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Abstract

Performance obtained with existing library-based paral-
lelization tools for implementing high performance image
processing applications is often sub-optimal. This is be-
cause inter-operation optimization (or: optimization across
library calls) is often not incorporated in the library imple-
mentations. This paper presents a simple, efficient, finite
state machine-based method for global performance opti-
mization, called ’lazy parallelization’. Experimental results
based on this approach show significant performance im-
provements over non-optimized parallel implementations.

1. Introduction

A parallelization tool based on a software library of par-
allel routines can serve as a powerful programming aid to
obtain high performance in image processing research. Due
to the relative ease of implementation, many such paral-
lelization tools exist [6, 7, 8, 9, 13, 20, 21]. These tools,
however, generally restrict performance optimization to
each library operation in isolation, and ignore global opti-
mization for full applications. For library implementations
based on message passing primitives, global optimization
can provide significant performance gains as it is often pos-
sible to (1) remove many redundant communication steps,
and (2) combine multiple messages in a single transfer.

Automatic optimization of communication overhead is
not easy. This is because the optimization strategy must
be able to determine which communication steps are essen-
tial, and which can be safely combined or removed. Also,
it must guarantee that the resulting parallel code is (1) effi-
cient, preferably comparable to an optimal hand-coded im-
plementation, (2) legal, such that the program is determinis-
tic and can never end in deadlock, and (3) correct, such that
it produces output identical to that of the original program.

In this paper we present a new, and surprisingly sim-
ple strategy for global performance optimization, which ad-
heres to these requirements. In the approach, a fully sequen-
tial program is parallelized automatically by inserting com-
munication operations whenever necessary. The approach,
referred to as lazy parallelization, is based on a simple finite
state machine (fsm) specification. One of two essential fsm
ingredients is a set of states, each corresponding to a valid
internal representation of a distributed data structure at run
time. The other is a set of state transition functions, each
of which defines how a valid data structure representation is
transformed into another valid representation. In this paper
it is shown how to apply the fsm specification in order to
obtain legal, correct, and indeed efficient parallel code.

This paper is organized as follows. Section 2 describes
the optimization problem. Section 3 introduces the fsm def-
inition. The fsm-based optimization strategy of lazy paral-
lelization is described in Section 4, and results for a simple
application are presented. In Section 5 related work is dis-
cussed. Conclusions are given in Section 6.

2 The Performance Optimization Problem

In [18] we have described our library-based software ar-
chitecture for implementing data parallel image processing
applications. In this architecture, all parallelization and op-
timization is shielded, which leaves the programmer with
a fully sequential programming model [17]. For perfor-
mance optimization, we have implemented all library rou-
tines on the basis of a high level abstract parallel image
processing machine specification, or APIPM [18]. As a re-
sult, any imaging application is composed of a sequence
of APIPM instructions. For global performance optimiza-
tion it is not necessary to individually consider each of the
instructions in such a sequence. Specific combinations of
APIPM instructions often appear together, and are identical
for sequential operation as well as for parallel execution.



Create ( OUT dst );
Delete ( OUT dst );
MemCopy ( IN src, OUT dst );

UnPixOp ( IN src, OUT dst );
BinPixOpV ( IN src, OUT dst, IN arg );
BinPixOpI ( IN src, OUT dst, IN arg );
ReduceOp ( IN src, OUT dst );
NeighOp ( IN src, OUT dst, IN ker );
GenConvOp ( IN src, OUT dst, IN ker );
GeoMat ( IN src, OUT dst );
GeoRoi ( IN src, OUT dst );

Import ( OUT dst );
Export ( IN src );

Table 1. Abstract functions: sequential operation.

CreatLclPart ( OUT ldst );
CreatLclFull ( OUT ldst );
DelLcl ( OUT ldst );

Broadcast ( IN gsrc, OUT ldst );
Scatter ( IN gsrc, OUT ldst );
Gather ( IN lsrc, OUT gdst );
GatherAll ( INOUT lsrc, INOUT gdst );
RduceOne ( INOUT lsrc, OUT gdst );
RduceAll ( INOUT lsrc, INOUT gdst );

Table 2. Abstract functions: communication.

