
CIMSA 2006 – IEEE International Conference on
Computational Intelligence for Measurement Systems and Applications
La Coruna - Spain, 12-14 July 2006

Modeling Technology for One Class of Multi-Agent Systems with Automata Based

Programming

Dmitry Paraschenko, Anatoly Shalyto, Fedor Tsarev
St. Petersburg State University of Information Technologies,

Mechanics and Optics
Computer Technologies Department

Sablinskaya street 14, St. Petersburg, Russia
{parashchenko,tsarev}@rain.ifmo.ru, shalyto@mail.ifmo.ru

Abstract – The technology of modeling of one class of multi-
agent systems with automata based programming is proposed in
the paper. The technology is illustrated on the example of system
of interacting drone flying objects creation. UniMod – a tool
intended for supporting automata based programming is used for
building a control system for each flying object. UniMod also
supports the concept of “executable UML”.

Keywords – automata based programming, UniMod, reactive
agents, hybrid agents, multi-agent systems, SWITCH-technology

I. INTRODUCTION

Reflective agents [1] were studied by psychologists [2],
who used “input-output” representation. This
representation corresponds to the model of automata
without memory – combinational circuit.

As the result of progress in psychology, comprehension
of need to take agent’s internal state into consideration [3]
aroused. In the majority of papers model of reflective
agents with internal states (reactive agents) was supposed
to be too simple to be a foundation of a serious system.
Researches described in [4, 5] cast doubt on this statement
[1].

The usage of this approach allows avoiding creating the
complex model of environment – instead of it one can use
reactive system (system, which reacts on external events),
description of which is described by finite automata.

It is important to note, that NASA uses the similar
approach [6] in creation of software from project Mars
Science Laboratory.

Later on, the automata based programming was
proposed [7], and researches on its application to
implementation of different types of agents:

• logical control agents [8, 9];

• reactive agents [10];

• object-oriented reactive agents [11]
were made.

Automata based programming technology was verified
in the context of Foundation for Open Project
Documentation [12]. Several student projects in which
multi-agent systems were created were made. An example
of creation of reactive system with complicated behavior is

oriented agents’ implementation are described
in papers [13–17]. In those projects agents’
implementation was made manually – without any
programming tools.

Publication of project documentation is the necessary
requirement in the context of Foundation for Open Project
Documentation. Project documentation should be designed
in such way, that any programmer could understand and
modify the program, and the modification will be made
easier than in the case program is designed and
documented in traditional way. In the article [6] need of
detailed project documentation for software creation is
mentioned too.

This work was made in the context of Foundation for
Open Project Documentation. As a consequence, program
described is supplied with detailed project documentation.
It is available for download on site http://is.ifmo.ru in
UniMod-projects section.

The goal of this paper is to describe the technology of
modeling of one class of multi-agent systems on the basis
of automata based programming. This technology is based
on using UniMod tool [18, 19] which is intended for
supporting automata based programming technology, also
called SWITCH-technology [8].

II. AUTOMATA BASED PROGRAMMING

In the context of automata based programming it is
recommended to build programs like automated systems,
which consist of control system (system of cooperating
automata), controlled objects and feedback loops between
objects and control system. Automata transits between
states using input actions (events and input variables) and
forms output actions which correspond to controlled
objects’ methods. Such a view on programming is natural
while solving different control problems including several
types of multi-agent systems.

Two types of diagrams should be used: connectivity
schema, which describes connections between automata,
event providers, controlled objects and transition graph
which describes automaton behavior.

151-4244-0245-X/06/$20.00 ©2006 IEEE

III. UNIMOD TOOL

UniMod [18] is the open tool based on three open
components: unified modeling language UML, SWITCH-
technology and integrated development environment
Eclipse [20]. UniMod tool is a plug-in for this
development environment.

UniMod allows editing connectivity schemas (for
example, figure 1) and state charts, verifying them,
debugging diagrams in graphical mode etc.

