
1
Finite State Mahine Based Optimization ofData Parallel Regular Domain ProblemsApplied in Low Level Image Proessing

F.J. Seinstra*, D. Koelma, and A.D. BagdanovIntelligent Sensory Information Systems,Faulty of Siene, University of Amsterdam,Kruislaan 403, 1098 SJ Amsterdam, The Netherlandsffjseins, koelma, andrewg�siene.uva.nl

*Corresponding author. FINAL

2AbstratA popular approah to providing non-experts in parallel omputing with an easy-to-use programmingmodel, is to design a software library onsisting of a set of pre-parallelized routines, and hide the intriaiesof parallelization behind the library's API. However, for regular domain problems (suh as simple matrixmanipulations or low level image proessing appliations | in whih all elements in a regular subset of adense data �eld are aessed in turn) speedup obtained with many suh library-based parallelization tools isoften sub-optimal. This is beause inter-operation optimization (or: time-optimization of ommuniationsteps aross library alls) is generally not inorporated in the library implementations.This paper presents a simple, eÆient, �nite state mahine-based approah for ommuniation min-imization of library-based data parallel regular domain problems. In the approah, referred to as lazyparallelization, a sequential program is parallelized automatially at run time by inserting ommuniationprimitives and memory management operations whenever neessary. Apart from being simple and heap,lazy parallelization guarantees to generate legal, orret, and eÆient parallel programs at all times.The e�etiveness of the approah is demonstrated by analyzing the performane harateristis oftwo typial regular domain problems obtained from the �eld of low level image proessing. Experimentalresults show signi�ant performane improvements over non-optimized parallel appliations. Moreover,obtained ommuniation behavior is found to be optimal with respet to the abstration level of messagepassing programs. KeywordsParallel proessing, data ommuniations aspets, optimization, image proessing software.I. IntrodutionA parallelization tool based on a software library of pre-parallelized routines an serve asa powerful programming aid to obtain high performane with relative ease. In the �eld oflow (pixel) level image proessing, for example, many suh parallelization tools exist [10℄,[11℄, [13℄, [14℄, [21℄, [32℄, [33℄. Suh tools, however, generally restrit performane opti-mization to eah library operation in isolation, and ignore ommuniation minimizationfor full appliations. For library implementations based on message passing primitivessigni�ant performane gains an be obtained, as it is often possible to remove manyredundant ommuniation steps, and to ombine multiple messages in a single transfer.Automati optimization of ommuniation overhead is not easy. First, this is beausethe optimization strategy must be able to determine whih ommuniation steps are es-sential, and whih an be safely ombined or removed. Also, it must guarantee that theFINAL

3resulting parallel ode is (1) eÆient , preferably omparable to an optimal hand-odedimplementation, (2) legal , suh that the program is deterministi and an never end indeadlok, and (3) orret , suh that it produes output idential to the original program.This paper presents a new and surprisingly simple strategy for ommuniation minimiza-tion in library-based data parallel regular domain problems [22℄, whih adheres to all theserequirements. In the approah, a fully sequential program is parallelized automatially atrun time by inserting ommuniation primitives and additional memory management op-erations whenever neessary. The approah, referred to as lazy parallelization, is based ona simple �nite state mahine (fsm) spei�ation. One of two essential fsm ingredients isa set of states, eah orresponding to a valid internal representation of a distributed datastruture at run time. The other is a set of state transition funtions, eah of whih de�neshow a valid data struture representation is transformed into another valid representation.This paper indiates how the fsm spei�ation is applied in the proess of obtaining legal,orret, and indeed eÆient parallel ode. Also, a ompile-time extension is disussed,whih is apable of produing the theoretially fastest parallel version of a program.This paper is organized as follows. Setion II desribes the optimization problem. InSetion III the �nite state mahine spei�ation is presented. Setion IV desribes the fsm-based approah of lazy parallelization, and briey presents a ompile-time extension foradditional optimization. An evaluation of measurements obtained for two example regulardomain problems obtained from the �eld of low level image proessing is presented inSetion V. Setion VI disusses related work. Conluding remarks are given in Setion VII.II. The Optimization ProblemThe main objetive in our researh is to build a library-based software arhiteturethat allows for fully sequential implementation of low level image proessing appliationsexeuting in data parallel fashion [25℄, [26℄, [27℄, [29℄. All parallelization and optimizationissues are to be taken are of by the arhiteture itself, hidden from the user.A. Parallelizable Patterns in Regular Domain ProblemsFor reasons of software maintainability and reuse, all library operations are implementedon the basis of a de�nition of so-alled parallelizable patterns found in typial regular do-FINAL