For such ’unbreakable’ APIPM instruction sequences relat-
ing to sequential processing, we have introduced a short-
hand notation, presented in Table 1. These abstractions in-
clude (a.o.) unary and binary pixel operations, neighbor-
hood operations, and geometric transformations. Notation
for unbreakable instruction streams relating to interprocess
communication is presented in Table 2, and contains ab-
stractions similar to operations in MPI [11]. The additional
CreatLclPart/Full and DelLcl functions constitute creators and
destructors for partial data structures (i.e., the constituent
components of a distributed data structure, each residing on
a different node in the parallel machine at run time). Partial
structures are referred to as local in the presented param-
eter lists (lsrc and ldst). The original structure from which
the partial structures are obtained is referred to as global
(gsrc and gdst). The importance of these abstractions is that
for any application implemented using our architecture it is
possible to derive an abstract operation stream comprising
of functions from Tables 1 and 2 alone.

2.1 Default Algorithm Expansion

In our architecture we have implemented a default paral-
lelization strategy for each library operation. Consequently,
(run time) conversion of a sequential application into an
equivalent parallel program is straightforward. The conver-

sion process, referred to as default algorithm expansion, is
illustrated by the simple example code of Listing 1. The
abstract sequential program, shown on the left, first imports
an image structure A, which is used as input to a unary pixel
operation. Subsequently, the resulting output structure B is
used as input to a binary pixel operation. Finally, the result-
ing image C is exported, and all images are destroyed.

The equivalent parallel program, obtained after default
algorithm expansion, is shown on the right of Listing 1.
First, a Scatter operation is inserted before the UnPixOp call.
After the operation has finished, the resulting partial out-
puts are gathered to the single root node and all temporary
partial structures are destroyed. Subsequently, the images
which are passed as source and argument to the binary pixel
operation are scattered throughout the parallel system. The
partial outputs resulting from BinPixOp are gathered to the
root, after which all partial structures are deleted. From this
point onward, the program is identical to the original se-
quential version.

Default algorithm expansion is guaranteed to produce a
legal and correct parallel version of any sequential program
implemented using our software architecture. This is be-
cause each abstract function call in the sequential code is re-
placed by an equivalent sequence of one or more (parallel)
operations. The resulting code is not guaranteed to be time-
optimal, however. In fact, in most situations the expansion
process will not even produce the fastest parallel implemen-
tation at all. Worse even, the resulting code often can be
expected to be slower than the original sequential program.
Although other tools may be implemented differently, all
library-based tools suffer from the very same problem —
and for improved performance a solution is essential.

Import( A ); Import( A);
UnPixOp( A, B ); Scatter( A, locA );
BinPixOpI( B, C, A ); UnPixOp( locA, locB );
Export( C ); Gather( locB, B );
Delete( A ); DelLcl( locA );
Delete( B ); DelLcl( locB );
Delete( C ); Scatter( A, locA );

Scatter( B, locB );
BinPixOpI( locB, locC, locA );

Gather( locC, C );
DelLcl( locA );
DelLcl( locB );
DelLcl( locC );

Export( C );
Delete( A );
Delete( B );
Delete( C );

(a) Sequential. (b) Parallel (default).

Listing 1: Abstract sequential application (a) and equiva-
lent parallel program after default algorithm expansion (b).



Import( A ); Import( A );
UnPixOp( A, B ); Scatter( A, locA );
BinPixOpI( B, C, A ); UnPixOp( locA, locB );
Export( C ); BinPixOpI( locB, locC, locA );
Delete( A ); Gather( locC, C );
Delete( B ); DelLcl( locA );
Delete( C ); DelLcl( locB );

DelLcl( locC );
Export( C );
Delete( A );
Delete( B );
Delete( C );

(a) Sequential. (b) Parallel (optimized).

Listing 2: Abstract sequential application (a) and equiva-
lent parallel program after inter-operation optimization (b).

