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Abstract

Sequential circuits that are usually modeled as FSVIs
Finite State Machines) can be implemented in
swnchronous Mealy or Moore style Some circuits are
better implemented 1n synchronous Mealy style than in
Moore style. The opposite 1s true for some other circuits
Even, for some circuits, the optimum point lies in between
the two extreme points. In this paper, we investigate this
relatively new concept and propose an optimization
algorithm, which can be implemented and integrated into
the conventional synthesis flow;

The algorithm starts from a synchronous Mealy style
implementation, which 1s gradually transformed to a
Moore style as long as there is a gain in view of area.
Expaimental results show that we can obtain area
reduction by about 13% on the average.

1. Introduction

Sequential circuit optimization has been the subject of
intensive investigation for several decades [1][2].
Sequential logic synthesis seems no longer to be a frontier
of hardware design automation area. Nonetheless, many
researchers still work on it because it isS a necessary step in
most hardware synthesis processes and better quality of the
sequential logic synthesis tool is critical for better quality
of the final synthesis results. It is important to make every
effort to optimize circuits in every aspect of the sequential
logic synthesis process.

Most of the previous work on FSM (Finite-State
Machine) synthesis focuses on synthesizing a sequential
circuit from a given state table [4][6]. The conventional
synthesis of an FSM is accomplished by an ordered
processing of sophisticated optimizing steps including state
minimization, state encoding, logic minimization, and
library binding. However, this synthesis flow still has room
for further optimization. In this paper, we focus on
generating an optimized state table maintaining the
behavior intact. Our work is based on the observation that a
synchronous sequential circuit can be implemented as a
synchronous Mealy machine, a Moore machine, or a mixed
machine, and the quality of the result considerably depends

on the implementation style. We search for the optimal
point in between synchronous Mealy machine and Moore
machine. The search starts from all synchronous Mealy or
mixed style implementation and gradually moves to Moore
style implementation by splitting states, thereby making
outputs to be input-independent. Currently, if the original
description of the circuit is fully in Moore style, then there
will be no further improvement.

This paper is structured as follows. In the next section,
we briefly review the implementation styles of sequential
circuits. Section III describes how FSM transformation is
accomplished through state splitting. By splitting states, we
can increase or decrease the area of the synthesized FSM.
We need to estimate the area increase/decrease to decide
whether to split states or not. In section IV, we propose an
area estimation model and optimization algorithm. In
section V, we discuss the experimental results. Then we
conclude with future work,

2. Preliminaries

An FSM can be described by a quintuple (X,Y,S,5,4),
where X'is a set of primary inputs, Y'is a set of primary
outputs, Sis a set of states, § is a state transition function
(§:XxS—>S) and A is an output function
(L:XxS—Y for Mealy models and A:S —»Y for
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Figure 1. Block diagram of (a) Moore machine
and (b) synchronous Mealy machine,



Moore models). There are three basic implementation
styles for a clocked sequential circuit: Moore machine,
Mealy machine, and synchronous Mealy machine. Mixture
of these three stylesis also possible.

The outputs of Moore machine depend only on the
present state. See the block diagram in Figure 1 (@). A
combinational logic block maps the inputs and the current
state to the flipflop inputs to store the appropriate next
state. However, it maps only the current state to the
outputs. The outputs change synchronously with state
transitions and clock edges. The outputs of Mealy machine
depend on the present state and the present input values.
The outputs can change immediately after a change at the
inputs, independent of the clock.

Glitches in the output are inherent in Mealy machines
due to the asynchronous nature. The glitches are
undesirable in real hardware controllers. However, Mealy
machines are sometimes preferred because of the saving on
state registers. This leads to altermative synchronous design
styles for Mealy machines. Simply stated, to construct a
synchronous Mealy machine we can break the direct
connection (or connection via combinational logic only)
from inputs to outputs by introducing storage elements.
One way to do this is to synchronize the Mealy machine
outputs with output flip-flops. See figure 1 (b). The flip—
flops are clocked with the same edge as the state registers.
However, the synchronous version does not have exactly
the same input/output behavior as the original Mealy
machine. The output timing of this machine is delayed by
one clock cycle due to the output registers [4].

There 1s a mismatch of output timing between Mealy
machine and Moore machine in nature. In addition, the
plain Mealy machine may not be used for hardware
controllers in practice because of the glitches. In contrast,
the synchronous Mealy machine can be transformed to
Moore machine while maintaining output timing intact.
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Figure 2. Mixed FSM represented by (a) state transition
graph and (b) state transition table.