4main problems [29℄. Eah suh pattern represents a generi desription of a lass of se-quential algorithms with similar behavior in terms of data aesses to array-like strutures.More spei�ally: a parallelizable pattern represents a generi operation that takes zero ormore soure strutures as input and produes exatly one destination struture as output.It onsists of n independent tasks, where a task spei�es what data in any of the struturesmust be aquired in order to update the value of a single data point in the destinationstruture. As suh, prior to parallel exeution of a pattern, for all data strutures on allproessing units all data aesses are known. As all aesses are de�ned to be loal to theproessing unit exeuting the algorithm, all non-loal data to be aessed must be ommu-niated prior to exeution. Given the preise de�nition of these data aess pattern types, adefault parallelization strategy with minimal ommuniation overhead diretly follows forany operation that maps onto one of the prede�ned parallelizable patterns [29℄. Irrespe-tive of the fous on low level image proessing, due to the generi nature of parallelizablepatterns this result naturally extends to other regular domain problems as well.B. Abstrat Funtion Spei�ationsAs stated, in our software arhiteture all sequential image proessing funtionality isimplemented on the basis of parallelizable patterns. For these operations we introduea shorthand notation, presented in Table I. It inludes (a.o.) unary and binary pixelCreate (OUT dst); // reate global strutureDelete (OUT dst); // delete global strutureImport (OUT dst); // import global struture from ext. devieExport (IN sr); // export global struture to ext. devieMemCopy (IN sr, OUT dst); // opy global strutureUnPixOp (IN sr, OUT dst); // unary pixel operationBinPixOpV (IN sr, OUT dst, IN arg); // binary pixel operation (vetor argument)BinPixOpI (IN sr, OUT dst, IN arg); // binary pixel operation (image argument)RedueOp (IN sr, OUT dst); // global redue operationNeighOp (IN sr, OUT dst, IN ker); // generalized neighborhood operationGenConvOp (IN sr, OUT dst, IN ker); // generalized onvolutionReGConvOp (IN sr, OUT dst, IN ker); // reursive generalized onvolutionGeoMat (IN sr, OUT dst); // geometri transform. (matrix-based)GeoRoi (IN sr, OUT dst); // geometri transform. (region of interest)TABLE IAbstrat funtions: sequential operation. FINAL

5CreatLlPart (OUT ldst); // reate non-overlapping struture at all nodesCreatLlFull (OUT ldst); // reate fully overlapping struture at all nodesDelLl (OUT ldst); // delete loal struture at all nodesBroadast (IN gsr, OUT ldst); // send global struture to all nodesSatter (IN gsr, OUT ldst); // divide global struture among all nodesGather (IN lsr, OUT gdst); // send eah node's loal struture to rootGatherAll (INOUT lsr, INOUT gdst); // send eah node's loal struture to all nodesRedueOne (INOUT lsr, OUT gdst); // global redue aross all nodes (result at root)RedueAll (INOUT lsr, INOUT gdst); // global redue aross all nodes (result at all)TABLE IIAbstrat funtions: ommuniation.operations, (reursive) neighborhood operations, and geometri transformations.Shorthand notation for all required inter-proess ommuniation is presented in Table II,and ontains the ommon olletive operations in MPI [17℄. The additional CreatLlPart/Fulland DelLl funtions onstitute reators and destrutors for partial data strutures, eahresiding on a di�erent proessor at run time. Partial strutures are referred to as loal inthe presented parameter lists (lsr and ldst). The original struture from whih the partialstrutures are obtained is referred to as global (gsr and gdst). The importane of theseabstrations is that for any appliation implemented using our arhiteture it is possibleto derive an abstrat operation stream omprising of funtions from Tables I and II alone.C. Default Algorithm ExpansionBeause all funtionality is implemented on the basis of parallelizable patterns, onver-sion of any sequential appliation into an equivalent parallel program is straightforward.The onversion proess, referred to as default algorithm expansion, is illustrated in List-ing 1. The sequential program, shown on the left, �rst imports image A, whih is used asinput to a unary pixel operation. Subsequently, resulting image B is used as input to abinary pixel operation. Finally, resulting image C is exported, and all images are destroyed.The equivalent parallel program is shown on the right of Listing 1. First, a Satteroperation is inserted before the UnPixOp all. After the operation has �nished, the resultingpartial outputs are gathered to the single root node and all temporary partial struturesare destroyed. Subsequently, the images whih are passed as soure and argument to thebinary pixel operation are sattered throughout the parallel system. The partial outputsFINAL