When considering the parallel code of Listing 1(b), it
is clear that it contains several function calls that could be
removed without violating the program’s correctness or le-
gality. First, image structure locA, used as source struc-
ture for the unary pixel operation, is removed by DelLcl

and subsequently recreated in the second occurrence of the
Scatter(A, locA) call. For improved performance, both oper-
ations simply could be removed. The same holds for the
sequence of instructions applied to the locB structure pre-
ceding the BinPixOpI call (i.e., Gather followed by DelLcl and
Scatter). Listing 2(b) presents the optimized program ob-
tained after removing the redundant communication steps
from the parallel code. The remainder of this paper indi-
cates how execution of such redundant operations can be
avoided automatically.

3 Finite State Machine Definition

To guide the process of redundant communication avoid-
ance we have defined a finite state machine (or fsm) which
is used for operation redundancy detection, the monitoring
of the lifespan of (distributed) data structures, and the res-
olution of data structure inconsistencies. In this paper, we
restrict ourselves to so-called deterministic finite accepters,
which have no temporary storage and which can not pro-
duce strings of output [5]. A deterministic finite accepter
(dfa) is defined by the quintuple

M = (Q, Σ, δ, q0, F ),

where

Q is a finite set of internal states,

Σ is a finite set of symbols called the input alphabet,

δ : Q × Σ → Q is a transition function,

q0 ∈ Q is the initial state,

F ⊆ Q is a set of final states.

3.1 Data Structure States and Lifespan

As described in [18], for parallel execution two types of
data structure representations are used in our software archi-
tecture: global structures and local (or partial) structures.
A global structure always resides at a single processing unit
(the root), and contains all data for the complete domain
of the structure it represents. Local structures, on the other
hand, are the result of a scatter or broadcast operation per-
formed on a global structure.

There is a strong relationship between a global structure
and the set of derived local structures (referred to as a dis-
tributed data structure). Clearly, at any time during execu-
tion of a parallel program either the global structure itself or
the distributed structure derived from that global structure
must contain up-to-date values for all structure elements.
An abstract representation of the relationship between these
structures is given by the three-tuple q = (g, d, t), where

g ∈ G is the state of the global structure,

d ∈ D is the state of the derived distributed structure,

t ∈ T is the distributed structure’s distribution type.

and

G = { none, created, valid, invalid },

D = { none, valid, invalid },

T = { none, partial, full, not-reduced }.

In set G, none indicates that no space has been allocated
for the global structure in the main memory of the root. Fur-
thermore, created indicates that space for the global structure
has been allocated by way of the Create function. In this
state, the elements of the global structure do not contain
values resulting from any calculation (yet). Finally, valid in-
dicates that the global structure contains up-to-date values
for all structure elements, and invalid indicates that at least
one of the global structure’s elements may contain an in-
correct value. For distributed structures, the elements in set
D are defined in a similar manner. The value created is not
present in set D, however, simply because we do not need it.

In set T , none indicates that no distribution type informa-
tion is available. In addition, partial indicates that the set of
constituent local structures is the result of a Scatter operation,
while full indicates that the structures are obtained in a Broad-

cast operation. Finally, not-reduced indicates that all elements
of the constituent local structures yet have to be subjected
to an element-wise RduceOne or RduceAll operation.

The set R = G × D × T contains all possible represen-
tations of the relationship between a global structure and its
derived distributed structure. However, many of these pos-
sible representations can not (or should not) occur. As an
example, the representation q = (invalid, invalid, full) should
not occur in a program, as neither the global structure nor
the distributed structure contains all correct values.