Content of diagrams is automatically converted into the
XML-description after verification. Additional fragments
of code should be written on Java programming language:
for event providers – their definitions, initializing, and
conversion of system events to automata events; for
controlled objects – methods implementing input actions
and input variables.

Interpretation and compilation approaches can be used.
In the first case XML-description is being interpreted and
methods of Java-classes written manually are invoked. In
the second case program code which implements automata
system on Java language is built from XML-diagrams
using Velocity [21] templates. This code and program
fragments written manually are compiled jointly. In both
cases the log of program execution is kept in terms of
automata.

It is important to emphasize that level of abstraction
rises, because diagrams become a sort of programs,
because they are not pictures, but strict mathematical
models. So program source code consists of two different-
type parts: UML-diagrams and texts on Java programming
language.

Fig. 1. Connectivity schema

16

Each UniMod-model consists of one connectivity
schema and several state charts, whereas global system
model can consist of several UniMod-models. The
connection between UniMod-models is performed using
event providers and controlled objects.

Velocity templates usage allows adapting compilation
approach for programming languages different from Java.

IV. MULTI-AGENT SYSTEM DESCRIPTION

In this paper the technology of modeling of one class of
multi-agent system using UniMod tool is illustrated on the
example of the problem of VI Open All-Siberian Olympiad
in Informatics [22]. The author of this problem is Dmitry
Irtegov.

Flying objects in this problem are called flying plates.
Each of them has a round form of a specified radius. A
flying plate has reactive engine with fuel tank of specified
volume and aerodynamic ailerons which allow rotating up
to 25°.

The computer which can change fuel consumption and
configuration of ailerons is placed on the flying plate.
Flying plate can move with speed which is at least
specified limit. Flying plate which speed is less than this
limit falls on the ground. If its fuel tank is empty at that
moment, it finishes the game normally; otherwise, it
crashes.

Flying plate moves accordingly to Newton’s Second
Law. Its movement depends on two main forces: air
resistance F and engine tractive force T. Air resistance

satisfies the equation vccF 21 += , where v is a plate’s

speed, coefficients 1 2 are determined by plate’s
aerodynamic characteristics. Engine traction force satisfies

the equation qcT 4= , where q is fuel consumption. Fuel

consumption is controlled by plate’s computer and can
change in specified limits. Coefficient c4 depends on
engine characteristics.

Plates (agents) are grouped into teams of size N and
“compete”. Each “competition match” will be called
“game” later on. There are two teams competing in each
game. In the beginning of the game agents of the first team
are randomly placed in the left part of the field on the first
25 meters from the start line. Agents of the second team
are placed symmetrically in the right part of the field. The
width of the field is specified and its length is infinite.
Initial speed and direction are specified for each agent. In
the simplest case, all initial speeds are equal and every
initial direction is strictly forward. After “Start” command
all agents start moving with the goal to move on maximal
distance away from the start line.

Agents may collide with each other, because they can
change fuel consumption and movement direction.
Collisions are considered to be elastic. If relative speed of

agents exceeds specified value, each collided agent
crashes. Moreover, agents crash if they leave the field.

Aerodynamic mutual effects exist between agents. Each
agent changes the environment state around it on the
distance not exceeding specified aerodynamic interaction
radius L. Measurement unit for L is agent radius R.
Figure 2 shows how the environment changes around an
agent.

Fig. 2. Environment change around an agent

In areas marked with minus sign (“—”) on figure 2 the
air resistance increases by 50%. In addition, in areas
marked with plus sign (“+”) on figure 2 the air resistance
decreases by 50%. Naturally, in the first case more fuel is
needed than in the second case. While in the area of high
air resistance, agents are trying to leave it. In other cases
agents continue moving forward.

Several agents can simultaneously change the state of
the same domain of the environment. In this case, for the
sake of the simplicity, their summary influence is
computed in the following way. Let N+ be the number of
agents, which decrease air resistance in this domain, and
N- – number of agents, which increase air resistance. Let

N = N+ - N-. If N = 0, then air resistance in this domain
is normal, if N = 1 or N = 2, then air resistance
decreases by 50 N per cent. If N > 2 then there is no air
resistance in this domain. Air resistance in the area
increases by 50| N| per cent if N is negative.