6Import(A); Import(A);UnPixOp(A, B); Satter(A, loA);BinPixOpI(B, C, A); UnPixOp(loA, loB);Export(C); Gather(loB, B);Delete(A); DelLl(loA);Delete(B); DelLl(loB);Delete(C); Satter(A, loA);Satter(B, loB);BinPixOpI(loB, loC, loA);Gather(loC, C);DelLl(loA);DelLl(loB);DelLl(loC);Export(C);Delete(A);Delete(B);Delete(C);(a) Sequential. (b) Parallel (default).Listing 1: Abstrat sequential appliation (a) and equivalent parallel program after defaultalgorithm expansion (b).resulting from BinPixOp are gathered to the root, after whih all partial strutures aredeleted. From this point onward, the program is idential to the original sequential version.Default algorithm expansion always generates a legal and orret parallel version of anysequential program implemented on the basis of parallelizable patterns. This is beauseeah abstrat funtion all in the sequential ode is replaed by an equivalent sequene ofone or more (parallel) operations. The parallel ode is not guaranteed to be time-optimal,however. Worse even, it an be expeted to be slower than the original sequential program.Although other tools may have di�erent implementations, all library-based tools su�erfrom the very same problem | and for improved performane a solution is essential.D. The Problem: IneÆienies from Default Algorithm ExpansionWhen onsidering the parallel ode of Listing 1(b), it is lear that it ontains severaloperations that ould be removed without violating the program's orretness or legality.First, image loA, used as soure struture for the unary pixel operation, is removed byDelLl and subsequently rereated in the seond ourrene of the Satter(A, loA) all. Forimproved performane, both operations simply ould be removed. The same holds for thesequene of instrutions applied to the loB struture preeding the BinPixOpI all (i.e., Gatherfollowed by DelLl and Satter). Listing 2(b) presents the optimized program obtained afterremoving the redundant ommuniation steps from the parallel ode. The remainder of thisFINAL

7Import(A); Import(A);UnPixOp(A, B); Satter(A, loA);BinPixOpI(B, C, A); UnPixOp(loA, loB);Export(C); BinPixOpI(loB, loC, loA);Delete(A); Gather(loC, C);Delete(B); DelLl(loA);Delete(C); DelLl(loB);DelLl(loC);Export(C);Delete(A);Delete(B);Delete(C);(a) Sequential. (b) Parallel (optimized).Listing 2: Abstrat sequential appliation (a) and equivalent parallel program after inter-operation optimization (b).paper indiates how exeution of suh redundant operations an be avoided automatially.III. Finite State Mahine DefinitionOur solution to the problem of redundant ommuniation avoidane is based on a �nitestate mahine (fsm) spei�ation. More spei�ally, we restrit ourselves to a deterministi�nite aepter (dfa) [9℄, de�ned by the quintuple M = (Q; �; Æ; q0; F), whereQ is a �nite set of internal states,� is a �nite set of symbols alled the input alphabet ,Æ : Q� �! Q is a transition funtion,q0 2 Q is the initial state,F � Q is a set of �nal states.A. Data Struture States and LifespanAs desribed in [29℄, for parallel exeution two types of data struture representationsare used in our software arhiteture: global strutures and loal (or partial) strutures.A global struture always resides at a single proessing unit (the root), and ontains alldata for the omplete domain of the struture it represents. Loal strutures, on the otherhand, are the result of a satter or broadast operation performed on a global struture.There is a strong relationship between a global struture and the set of derived loalstrutures (or: distributed data struture). Clearly, at any time either the global stru-ture itself or its derived distributed struture must ontain all valid data. An abstratFINAL

8representation of this relationship is given by the triple q = (g; d; t), whereg 2 G is the state of the global struture,d 2 D is the state of the derived distributed struture,t 2 T is the distributed struture's distribution type,and G = f none, reated, valid, invalid g,D = f none, valid, invalid g,T = f none, partial, full, not-redued g.In set G, none indiates that no spae has been alloated for the global struture in themain memory of the root. Furthermore, reated indiates that spae for the global struturehas been alloated by way of the Create funtion. In this state, the elements of the globalstruture do not ontain values resulting from any alulation (yet). Finally, valid indiatesthat the global struture ontains up-to-date values for all struture elements, and invalidindiates that at least one of the global struture's elements may ontain an inorretvalue. For distributed strutures, the elements in set D are de�ned in a similar manner.The value reated is not present in set D, however, simply beause we do not need it.In set T , none indiates that no distribution type information is available. In addition,partial indiates that the set of onstituent loal strutures is the result of a Satter opera-tion, while full indiates that the strutures are obtained in a Broadast operation. Finally,not-redued indiates that all elements of the onstituent loal strutures yet have to besubjeted to an element-wise RedueOne or RedueAll operation (see also [29℄).The set R = G�D�T ontains all possible representations of the relationship betweena global struture and its derived distributed struture. However, many of these possiblerepresentations an not (or should not) our. As an example, the representation q =(invalid, invalid, full) should not our in a program, as neither the global struture nor thedistributed struture ontains all orret values.For the fsm, we have spei�ed a restrited set of valid internal states, based on therelationship between global and distributed strutures. It is de�ned byQ = f q0; q1; � � � ; q8 g � G�D � T , FINAL