For the finite state machine, we have specified a re-
stricted set of valid internal states, based on the presented
relationship between global and distributed structures. The
selected set of valid internal fsm states is defined by

Q = { q0, q1, · · · , q8 } ⊂ G × D × T ,

with

q0 = (none, none, none), q5 = (valid, valid, full),

q1 = (created, none, none), q6 = (invalid, valid, partial),

q2 = (valid, none, none), q7 = (invalid, valid, full),

q3 = (invalid, none, none), q8 = (invalid, invalid, not-reduced).

q4 = (valid, valid, partial),

State q0 is the empty state, and represents the state of the
global-distributed structure combination before its initial
creation and after its final destruction. State q1 represents
the state immediately after creation of the global structure.
Essentially, this is a special case of state q2, as the global
structure also could be designated as valid. State q1 is still
required, however, to avoid communication in case a dis-
tributed structure is to be derived from a global structure in
this state. State q2 simply indicates that a global structure’s
elements contain all correct and up-to-date values, while a
derived distributed structure is nonexistent. At first glance,
q3 seems to be a state that should never appear in a legal
parallel program. However, this is the state obtained after
performing a DelLcl operation in case the global-distributed
structure combination is represented by states q6, q7, or q8.
In states q4, q5, q6, and q7, the distributed structure contains
all correct values, while the related global structure is either
consistent or inconsistent with these values. Finally, state
q8 occurs in parallel reduction operations. As long as the
required reduction has not yet been performed on the dis-
tributed structure, all constituent local structures as well as
the related global structure remain invalid.

At run time each global-distributed structure combina-
tion starts in the empty state q0. From this point onward
each state can be reached, depending on the operations per-
formed on the structure combination. Also, it is possible
for certain states to be reached multiple times. The lifespan
of a global-distributed structure combination ends in case it
returns to the empty state q0. As such, state q0 serves as the
initial state of our finite state machine definition, as well as
the single element in the set of final states.

3.2 State Transition Functions

The fsm input alphabet is formed by the abstract func-
tions of Tables 1 and 2, with a concrete data structure refer-
ence for each formal parameter. Also, as the fsm is used to
monitor state changes and lifespan of a single data structure
only, monitoring the correctness and legality of a complete

application involves multiple finite state machines. The
presence of multiple state machines results in a parallel
view of the states of all data structures in an application. At
any moment during execution, several data structures are
’alive’ and their combined state is captured by their respec-
tive finite state machines. As the states of multiple data
structures are not always independent, we assume that each
fsm has a complete and up-to-date view of the states of all
data structures in an application. Also, by way of the de-
fined set of state transition functions, each state machine in-
corporates all knowledge regarding data structure state de-
pendencies. To this end, the definition of state transition
functions as presented before is extended as follows:

δ : Q × Σd → Q,

where Σd is the input alphabet in which each (abstract)
function is annotated with a list of permitted state depen-
dencies for all additional data structures passed as parame-
ter to that function (i.e., those structures for which the cur-
rent fsm is not responsible). Here, we represent elements in

δ(q0, (Create,−)) = q1, δ(qi, (Delete,−)) = q0,
δ(q0, (Import,−)) = q2, δ(qj , (Export,−)) = qj ,
with i ∈ {1,2,3}, j ∈ {1, 2, 4, 5},

δ(q0, (op, q2)) = q2, δ(q0, (op, q6)) = q6,
δ(q0, (op, q4)) = q6, δ(q0, (op, q7)) = q7,
δ(q0, (op, q5)) = q7, δ(qi, (op, q0)) = qi,
with op ∈ {Memcopy, UnPixOp}, i ∈ {2, 4, 5, 6, 7},

δ(q0, (op, q2, q2)) = q2, δ(q2, (op, q0, q2)) = q2,
δ(q0, (op, q4, qi)) = q6, δ(q4, (op, q0, qi)) = q4,
δ(q0, (op, q5, qi)) = q7, δ(q5, (op, q0, qj)) = q5,
δ(q0, (op, q6, qi)) = q6, δ(q6, (op, q0, qi)) = q6,
δ(q0, (op, q7, qi)) = q7, δ(q7, (op, q0, qj)) = q7,
with op ∈ {BinPixOpV, NeighOp, GenConvOp},

i ∈ {5, 7}, j ∈ {4, 5, 6, 7},

δ(q0, (op, q2, q2)) = q2, δ(q2, (op, q0, q2)) = q2,
δ(q0, (op, qi, qj)) = q6, δ(qi, (op, q0, qj)) = qi,
δ(q0, (op, qk, ql)) = q7, δ(qk, (op, q0, ql)) = qk,
with op ∈ {BinPixOpI}, i, j ∈ {4, 6}, k, l ∈ {5, 7},