The behavior of an FSM can be described by a state
transition graph. A state transition graph is a labeled
directed graph G(V, E) , where the vertex set Visin oneto—

one correspondence with the state set .S'and the directed

edge set E is in onetoone correspondence with the
transitions specified bys . In particular, there is an
edge(v;,v ) if there is an input patterm x e X such that
6(x,8;)=s;,Vi,j=12,.,[S|. In Mealy model, each edge
is labeled with x/A(x,s;). In Moore model, however,

each edge is labeled with xand each vertex is labeled with
the corresponding output function A(s;) . Figure 2 shows

an example of state transition graph having two outputs.
First output has Moore behavior and second output has
Mealy behavior.

In this paper, we consider only Moore machine and
synchronous Mealy machine for the implementation of a
synchronous FSM. The following theorem states that a
synchronous Mealy machine implementation actually uses
more or equal area for storage elements including output
synchronizing flipflops than the corresponding Moore
machine implementation. This implies that Moore machine
implementation consumes less area provided that the
combinational logic consumes less area,

Theoremr: When the number of states is muninized by
merging all equivalent states, the number of states of a
Moore machine implementation 1s greater than or equal to
that of the corresponding synchronous Mealy machine
Implementation. However, the opposite 1s true for the
munimum number of Hipfops used,

Proof) Let a completely specified FSM has m inputs, n
outputs and & intermal states. The state transition graph
corresponding to Mealy machine implementation has &

internal states and 2" xk transition edges. There are n

output functions, each with a value per 2" input pattem, &
states, This is a minimum state machine provided that this
machine does not have unreachable or equivalent states.
This machine can be implemented as a synchronous Mealy
machine with ﬂog2 k-|+n flipflops, through minimum
length state encoding.

Now, consider transforming Mealy machine to the
corresponding Moore machines through state splitting. A
state in Mealy machine splits into different states if the
incoming transitions generate different output values. The
number of states of Moore machine obtained this way is
definitely greater than or equal to that of the corresponding

Mealy machine, because there are 2" different output
combinations, the maximum number of states generated by
splitting one state is 2" . Therefore, the maximum number
of states generated for the entire Moore machine is £ x2".
This implies that Moore machine implementation uses no

more flipflops than synchronous Mealy machine
implementation.
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Figure 3. An example of a state transition graph (@) before
state splitting and (b) after state splitting.

3. FSM Transformation by State Splitting

We define a Moore-state as a state that has the same output
value for all of its incoming transitions. A Mealy-state is
defined as a state that is not a Moorestate [3]. This
definition can also be extended to individual outputs.
Specifically, if all incoming transitions of a state have the
same value for a specific output, the state is a Moore-state
with respect to the output.

Figure 3 shows an example of transformation from a
Mealy-state to Moore-states. A set of incoming transitions
to Mealy-state SO is divided into a set of transitions having
output value  and a set of transitions having output value

1°. The latter becomes the incoming transitions to a newly
created state SO, whereas the former remains to be the
incoming transitions to the original state SO. The outgoing
transitions from SO are duplicated from those of SO. After
state splitting, SO and SO become Moore-states.

FSM transformation is accomplished for a given output
by two steps: state transformation by state splitting and
timing adjustment by one clock delay. Figure 4 shows an
example of the output transformation for the second output
of FSM shown in Figure 2. The output function shown in
Figure 4 (a) has still Mealy machine behavior after state
splitting. However, all output values generated by the
incoming transitions to a state become the same. The
output function obtained by timing adjustment has Moore
machine behavior as shown in Figure 4 (b). Note that all
output values originally located at the incoming transitions

of a state are moved to the state itself. Physically, this
change means one clock delay for the output so that the
output timing must be the same as the original synchronous
Mealy behavior. State splitting just creates new state SO
and two outgoing transitions from SO’ . However, it enables
us to change the output function by timing adjustment. The
final result of the output transformation is the output
function that depends solely on the current states.

This transformation simplifies the output function. For
example, the cover of the function for the second output of
Mealy version shown in Figure 2 consists of three cubes
{1 S0), (0S1), A S2)}. In contrast, the cover of Moore
version shown in Figure 4 (b) consists of two cubes {(SO'),
(S1)}. Consequently, by output transformation, three
literals and one cube are reduced. This means that we can
obtain area gain if we make an assumption that the area
cost for storing states does not change. However, this
transformation decreases the number of don't cares which
correspond to unused code at state encoding as many as
newly created states. What is even worse is that it can
increase the number of state signals/flipflops. Moreover,
the duplicated outgoing transitions from the states newly
created can increase the complexity of the function.
Therefore, we cannot simply say that this transformation
will achieve area gain.

Under the assumption of twotevel logic
implementation, the minimum literal counts generated by
Nova [8] for the three versions of machines are 20 literals
for the original machine, 29 literals for the machine after
state transformation, and 18 literals for the machine after
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Figure 4. Change of an output function by transformation
(a) after state splitting and (b) after timing adjustment.



timing adjustment, respectively. We can notice from these
results that the increased states and transitions probably
increase the hardware size. However, the change of output
function by timing adjustment may decrease the hardware
size, eventually. By changing the output function with
small increase of states and transitions, we can expect
sufficient area gain.