9withq0 = (none, none, none), q3 = (invalid, none, none), q6 = (invalid, valid, partial),q1 = (reated, none, none), q4 = (valid, valid, partial), q7 = (invalid, valid, full),q2 = (valid, none, none), q5 = (valid, valid, full), q8 = (invalid, invalid, not-redued).State q0 is the empty state, and represents the state of the global-distributed strutureombination before its initial reation and after its �nal destrution. State q1 represents thestate immediately after reation of the global struture. This is a speial ase of state q2, asthe global struture also ould be designated as valid. State q1 is still required, however, toavoid ommuniation in ase a distributed struture is to be derived from a global struturein this state. State q2 indiates that a global struture's elements ontain all up-to-datevalues, while a derived distributed struture is nonexistent. At �rst glane, q3 seems tobe a state that should never appear in a legal parallel program. However, this is thestate obtained after performing a DelLl operation in ase the global-distributed strutureombination is represented by states q6, q7, or q8. In states q4; q5; q6, and q7, the distributedstruture ontains all orret values, while the related global struture is either onsistentor inonsistent with these values. Finally, state q8 ours in parallel redution operations.As long as the required redution has not been performed on the distributed struture, allonstituent loal strutures as well as the related global struture remain invalid.At run time eah global-distributed struture ombination starts in the empty state q0.From this point onward eah state an be reahed, depending on the operations performedon the struture ombination. Also, it is possible for ertain states to be reahed multipletimes. The lifespan of a global-distributed struture ombination ends in ase it returns tothe empty state q0. As suh, state q0 serves as the initial state of our �nite state mahinede�nition, as well as the single element in the set of �nal states.B. State Transition FuntionsFor our purposes, the fsm input alphabet is formed by the operations of Tables I and II,with a onrete data struture referene for eah formal parameter. Also, as the fsm isused to monitor state hanges and lifespan of a single data struture only, monitoring theorretness and legality of a omplete appliation involves multiple fsm's. This resultsin a parallel view of the states of all data strutures in an appliation: at any momentFINAL

10Æ(q0; (Create;�)) = q1, Æ(qi; (Delete;�)) = q0,Æ(q0; (Import;�)) = q2, Æ(qj; (Export;�)) = qj,with i 2 f1,2,3g; j 2 f1, 2, 4, 5g,Æ(q0; (op; q2)) = q2, Æ(q0; (op; q6)) = q6,Æ(q0; (op; q4)) = q6, Æ(q0; (op; q7)) = q7,Æ(q0; (op; q5)) = q7, Æ(qi; (op; q0)) = qi,with op 2 fMemCopy, UnPixOpg; i 2 f2, 4, 5, 6, 7g,Æ(q0; (op; q2; q2)) = q2, Æ(q2; (op; q0; q2)) = q2,Æ(q0; (op; q4; qi)) = q6, Æ(q4; (op; q0; qi)) = q4,Æ(q0; (op; q5; qi)) = q7, Æ(q5; (op; q0; qj)) = q5,Æ(q0; (op; q6; qi)) = q6, Æ(q6; (op; q0; qi)) = q6,Æ(q0; (op; q7; qi)) = q7, Æ(q7; (op; q0; qj)) = q7,with op 2 fBinPixOpV, NeighOp, GenConvOp, ReGConvOpg,i 2 f5, 7g; j 2 f4, 5, 6, 7g,Æ(q0; (op; q2; q2)) = q2, Æ(q2; (op; q0; q2)) = q2,Æ(q0; (op; qi; qj)) = q6, Æ(qi; (op; q0; qj)) = qi,Æ(q0; (op; qk; ql)) = q7, Æ(qk; (op; q0; ql)) = qk,with op 2 fBinPixOpIg; i; j 2 f4, 6g; k; l 2 f5, 7g,Æ(q0; (RedueOp; q2)) = q2, Æ(q2; (RedueOp; q0)) = q2,Æ(q0; (RedueOp; qi)) = q8, Æ(qi; (RedueOp; q0)) = qi,Æ(q0; (RedueOp; qj)) = q7, Æ(qj; (RedueOp; q0)) = qj,with i 2 f4, 6g; j 2 f5, 7g,Æ(q0; (op; q2)) = q2, Æ(q2; (op; q0)) = q2,Æ(q0; (op; qi)) = q6, Æ(qi; (op; q0)) = qi,with op 2 fGeoMat, GeoRoig; i 2 f5, 7g.TABLE IIITransition funtions: image operations.during exeution, several strutures are 'alive' and their ombined state is aptured bytheir respetive fsm's. As the states of multiple strutures are not always independent ,we assume that eah fsm has a omplete and up-to-date view of the states of all datastrutures in an appliation. Also, by way of the de�ned set of state transition funtions,eah fsm inorporates all knowledge regarding data struture state dependenies. To thisend, the de�nition of state transition funtions as presented before is extended as follows:Æ : Q� �d ! Q, FINAL