δ(q0, (ReduceOp, q2)) = q2, δ(q2, (ReduceOp, q0)) = q2,
δ(q0, (ReduceOp, qi)) = q8, δ(qi, (ReduceOp, q0)) = qi,
δ(q0, (ReduceOp, qj)) = q7, δ(qj , (ReduceOp, q0)) = qj ,
with i ∈ {4, 6}, j ∈ {5, 7},

δ(q0, (op, q2)) = q2, δ(q2, (op, q0)) = q2,
δ(q0, (op, qi)) = q6, δ(qi, (op, q0)) = qi,
with op ∈ {GeoMat, GeoRoi}, i ∈ {5, 7}.

Table 3. Transition functions: image operations.



Σd by a two- or three-tuple, in which the first component
is the name of the abstract function, and the remainder rep-
resents the (possibly empty) list of state dependencies. For
example, δ(q0, (BinPixOpV, q4, q5)) = q6 represents a state
transition function for the output structure produced by the
BinPixOpV operation. This transition function changes the
state of the output structure from q0 to q6, while the source
and argument structures are expected to be in states q4 and
q5 respectively. It should be noted, that the knowledge ob-
tained with this parallel view of state machines also could
have been captured in a single cross-product machine, in
which each deterministic finite automaton simulates, in par-
allel, the behavior of each component dfa (e.g., see [10]).
For simplicity, however, in the remainder of this paper we
keep to the parallel view of simple state machines.

Table 3 presents the transition functions for the image
operations available in our library. The overview is com-
plete in the sense that our implementations allow no state
transitions other than the ones presented here. In all cases,
initial state q0 refers to the state of the output structure pro-
duced by any of the operations (represented by an OUT pa-
rameter in Table 1). As can be seen, output structures are the
only structures that actually move from one state to another.
Input structures and argument structures never change state,
as these are accessed only, and never updated. All transi-
tion functions that cause a structure to be moved to state q2

indicate sequential execution using global structures. All
other transition functions refer to parallel execution using
distributed structures. State transition functions related to
the additional communication functionality, and the mem-
ory management of local data structures, are presented in
Table 4. In all of these the list of state dependencies is
empty, as the functions work on a single data structure only.

Figure 1 presents a reduced state transition graph for our
fsm definition. For better readability, the graph contains
only those operations that cause a structure to move from
one state to another. As such, the graph incorporates the
complete lifespan of a data structure, and covers any state
a data structure can reach at run time. Also, it is exactly
these operations that play an essential role in the process of
operation redundancy avoidance as presented in Section 4.

δ(q1, (CreatLclPart,−)) = q4, δ(qi, (DelLcl,−)) = q2,
δ(q1, (CreatLclFull,−)) = q5, δ(qj , (DelLcl,−)) = q3,
with i ∈ {4,5}, j ∈ {6,7,8},

δ(q2, (Broadcast,−)) = q5, δ(q8, (RduceOne,−)) = q2,
δ(q2, (Scatter,−)) = q4, δ(q8, (RduceAll,−)) = q5,
δ(q6, (Gather,−)) = q4, δ(q6, (GatherAll,−)) = q5,
δ(q7, (Gather,−)) = q5,

Table 4. Transition functions: communication.
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Figure 1. Reduced state transition graph.

A program is a legal program, if it is accepted by all fi-
nite state machines related to that program. In other words,
a program is legal if (1) it consists of a sequence of abstract
function calls from Tables 1 and 2 only, (2) it contains no
data structure state inconsistencies, and (3) all data struc-
tures start as well as end in the empty state q0. In case a user-
provided sequential program is accepted as a legal program,
the process of default algorithm expansion always generates
a legal and correct parallel program. This is because each
sequence of (parallel) operations that replaces a sequential
call generates exactly the same set of data structure state
transitions at all times. The following section shows how
the presented finite state machine is used to obtain legal and
correct parallel code, which is optimized in that the execu-
tion of any redundant communication operations is avoided.