Agent can either continue game or have finished it.
Game continues while there is at least one agent that hasn’t
finished it. The game is considered to be finished after all
agents finish it. To sum up game results only agents that
have normally finished the game are taken into account.
Team result is the maximal distance on which this team
agent that has normally finished the game has moved away
from the start line.

17

It is important to note, that since modeling of the whole
system (which includes environment and agents) is made
using computer, agent’s control program affects it not
continuously. Program can change agent movement
parameters regularly, with constant period t. This period
will also be named modeling step. Such situation is close
to real situation, because even if opportunity of continuous
agent control exists, it takes some time to gather full
information about environment.

Figure 3 shows a screenshot of a situation which can
happen during a competition. There one can see two agents
(numbered 1 and 2) which have finished the competition
due to their collision. Also one can see agents’ trajectories
and zones of their aerodynamic influence. Circles around
agents designate their current speed.

To solve this problem you should develop and
implement a winning strategy for your team.

V. AGENTS’ BEHAVIOR DESCRIPTION

In this paper it is assumed that the winning strategy
should be the following. A half of agents move forward
and avoid other agents and field boundary, other agents in
the same time gather in pairs. Agents in pairs are moving
preserving their relative positions to use aerodynamic
effects efficiently. This strategy usually wins in
competition against strategy implemented for opponent –
one agent is moving forward while others are attacking
another team’s agents.

Connectivity schema with eight automata is shown on
figure 1. Event providers are used to implement agents’
senses, finite automata – to describe agents’ behavior,
controlled objects – to effect on the environment.

In this version all “our” team agents’ behavior is
described by the same system of interacting automata.

Fig. 3. Situation which can happen during a competition

Automaton Agent state has three states: “Flying”,
“Landed”, “Crashed”. Automaton Flight mode (figure 4)
and automaton Radar are included in the state “Flying” of
automaton Agent state.

Automaton Avoiding field boundary and agents on the
right and on the left and automaton Avoiding agents in
front and behind are included in the state “Flying alone” of
automaton Flight mode. Automaton The first in the pair is
included in the state “The first in the pair” of automaton
Flight mode. Automaton The second in the pair is included
in the state “The second in the pair” of automaton Flight
mode. Furthermore, the automaton Receiving and
processing messages from other agents is included in each
of three states described above.

VI. MODELING

Multi-agent system modeling was carried out using
UniMod tool according to the technology described in
section III.

The development of multi-agent system under
discussion was made in untraditional way, on the base of
models. On the contrary, models are used in program
design. So, program design is made in the framework of
MDA (Model Driven Architecture) [23] which allows
making the modeling platform-independent.

VII. SOURCE CODE STATISTICS

As mentioned in section III, UML-diagrams created by
programmer are converted into text on Java programming
language when compilation approach is used. Figure 5
shows the proportion of sizes of source code written
manually and generated automatically from UniMod-
model.

Fig. 4. Flight mode automaton

18

Written

manually

code (lines);

601; 18%

Automaticaly

generated

code (lines);

2802; 82%

Fig. 5. Proportion of sizes of source code written manually and generated

automatically

So, we can conclude that the main functionality of
agent control system is implemented on the basis of finite
automata. The size of source code generated automatically
from UniMod-model exceeds more than four times the size
of source code written manually. As a consequence, the
programs reliability appreciably increases, particularly in
connection with the fact that correctness of diagrams is
automatically checked by many parameters during their
creation.

VIII. EXPERIMENTAL RESULTS

Strategies’ testing was held with the following values of
agents’ and modeling parameters (section IV):

 1 = 0.625; (1)
 c2 = 0.025; (2)
 c4 = 3.125; (3)
 t = 0.3 second; (4)
 L = 7. (5)

Each team consisted of eight agents, each of them had
15 units of fuel at the start of the competition, and
diameter of agent was equal to one meter, width of field –
40 meters. Initial speeds of agents were four m/s, initial
directions were strictly forward. Initial positions of agents
were randomly selected on first 25 meters of the field. Let
us note that agents in the beginning of competition can be
also placed deterministically if needed.

