 
The count of used states, state groups and transitions is 
computed for state diagrams with and without usage of 
inheritance. Note that count of transitions is significantly 
reduced when state-based classes' inheritance is used (table).  

 
Table. Inheritance effectiveness 

Count Without 
inheritance 

With 
inheritance 

States 13 5 
Overridden states –  4 
State groups – 2 
Overridden state groups – 4 
Transitions 42 12 
Total 55 27 

 

Conclusion 

The proposed graphical notation is quite simple but 
powerful. It allows to present inheritance of state-based classes 
in incremental, intuitive, easy to understand manner. In many 
cases it allows to significantly reduce the duplication.  

One of the shortcomings of the proposed graphical notation 
is that additional primitives such as overridden states and 
transitions are introduced. Another shortcoming is that state-
based classes’ hierarchies appear not so often. 

It is significant that two methods of state-based classes' 
implementation that are isomorphous to the described 
graphical notation are proposed: 

• on the base of virtual methods [10]; 
• on the base of virtual inner classes [11]. 

Both of proposed implementation methods conforms to the 
main principles of object-oriented programming and can be 
used within different modern object-oriented languages. It 
increases the practical value of the proposed graphical notion. 
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