4 Lazy Parallelization

In the approach of lazy parallelization it is simply as-
sumed that each communication or memory management
operation inserted by default algorithm expansion is redun-
dant, unless proven otherwise. Stated differently, lazy paral-
lelization causes a default communication or memory man-
agement operation to be executed only, in case its removal
would introduce an (immediate) data structure state incon-
sistency. Although lazy parallelization can be applied on the
fly at run time, for the moment we will present it as a com-



pile time method. Conceptually, lazy parallelization con-
sists of the following parallelization and optimization steps:

1. Apply the process of default algorithm expansion to
the original sequential code.

2. Scan the expanded code, and remove all communi-
cation operations, as well as all operations for the
creation and destruction of partial data structures.

3. Apply partial loop unrolling by extracting the code
for the first iteration of each loop, and placing it in
front of the code for the remaining loop iterations.

4. Resolve all introduced data structure state inconsisten-
cies by re-inserting operations removed in step 2.

5. Undo the partial loop unrolling by replacing all
separated loops by a single combined code block.

As stated, the code obtained after the first step consists
of legal, but non-optimal parallel code. The operation re-
moval in the second step, however, introduces many state
inconsistencies. These are resolved in step four. As will
be described below, in this step any illegal parallel code
is transformed to legal code by (re-)inserting operations to
resolve data structure state inconsistencies. Steps 3 and 5
are present only to deal with loop constructs which may be
present in the user-provided code. The extraction of the first
iteration of a loop (partial loop unrolling) exposes all data
structure state inconsistencies that can possibly occur in a
program. More specifically, loop unrolling makes it pos-
sible to compare (1) the data structure states reached after
execution of the pre-loop code with the states required in
the first loop iteration, (2) the states reached after execution
of the n-th loop iteration with the states required in iteration
n + 1, and (3) the states reached after execution of the last
loop iteration with the states required in the post-loop code.

Listing 3 gives an example of the application of lazy par-
allelization. The abstract code for a simple example pro-
gram is shown in the Listing 3(a). The programs obtained
in the first three steps of the optimization process are all
straightforward, and will not be explained any further.

The re-insertion of code as applied in step 4 (see List-
ing 3(e)) is performed using the state transition functions
of Section 3.2 (i.e., only those incorporated in the reduced
state transition graph of Figure 1). The Broadcast( A, locA )

operation in the first loop iteration is inserted because the
Import operation causes its output structure to be moved to
state q2, while for parallel execution the subsequent GeoMat

operation requires its input structure to be in state q5 or q7

(see Table 3). The only available operation that provides a
resolution to this state inconsistency is the Broadcast opera-
tion, as it moves a data structure from state q2 to q5. Sim-
ilarly, Gather( locC, C ) is inserted in the first loop iteration,
as it moves C from q6 to q4, which is one of the allowed
input states for the subsequent Export operation. The addi-
tional operation re-insertions work in a similar manner, and
all further interpretation of Listing 3 is left to the reader.

Import( A ); Import( A );

LOOP [1:N] LOOP [1:N]

GeoMat( A, B ); Broadcast( A, locA );

GenConvOp( B, C, k ); GeoMat( locA, locB );

Export( C ); Gather( locB, B );

Delete( C ); DelLcl( locB );

Delete( B ); DelLcl( locA );

ENDLOOP Scatter( B, locB );

Delete( A ); GenConvOp( locB, locC, k );

Gather( locC, C );

DelLcl( locC );

DelLcl( locB );

Export( C );

Delete( C );

Delete( B );

ENDLOOP

Delete( A );

(a) example sequential code (b) after step 1

Import( A ); Import( A );

LOOP [1:N] LOOP [1]

GeoMat( locA, locB ); GeoMat( locA, locB );

GenConvOp( locB, locC, k ); GenConvOp( locB, locC, k );

Export( C ); Export( C );

Delete( C ); Delete( C );

Delete( B ); Delete( B );

ENDLOOP ENDLOOP

Delete( A ); LOOP [2:N]