11where �d is the input alphabet in whih eah funtion is annotated with a list of permittedstate dependenies for all additional strutures passed as parameter to that funtion (i.e.,those strutures for whih the urrent fsm is not responsible). Here, we represent elementsin �d by a pair or triple, in whih the �rst omponent is the name of the funtion, andthe remainder represents the (possibly empty) list of state dependenies. For example,Æ(q0; (BinPixOpV; q4; q5)) = q6 represents a state transition funtion for the output strutureprodued by the BinPixOpV operation. This transition funtion hanges the state of theoutput struture from q0 to q6, while the soure and argument strutures are expeted tobe in states q4 and q5 respetively. It should be noted, that the knowledge obtained withthis parallel view also an be aptured in a single ross-produt mahine, in whih eah dfasimulates, in parallel, the behavior of eah omponent dfa [16℄. For simpliity, however,in the remainder of this paper we keep to the parallel view of simple state mahines.Table III presents the transition funtions for the image operations available in ourlibrary. In all ases, initial state q0 refers to the state of the output struture produedby any of the operations. As an be seen, output strutures are the only strutures thatatually move from one state to another. Input strutures and argument strutures neverhange state, as these are aessed only, and never updated. All transitions that ause astruture to be moved to state q1 or q2 always indiate sequential exeution using globalstrutures. All other transitions refer to parallel exeution using distributed strutures.State transition funtions related to the additional ommuniation funtionality, and thememory management of loal data strutures, are presented in Table IV. In all of these thelist of state dependenies is empty, as the funtions work on a single data struture only.Æ(q1; (CreatLlPart;�)) = q4, Æ(qi; (DelLl;�)) = q2,Æ(q1; (CreatLlFull;�)) = q5, Æ(qj; (DelLl;�)) = q3,with i 2 f4, 5g; j 2 f6, 7, 8g,Æ(q2; (Broadast;�)) = q5, Æ(q8; (RedueOne;�)) = q2,Æ(q2; (Satter;�)) = q4, Æ(q8; (RedueAll;�)) = q5,Æ(q6; (Gather;�)) = q4, Æ(q6; (GatherAll;�)) = q5,Æ(q7; (Gather;�)) = q5,TABLE IVTransition funtions: ommuniation. FINAL

12

q
 1

q
 6

q
 7

q
 8

q
 2

q
 5

q
 4

q
 3

q
 0

Create

Delete

*3

ReduceOne

*2*1

Scatter

Broadcast

DelLocal

Delete Delete

GatherAll

DelLocal

Gather

DelLocal

Gather

DelLocal

ReduceAll

DelLocal

CreatLocalFull

CreatLocalPart

*4

*1, *2, *3, *4 = creation of datastructure by one of several image operationsFig. 1. Redued state transition graph.Figure 1 presents a redued state transition graph for the fsm. For better readability, itontains only those operations that ause a struture to move from one state to another.As suh, the graph inorporates the omplete lifespan of a data struture, and oversany state a struture an reah at run time. Also, it is exatly these operations that areessential in the proess of operation redundany avoidane as presented in Setion IV.A program is legal , if it is aepted by all fsm's related to that program. In other words,in our arhiteture a program is legal if (1) it ontains funtion alls from Tables I and IIonly, (2) it ontains no data struture state inonsistenies, and (3) all strutures startas well as end in state q0. In ase a user-provided sequential program is legal, defaultalgorithm expansion always generates a legal and orret parallel program. This is beauseeah sequene of (parallel) operations that replaes a sequential all generates exatly thesame set of data struture state transitions at all times. The following setion shows howthe presented fsm is used to obtain legal and orret parallel ode, whih is optimized inthat the exeution of any redundant ommuniation operations is avoided. FINAL