Let’s note that for these parameters values it was
experimentally set that one agent if it is alone on the field
can show the result 200-205 meters. Result of group of
agents can mount to 210-220 meters thanks to “positive”
aerodynamic interaction between agents.

Two strategies were used as opponents’ strategies. One
of them (named simple later on) was such: all agents move
strictly forward. In the second (aggressive) one all agents

except one moved in the direction of “our” team agents to
destroy them or pull away from the field and the last one
moves strictly forward.

“Our” strategy and simple one competed in 30
competitions. Their results statistics are represented in
table 1.

Table 1. Results of competitions against simple strategy

 NOK Rour Rop

Max 8 225.6843 187.2180 39.4271

Min 5 205.1690 179.2453 20.1622

Mean 7.3667 214.6608 185.0916 29.5691

In table 1 NOK means number of “our” team agents
which successfully finished the competition, Rour – “our”
team result, Rop – opponent’s result, = Rour - Rop.

On the base of these experimental results a conclusion
that “our” strategy is much better than the simple one can
be made. In one of the competitions result of “our” team
was 39 meters more and usually the advantage was about
30 meters. More than seven agents successfully end the
competition usually, but there are initial arrangements in
which two or three agents collide with each other or go out
off the field.

Thirty competitions between “our” strategy and an
aggressive one were held. Their results are shown in
table 2.

Table 2. Results of competitions against aggressive strategy

 NOK Rour Rop

Max 7 217.7150 195.2719 36.4381

Min 2 197.4160 179.0959 7.4978

Mean 5.2333 208.5202 187.8240 20.6961

Designations of NOK, Rour, Rop and in table 2 are the
same as in table 1.

More detailed information about “our” team results in
competitions can be obtained from figure 6, which shows
the distribution of “our” team results in competitions
against aggressive strategy.

Fig. 6. Distribution of “our” team results in competitions against

aggressive strategy

19

Another type of useful statistical information can be
obtained from figure 7, which shows the distribution of
number of “our” team agents successfully finished the
competition against aggressive strategy.

Fig. 7. Distribution of number of “our” team agents successfully landed

in competitions against aggressive strategy

From these experimental results the following
conclusion can be made. “Our” strategy successfully
resists the aggressive one. Its average advantage is about
20 meters, and “our” rather successfully avoid collisions
with agents of “aggressive” team (average number of
agents successfully ended the competition is between five
and six from eight).

IX. CONCLUSION

It is usually considered that novelty of the work in this
domain of science should be in inventing some “good”
strategy. Authors think that this paper’s novelty is the
formalization of process of chosen strategy
implementation.

Simple automata model described in this paper allows
to describe complex enough system behavior, and UniMod
tool helps to efficiently implement it. Attention should be
paid to the fact that UniMod checks diagrams’ correctness
during their creation. Researches on verification automata
programs using methods based on model checking [24] in
which authors take part started recently.

As a conclusion, we list features of approach proposed
in this work and NASA approach [6]:

• finite automata usage;

• usage of tools for generating source code
fragments from automata (in our work the
question about generating the whole program
from automata is solved);

• model checking usage.

This work was created in the Programming
technologies laboratory organized by SPbSU ITMO and
research and development center of Borland corporation.

REFERENCES

[1] Russel S., Norvig P., Artificial Intelligence. A Modern Approach.

Prentice Hall. 2003.
[2] Skinner B.F., Science and Human behavior. London: Macmillan,

1953.

[3] Putnam H., Mind and machines. Dimensions of Mind. London:
Macmillan, 1960, p.138–164.

[4] Rosenstein S.J., Formal Theories of Knowledge in AI and Robotics

New Generation Computing. 1985. 3(4), p.345–357.
[5] Brooks R.A., A Robust Layered Control System for a Mobil Robot.