GeoMat( locA, locB );

GenConvOp( locB, locC, k );

Export( C );

Delete( C );

Delete( B );

ENDLOOP

Delete( A );

(c) after step 2 (d) after step 3

Import( A ); Import( A );

LOOP [1] LOOP [1:N]

Broadcast( A, locA ); IF [1] Broadcast( A, locA);

GeoMat( locA, locB ); GeoMat( locA, locB );

GenConvOp( locB, locC, k ); GenConvOp( locB, locC, k );

Gather( locC, C ); Gather( locC, C );

Export( C ); Export( C );

DelLcl( locC ); DelLcl( locC );

Delete( C ); Delete( C );

DelLcl( locB ); DelLcl( locB );

Delete( B ); Delete( B );

ENDLOOP ENDLOOP

LOOP [2:N] DelLcl( locA );

GeoMat( locA, locB ); Delete( A );

GenConvOp( locB, locC, k );

Gather( locC, C );

Export( C );

DelLcl( locC );

Delete( C );

DelLcl( locB );

Delete( B );

ENDLOOP

DelLcl( locA );

Delete( A );

(e) after step 4 (f) after step 5

Listing 3: Optimization by lazy parallelization: (a) original
code, (b) after default algorithm expansion, (c) after
removal of ’redundant’ operations, (d) after partial
loop unrolling, (e) after default operation re-insertion,
(f) optimized parallel code after loop recombination.

4.1 Discussion

Lazy parallelization produces legal and correct parallel
code at all times. This can be seen by considering the al-
lowed states for all data structures passed as parameters to
the operations in Table 1, and the resulting states for the out-
put structures produced by these operations. As such, each
operation has a set of allowed input states for each of its pa-
rameters, and one of these is moved to a new output state.



By exhaustion, it is easily shown that for each possible out-
put state, a sequence of zero or more state transitions exists
that moves a data structure from that particular output state
to one state in each set of allowed input states.

An important property of the approach is that it can be
applied on the fly at run time (hence its name). Because the
required data structure states are known for each operation,
it is possible to defer decisions regarding the execution of
each default communication operation to as late as the ac-
tual moment of intended execution. Essentially, this means
that all five steps as described above, are reduced to a sin-
gle step. As such, lazy parallelization is unrestrictive and
highly efficient, as no prior knowledge regarding the behav-
ior of loops and branches is required. This knowledge is
simply obtained during execution of the application, and is
not required any sooner.

It should be noted that, although lazy parallelization
works well in many situations, it does not guarantee to
always produce the fastest possible version of a program
under consideration. This is because the approach always
applies the fastest communication step whenever message
transfer is mandatory. This is still a form of local perfor-
mance optimization, however, as it may be better to insert
a combined message transfer to avoid further communica-
tion steps to be executed at a later stage. To overcome this
problem, we have also implemented an extension to the
approach of lazy parallelization, which is indeed capable
of producing the (expected) fastest parallel version of any
sequential program. The extended approach relies on the
creation of an application state transition graph (ASTG),
which incorporates all performance optimization decisions
which can possibly made at application run time. Each de-
cision is annotated with a run time cost estimation, such
that the fastest version of the program is represented by the
cheapest branch in the graph. Drawback of the extended ap-
proach, however, is that it is often costly to actually obtain
the cheapest branch. More detailed information related to
these issues is presented in [15, 16, 18].

FOR i=0:NrImages-1 DO
InputIm = ReadFile(...);
SqrdInputIm = BinPixOp(InputIm, ”mul”, InputIm);
FOR j=0:NrSymbols-1 DO

IF (i==0) THEN
weights[j] = ReadFile(...);
symbols[j] = ReadFile(...);
symbols[j] = BinPixOp(symbols[j], ”mul”, weights[j]);

FI
FiltIm1 = GenConvOp(SqrdInputIm, ”mult”, ”add”, weights[j]);
FiltIm2 = GenConvOp(InPutIm, ”mult”, ”add”, symbols[j]);
FiltIm2 = BinPixOp(FiltIm2, ”mult”, 2);
ErrorIm = UnPixOp(FiltIm1, ”sub”, FiltIm2);
WriteFile(ErrorIm);

OD
OD

Listing 4: Pseudo code for template matching.
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Figure 2. Speedup for template matching: input im-
age of 1093×649 pixels, templates of size 41×35.