13IV. Lazy ParallelizationIn the approah of lazy parallelization it is assumed that eah ommuniation or mem-ory management operation inserted by default algorithm expansion is redundant, unlessproven otherwise. Stated di�erently, lazy parallelization auses an inserted operation to beexeuted only if its removal would introdue a data struture state inonsisteny. Althoughthe method an be applied on the y at run time, for the moment we will present it as aompile time method. Coneptually, lazy parallelization onsists of the following steps:1. Apply the proess of default algorithm expansion to the original sequential ode.2. Remove all ommuniation operations, as well as all operations for the reation anddestrution of partial data strutures.3. Apply partial loop unrolling by extrating the ode for the �rst iteration of eah loop,and plaing it in front of the ode for the remaining loop iterations.4. Resolve data struture state inonsistenies by re-inserting operations removed in step 2.5. Undo the loop unrolling by ollapsing eah separated loop into a single ode blok.As stated, the parallel ode obtained after the �rst step is legal, but non-optimal. Theoperation removal in the seond step, however, introdues many state inonsistenies. Asdesribed below, these inonsistenies are resolved in step four. Steps 3 and 5 are presentonly to expose all data struture state inonsistenies that an possibly our in a program.Listing 3 gives a oneptual example of lazy parallelization. The programs obtained inthe �rst three steps of the optimization proess are straightforward, and will not be dis-ussed. The re-insertion of ode as applied in step 4 (see Listing 3(e)) is performed usingthe state transition funtions of Setion III-B (i.e., only those in the redued state tran-sition graph of Figure 1). The Broadast(A, loA) operation in the �rst loop iteration isinserted beause the Import operation auses its output struture to be moved to state q2,while for parallel exeution the subsequent GeoMat operation requires its input struture tobe in state q5 or q7 (see Table III). The only operation that provides a resolution to thisstate inonsisteny is Broadast, as it moves a data struture from state q2 to q5. Similarly,Gather(loC, C) is inserted in the �rst loop iteration, as it moves C from q6 to q4, whihis one of the allowed input states for the subsequent Export operation. The additionalre-insertions work in a similar manner, and all further interpretation is left to the reader.FINAL

14Import(A); Import(A);LOOP [1:N℄ LOOP [1:N℄GeoMat(A, B); Broadast(A, loA);GenConvOp(B, C, k); GeoMat(loA, loB);Export(C); Gather(loB, B);Delete(C); DelLl(loB);Delete(B); DelLl(loA);ENDLOOP Satter(B, loB);Delete(A); GenConvOp(loB, loC, k);Gather(loC, C);DelLl(loC);DelLl(loB);Export(C);Delete(C);Delete(B);ENDLOOPDelete(A);(a) sequential ode (b) after step 1Import(A); Import(A);LOOP [1:N℄ LOOP [1℄GeoMat(loA, loB); GeoMat(loA, loB);GenConvOp(loB, loC, k); GenConvOp(loB, loC, k);Export(C); Export(C);Delete(C); Delete(C);Delete(B); Delete(B);ENDLOOP ENDLOOPDelete(A); LOOP [2:N℄GeoMat(loA, loB);GenConvOp(loB, loC, k);Export(C);Delete(C);Delete(B);ENDLOOPDelete(A);() after step 2 (d) after step 3Import(A); Import(A);LOOP [1℄ LOOP [1:N℄Broadast(A, loA); IF [1℄ Broadast(A, loA);GeoMat(loA, loB); GeoMat(loA, loB);GenConvOp(loB, loC, k); GenConvOp(loB, loC, k);Gather(loC, C); Gather(loC, C);Export(C); Export(C);DelLl(loC); DelLl(loC);Delete(C); Delete(C);DelLl(loB); DelLl(loB);Delete(B); Delete(B);ENDLOOP ENDLOOPLOOP [2:N℄ DelLl(loA);GeoMat(loA, loB); Delete(A);GenConvOp(loB, loC, k);Gather(loC, C);Export(C);DelLl(loC);Delete(C);DelLl(loB);Delete(B);ENDLOOPDelLl(loA);Delete(A);(e) after step 4 (f) after step 5Listing 3: Example of optimization by lazy parallelization: (a) original ode, (b) afterdefault algorithm expansion, () after removal of 'redundant' operations, (d) after partialloop unrolling, (e) after default operation re-insertion, (f) optimized parallel ode afterloop reombination. FINAL