4. Optimization Algorithm

Our implementation model of a sequential circuit 1S
depicted in Figure 5. The model contains both Moore—
states and Mealy-states. Recall that an output depends
either on Moore-states or on transitions to Mealy-states.
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Figure 5. A model of optimized sequential circuit.

Note that an output function cone having Moore
behavior consists of the combinational logic gates, which
decode specific state codes. The output of a function
having synchronous Mealy behavior is connected directly
to flipflop for output synchronization. On this hybrid
implementation, we should be careful about timing
behavior at the outputs having Moore behavior. If an
output function cone contains reconvergent point, glitches
can be generated at the point. So, it is better not to do
output transformation for this output if glitches can cause
malfunction. Another problem is that the output delay can
be added to a certain path of a cascaded next block. In the
worst, the delay of critical path between two flip-flops can
be increased. It is rather simple to identify and prevent
these timing violations generated by cascaded logic blocks
and it is out of the scope of this paper

To decide whether we can obtain the area gain for a
given output by the transformation, we need a method to
estimate the hardware size before and after the
transformation. However, it is hard to exactly estimate the
hardware size in the early stage before state encoding and
library binding. To simplify the problem, we consider the
change of hardware size for storage part and combinational
part, separately.

For the storage part, the problem can be simplified if
we make an assumption of minimum length encoding. The
output transformation is accomplished for one output at a
time. A flip-flop attached to the output can be eliminated
by splitting all the Mealy states with respect to the output.
This transformation increases the number of states.

Assuming that the number of states before state splitting is
k and that after state splitting is &, the increase in the

number of state flip-flops amounts to ’—log2"'-‘ - ’_log 2"-‘ .
The gain becomes 1+ ’_log 2k -‘ - ’—log2"'-‘ which amounts

to O or 1 per one output transformation.

The area change of combinational part does not seem to
be estimated as easily as that of storage part. The state
encoding plays a major role in minimization of hardware
size. So far, many researches have been on state encoding
and many of these approaches are based on symbolic
minimization [7][8). Symbolic minimization yields an
encoding-mdependent sum of products representation of a
switching function, which is minimal in the number of
product terms. In general, symbolic minimization is
strongly affected by the primary inputs and/or outputs of a
machine [7]. The proposed output transformation plays a
role of changing the symbolic cover. The simplified output
functions drive the symbolic cover to be smaller. In
contrast, the increased transitions drive the cover to be
larger. The minimal symbolic cover guarantees that at most
the number of rows in twotevel PLA implementation is the
same as the number of the cover cardinality. The symbolic
cover cardinality reflects the final hardware size relatively
well even for multitevel logic implementation [8]. Hence,
1t is adequate to use symbolic cover cardinality to compare
the relative size of the combinational part before output
transformation and that after output transformation. Under
the assumption that both FSM will be encoded with the
same code length, smaller symbolic cover is expected to be
implemented with smaller hardware,

. Algorithm 1: Area Optimizer
Input: A state transition graph G. |
+ Output: The state transition graph G optimized for area.

1 Begin ;
i Output = {1,..,n}; /* output list sorted by the number of .
! created states and transitions in ascending order. */ !
| Best = area-estimation(symbolic-minimization(G));
LG = G;
Index = null; current = 0;
! While (Output != null) do
! Index = remove-front(Output);
G = mealy2moore(G, index);
Current = area-estimation(symbolic-minimization(G));
If (current <= Best) do
Best = current;
G =G,
End if;
| End while;
Return G;

The area gain of the combinational part can be
estimated by examining the change of symbolic cover.



Table 1. FSM synthesis results for IWLS 93 benchmarks

Benchmarks Synch. Mealy Mixed Area. Dela}f
#lit. #reg. Area | Delay | #lit. #reg. area delay | Reduction Reduction

BBSSE 164 11 2608 17.62 136 8 2094 19.84 19.7 % -12.6 %
CSE 321 11 4008 30.60 319 10 3984 29.80 0.6 % 2.6 %
DK14 116 8 2056 22.60 92 7 1984 22.60 3.5% 0.0 %
DK17 68 6 1200 21.00 60 6 1144 9.00 4.7 % 57.1 %
EX1 474 24 6360 2224 377 19 5720 17.80 10.1 % 20.0 %
EX4 59 13 2160 13.80 50 8 1628 17.80 24.6 % -29.0 %
EX6 124 11 2664 27.64 90 5 1934 16.42 27.4 % 40.6 %
SAND 959 14 9880 55.00 930 13 9696 35.60 3.0 % 353 %
PMA 282 13 3928 43.00 259 12 3496 34.00 10.9 % 20.9 %
SSE 127 11 2112 21.80 111 8 1808 19.20 14.4 % 11.9 %
S1 219 11 2648 38.64 106 8 1768 21.02 33.2% 45.6 %
S27 32 4 696 9.22 19 3 520 6.44 253 % 30.1 %
S386 129 11 2136 24.84 127 9 2008 20.86 6.0 % 16.0 %
S510 441 13 4936 34.00 428 11 4808 30.09 2.6 % 11.5%
STYR 731 15 7456 48.60 704 14 7187 48.40 3.6 % 0.4 %