4.2 Performance Evaluation

We have applied the approach of lazy parallelization to
the simple template matching program presented in List-
ing 4. In this application, a set of electrical engineering
drawings is matched against a set of templates represent-
ing electrical components, such as diodes, etc. A detailed
description of the application, as well as a thorough discus-
sion of its parallel execution is presented in [17]. Here we
will only compare the measurements as obtained for this
application. As is shown in Figure 2, speedup obtained for
the version of the program optimized by lazy paralleliza-
tion is dramatically improved over the version obtained by
default algorithm expansion. Moreover, the performance of
the optimized program is even similar to that of a reason-
able hand-code version [17], hence indicating the impor-
tance of the approach. More performance results for other,
more complex applications are presented in [17].

5 Related Work

To our knowledge, usage of fsm specifications is new in
the field of library-based parallelization tools. Moreover,
the application of an fsm definition seems not to have been
considered at all in the field of parallel image processing. In
related research areas of parallel computation, however, fsm
definitions have been applied before. For example, Chatter-
jee et al. [2] apply a finite state machine for the generation
of optimal communication sets in distributed-memory im-
plementations of data-parallel languages such as HPF. As in
our case, results indicate that the fsm approach requires very
little runtime overhead. For ad-hoc optimization of specific
algorithms and applications fsm definitions have been ap-
plied successfully as well [3, 12].

Interestingly, our approach to finding optimal perfor-
mance of operations as well as complete applications is re-
lated to several projects in other domains. The SPIRAL



project [14, 19], for example, is aimed at the design of a
system to generate efficient libraries for digital signal pro-
cessing algorithms. SPIRAL generates efficient implemen-
tations of algorithms expressed in a domain-specific lan-
guage, called SPL, by a systematic search through the space
of possible implementations. Other efforts in automatically
generating efficient implementations of programs include
FFTW [4] for adaptively generating time-optimal FFT al-
gorithms, and the ATLAS project [22] for deriving efficient
implementations of basic linear algebra routines.

Finally, our work shares common goals with that of
Baumgartner et. al. [1], in the search of an optimal data
partitioning strategy with minimal communication over-
head for applications in the field of quantum chemistry and
physics. As in our extended approach not discussed here, an
operator tree is generated, in which multiple data partition-
ing and communication strategies are incorporated. This
approach is entirely static, however, and includes no possi-
bility for partial optimization performed at run time.

6 Conclusions

In this paper we have presented a finite state machine
based approach for global optimization of data parallel
image processing applications. The approach, referred
to as lazy parallelization, considers a sequential program,
which is parallelized automatically by inserting commu-
nication operations and local memory management oper-
ations whenever necessary. The approach generates legal,
correct, and efficient parallel programs, given any sequen-
tial program implemented using our library-based software
architecture for data parallel image processing.

The main advantage of the optimization approach is that
it can be applied on the fly at run time. As a result, the
primary importance of lazy parallelization over other ap-
proaches described in the literature, lies in the fact that it
requires no a priori knowledge regarding the branching be-
havior of the application at hand. An additional advantage
of lazy parallelization is that it requires very little runtime
overhead. Also, in our software architecture it proved to be
possible to implement the approach elegantly [15].

In conclusion, lazy parallelization on the basis of a finite
state machine specification has proven to constitute a sur-
prisingly simple, yet effective method for global optimiza-
tion of data parallel image processing applications. Essen-
tially, the simplicity stems from the high level abstractions
incorporated in the finite state machine definition. Conse-
quently, we feel that a similar approach could be applicable
in other library-based architectures as well. Apart from the
many environments for parallel image processing (such as
our own), this is also true for environments for linear alge-
bra operations, which include similar patterns of communi-
cation and calculation.
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