15A. DisussionLazy parallelization produes legal and orret parallel ode at all times. This anbe seen by onsidering the allowed states for all strutures passed as parameters to theoperations in Table I, and the resulting states for the produed output strutures. As suh,eah operation has a set of allowed input states for eah parameter, one of whih is movedto a new output state. By exhaustion, it is easily shown that for eah possible outputstate, a �nite sequene of zero or more state transitions exists that moves a struture fromthat output state to one state in eah set of allowed input states (see also [28℄).An important property of lazy parallelization is that it an be applied on the y at runtime (hene its name). As all data struture states are known for eah operation, deisionsregarding the exeution of eah ommuniation step are deferred to as late as the atualmoment of exeution. Essentially, this means that all �ve steps as desribed above areredued to a single step. This makes lazy parallelization very easy to implement, and highlyeÆient (i.e., without measurable run time overhead). An additional advantage is that noprior knowledge regarding the behavior of loops and branhes is required . Finally, run-timeadaptation to data struture sizes is easily integrated , by allowing exibility in the appliednumber of proessing units (or even by temporarily residing to sequential exeution) [25℄.Although lazy parallelization produes very eÆient parallel ode, it is still non-optimal.First, this is beause it always applies the fastest ommuniation step whenever messagetransfer is mandatory. This is a form of loal performane optimization, however, asit may be better to insert a ombined message transfer to avoid further ommuniationsteps at a later stage. Seondly, no knowledge is inorporated regarding the performaneharateristis of the parallel mahine at hand [26℄, [29℄. To overome these problems,we have also implemented an extension to the presented approah, whih is apable ofproduing the (expeted) fastest parallel version of a sequential program at ompile time.The extended approah relies on the reation of an appliation state transition graph(ASTG), inorporating all relevant performane optimization deisions that an be madeat run time. Eah deision is annotated with a ost estimation, suh that the fastestimplementation is represented by the heapest branh in the graph. Drawbak, however, isthat it is often ostly to atually obtain the heapest branh. See [25℄ for more information.FINAL

16B. AppliabilityAlthough lazy parallelization was designed for data parallel imaging appliations, it hasa broader appliability. As stated in Setion II, the approah will work (and generally bee�etive) for all regular domain problems in whih the essential operations an be expressedin terms of parallelizable patterns. One obvious example is the domain of linear algebraappliations. Clearly, for the approah to work in other appliation areas all referenes toimage operations in the fsm spei�ation should be altered, but this adaptation is onlymarginal. Also, the fat that operations in other areas may inorporate di�erent dataaess pattern types does not hallenge the validity of the proposed method in any way.Essentially, lazy parallelization is appliable to irregular (even data driven) problems aswell. For the approah to work, however, it is essential to have knowledge regarding thedata aess pattern types of operations to obtain the required ommuniation sets on they at run time. For irregular appliations this may not always be e�etive, espeially inases where nothing is known other than that n aesses are to be performed within a setof m elements, with m � n. When most elements in the set of size m are non-loal, theommuniation set for eah proessor will be large. In suh ases the performane obtainedby lazy parallelization largely depends on the amount of overlap in the ommuniation setsfor sequenes of operations. The more overlap, the more ommuniation an be avoided.In the problem of avoiding redundant ommuniation steps the reader may see a relationto similar problems in other researh areas. As a �rst example, there is an analogy to thegeneration of redundant instrutions in the proess of ompilation. Here, a well-knownproblem is the avoidane of superuous transfer of values between registers and (main)memory. As another example, there are similarities to ahe ohereny problems in theavoidane of unneessary updates of stale data. Solutions to problems of this kind (e.g.,peephole strategies for ompilers, I/O address heking for ahe aesses, etetera) allrequire (often ostly) look-ahead strategies to obtain knowledge regarding data aesses.Our solution to redundant ommuniation avoidane is di�erent in that it does not re-quire any form of look-ahead at all. This property diretly follows from the knowledgeregarding data aesses ontained in the de�nition of parallelizable patterns. As suh,our solution to the redundany problem does not easily transfer to the aforementionedFINAL

17problems in other researh areas. This is beause it is often unfeasible or even impossibleto inorporate a priori knowledge regarding data aesses in the general ase. However,for ertain domain-spei� problems our approah is still appliable. It is possible, forexample, to use ompiler annotations in parallel languages suh as HPF to obtain partiu-larly eÆient parallel ode for ertain regular domain problems. Speifying ode segmentsas being implemented aording to partiular parallelizable patterns relieves the ompilerof extensive dependeny analysis, and allows for lazy parallelization to be inorporated.Currently, this approah is being onsidered for the SPAR parallel language [24℄, [31℄.V. Measurements and ValidationTo evaluate the approah of lazy parallelization, this setion desribes the implemen-tation and parallel exeution of two example image proessing appliations: (1) line de-tetion, and (2) extration of retangular size distributions from doument images. Theatual ode is available at http://www.siene.uva.nl/~fjseins/ParHorusCode/.The two appliations have been tested on the 72-node Distributed ASCI Superom-puter 2 (DAS-2) loated at the Vrije Universiteit in Amsterdam [2℄. All nodes onsist oftwo 1-Ghz Pentium-III CPUs, with 2 GByte of RAM, and are onneted by a Myrinet-2000 network. At the time of measurement, the nodes ran the RedHat Linux 7.2 operatingsystem. Our software arhiteture was ompiled using g 2.96 (at highest level of opti-mization) and linked with MPICH-GM, whih uses Myriom's GM as its message passinglayer on Myrinet. As the DAS-2 system is heavily used for other researh projets as well,measurement results are presented here for a system of up to 64 dual-CPU nodes only.A. Curvilinear Struture DetetionAs disussed in [8℄, the important problem of deteting lines and linear strutures inimages is solved by onsidering the seond order diretional derivative in the gradientdiretion, for eah possible line diretion. This is ahieved by applying anisotropi Gaus-sian �lters, parameterized by orientation �, smoothing sale �u in the line diretion, anddi�erentiation sale �v perpendiular to the line, given byr00(x; y; �u; �v; �) = �u�v ���f�u;�v;�vv ��� 1b�u;�v;� ; FINAL