Algorithm 1 shows the pseudo code of the proposed area
optimization algorithm. First, it greedily determines the
order of outputs to be transformed. This is computed
statically at initial time in increasing order of the number of
states and transitions, which are created by the output
transformation.

For each output transformation, we perform symbolic
minimization, and then estimate the area of combinational
part by counting the literals in the minimized symbolic
cover. The number of literals can be computed after simple
state encoding such as linear encoding or random
encoding. This method improves the accuracy of the area
estimation. The previous best solution is replaced with the
current solution if the literal count does not increase, We
used the Espresso-MV [10] for symbolic minimization,
which implements a heuristic algorithm for minimizing the
symbolic cover of multi-valued logic function. After it
explores all output transformations, it retums the best
solution.

The above algorithm iterates as many times as the
number of outputs, and each iteration does one symbolic
minimization. The total complexity strongly depends on the
symbolic minimization.

5. Experimental Results

Experiments were accomplished on IWLS' 93 benchmarks.
They are state transition tables described in KISS2 format.
First, we perform the proposed area optimization to these

machines, Next, we synthesized the optimized machines
through the conventional synthesis flow. We used SIS [6]
tool for state minimization, state encoding, logic
minimization, and library binding with MSU (Mississippi
State University) library.

Table 1 shows the results of FSM synthesis.
Comparisons are made on the number of literals, the
number of flip-flops, the total area without considering
interconnection, and the critical path delay. We obtained
area reduction considerably in many examples by the
proposed method. Moreover, the critical path delay tends
to decrease. The reason is because the complexity of the
combinational logic is reduced.

The area of the synthesized FSM depends on which
state encoding strategy is used [7][8]. For the state
encoding, we used Jedi program [5], which is suitable for
multitevel logic implementation. The program supports
various strategies of state encoding. The data in Table 1
reports the best of the results obtained for every encoding
option. We also applied retiming [9] on the area-optimized
circuits. The retiming generates speed-optimized circuits
with possible increase in area. The results show that the
retiming does not cause much difference in the tendency.

Figure 6 shows how area changes as we proceed to
transform outputs from synchronous Mealy to Moore. In
some cases, we obtain minimum area when the circuit is
implemented fully in Moore style. But in other cases, the
optimum point is in between the two extreme
implementations,



Of course, we have experimented with large-size
FSMs, such as s298 and tbk benchmarks. But, there are
no improvements on these examples because there are so
many states splitting. Though with so many states
increasing in these examples, the proposed area
optimization program finished within 1 minute at Sparc-20
machine. In many cases, the increasing of states degrades
the effect of output transformation. In contrast, if output
transformation is accomplished without state splitting, then
the effect of transformation appears in evidence.

6. Conclusion

We investigated the possbility of further optimizing
sequential circuits through FSM transformation. It was
shown that by transforming a part of a sequential circuit
from synchronous Mealy style to Moore style, we could
effectively reduce the circuit area.

We devised an algorithm that tries to find the optimum
point in between all synchronous Mealy style and all
Moore style. By applying the proposed algorithm, we
obtained about 13% area reduction on the average. The
proposed algorithm can be simply adapted to the
conventional sequential logic synthesis flow without
modification. Moreover, the FSM transformation proposed
in this paper will probably elevate the performance of the
implementation method of low-power FSM using gated
clock [3].

We are currently working on extending our algorithm
so that it can also be applied to all Moore style
implementations. One simple approach 1is to convert a
Moore style description to the corresponding Mealy style
description and then applies the proposed algorithm
together with state minimization,

For another extension, we consider two directions for
the improvement of our algorithm. One is to improve the
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Figure 6. Area change according to incremental
transformation.

estimation model of area gain. The accuracy of the
estimation model is critical in making right decisions
during the transformation.

The other direction is to improve the optimization
algorithm. The current implementation adopts greedy
algorithm, that is, we determine the order of outputs to be
transformed statically at initial time. Consequently, the
results depend strongly on the order of transformed outputs
and tend to be easily trapped in a local minimum. We can
consider other algorithms, such as branch and bound. The
branches that have many states splitting can be pruned in
carly time, because the larger the increased states and
transitions are, the lower the probability of getting
optimum solution is. This may reduce the possibility of
being stuck at local minimum at small increase of running
time.
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