IEEE Journal of Robotics and Automation. 1986. 2, p.14–23.

[6] Regan P., Hamilton S., NASA’s Mission Reliable. Computer. 2004,
January. p. 59–68.

[7] Shalyto A., Technology of automata-based programming

http://is.ifmo.ru/technology/_tech_aut_prog.pdf
[8] Shalyto A., Switch-Technology. Algorithmization and

Programming of Logic Control, SPb.: Science (Nauka), 1998. (in

Russian). LC Control Number: 2001425055.
http:/is.ifmo.ru/books/switch/1

[9] Shalyto A., Naumov L. Automata Theory for Multi-Agent Systems

implementation. Proceedings of International Conference

Integration of Knowledge Intensive Multi-Agent Systems: Modeling,

Exploration and Engineering. KIMAS-03. Boston: IEEE Boston

Section. 2003. http:/is.ifmo.ru/english/_aut_th.pdf
[10] Shalyto A., Tukkel N. Switch-Technology – Automata Approach to

“Reactive” Systems Software Development. Programming and

Computer Software. 2001. 27(5), pp. 260–276.
[11] Shalyto A., Naumov L., Korneev G. Methods of Object-Oriented

Reactive Agents Implementation on the Basis of Finite Automata.

Proceedings of International Conference Integration of Knowledge
Intensive Multi-Agent Systems: Modeling, Exploration and
Engineering. KIMAS-05. Boston: IEEE Boston Section. 2005.

p.460–465. http://is.ifmo.ru/articles_en/_kimas05-1.pdf
[12] Shalyto A. New Initiative in Programming. Foundation for Open

Project Documentation. http://is.ifmo.ru/download/SOPD.pdf

[13] Tukkel N., Shalyto A. Diesel-generator control system (fragment).
State-based programming. Project documentation in Russian.
http://is.ifmo.ru/projects/dg/

[14] Yartsev B., Korneev G., Shalyto A., Kotov V. Automata-Based
Programming of the Reactive Multi-Agent Control Systems.
Proceedings of International Conference Integration of Knowledge

Intensive Multi-Agent Systems: Modeling, Exploration and

Engineering. KIMAS-05. Boston: IEEE Boston Section. 2005.
p.449–453. http://is.ifmo.ru/articles_en/_kimas05-2.pdf

[15] Yartsev B., Shalyto A., Software Development for Lego
Mindstorms Using Automata-Based Approach (Project
«Isenguard»). Project documentation in Russian.

http://is.ifmo.ru/projects/lego/
[16] Tukkel N., Shalyto A., Robot Control System for “Robocode”

Game. Variant 1. 2002. Project documentation in Russian.

http://is.ifmo.ru/projects/dg/
[17] Kuznetsov D., Shalyto A., Robot Control System for “Robocode”

Game. Variant 2. Project documentation in Russian.
http://is.ifmo.ru/projects_en/robocode2/

[18] Gurov V.S., Mazin M.A., Narvsky A.S., Shalyto A.A. UniMod:
Method and Tool for Development of Reactive Object-Oriented
Programs with Explicit States Emphasis. Proceedings of St.

Petersburg IEEE Chapters. Year 2005. International Conference

“110 Anniversary of Radio Invention”. SPb ETU “LETI”. 2005. V.
2, pp. 106–110. http://is.ifmo.ru/articles_en/_unimod.pdf

[19] UniMod project. http://unimod.sourceforge.net
[20] Eclipse project. http://eclipse.org
[21] Velocity project. http://jakarta.apache.org/velocity/

[22] VI Open All-Siberian Olympiad in Informatics. Website in Russian.
http://olimpic.nsu.ru/widesiberia/archive/wso6/2005/rus/index.shtml

[23] Model Driven Architecture. http://www.omg.org/mda/

[24] Clarke E. M., Grumberg O., Peled D. A., Model checking. The MIT
Press. 2000.

20