18with b the line brightness. When the �lter is orretly aligned with a line in the image,and �u; �v are optimally tuned to apture the line, �lter response is maximal. Hene, theper pixel maximum line ontrast over the �lter parameters yields line detetion:R(x; y) = arg max�u;�v ;� r00(x; y; �u; �v; �):A.1 Sequential ImplementationsThe anisotropi Gaussian �ltering problem an be implemented sequentially in manydi�erent ways. First, for eah orientation � it is possible to reate a new �lter based on�u and �v. Hene, a sequential implementation based on this approah (whih we refer toas Conv2D) implies full 2-dimensional onvolution for eah �lter.The seond approah (referred to as ConvUV) is to deompose the anisotropi Gaussian�lter along the perpendiular axes u; v, and use bilinear interpolation to approximate theimage intensity at the �lter oordinates. Although omparable to the Conv2D approah,ConvUV is expeted to be faster due to a redued number of aesses to the image pixels.Pseudo ode for the Conv2D and ConvUV algorithms is presented in Listing 4. Filteringis performed in the inner loop by either a full two-dimensional onvolution (Conv2D) or bya separable �lter in the priniple axes diretions (ConvUV). On a state-of-the-art sequen-tial mahine either program may take from a few minutes up to several hours to omplete,depending on the size of the input image and the extent of the hosen parameter subspae.Consequently, for the diretional �ltering problem parallel exeution is highly desired.FOR all orientations � DOFOR all smoothing sales �u DOFOR all di�erentiation sales �v DOFiltIm1 = GenConvOp(OriginalIm, "fun", �u, �v , 2, 0);FiltIm2 = GenConvOp(OriginalIm, "fun", �u, �v , 0, 0);ContrastIm = BinPixOp(FiltIm1, "absdiv", FiltIm2);ContrastIm = BinPixOp(ContrastIm, "mul", �u � �v);ResultIm = BinPixOp(ResultIm, "max", ContrastIm);ODODODListing 4: Pseudo ode for the Conv2D and ConvUV algorithms, with "fun" either"gauss2D" or "gaussUV". FINAL

19A.2 Parallel ExeutionExeution of the parallel versions of the algorithms obtained by default algorithm ex-pansion results in a huge amount of redundant ommuniation overhead. This is be-ause eah image operation in the inner loop of the program now exeutes one or moreSatter-Gather-pairs similar to those presented in the example ode of Listing 1(b).In ontrast, applying lazy parallelization to the two algorithms results in minimal om-muniation overhead. In the �rst loop iteration OriginalIm is sattered suh that eahnode obtains a non-overlapping slie of the image's domain. Next, all subsequent opera-tions are performed in parallel, only requiring border exhange ommuniation in the on-volutions (note: this is due to a sequential library design hoie, see [25℄). Finally, justbefore program termination, ResultIm is gathered to the root. In this manner, ommunia-tion behavior is optimal with respet to the abstration level of message passing programs.A.3 Performane EvaluationFrom the desription, it is lear that the Conv2D algorithm is expeted to be theslowest sequential implementation, due to the exessive aessing of image pixels in the2-dimensional onvolution operations. Figure 2(a) shows that this expetation indeedis on�rmed by the measurements obtained on a single CPU. Although Conv2D has aslightly better speedup harateristi due to a better omputation versus ommuniation
Conv2D ConvUV Conv2D ConvUV

CPUs

24
32

16

4
8

2
1

41.265
40.944
43.050

Default Alg. Expansion

48
64

(s) (s) (s) (s)

Lazy Parallelization

(1 CPU
per node)

45.7248.016
11.927
23.765
47.462
93.824

185.889

7.318
9.576

13.939
18.464
27.527
54.025

107.470
213.358
425.115

6.035

47.407
60.158
79.847

124.169
185.889

36.851
38.164
42.730
48.022
55.399
82.781

133.273
237.450
425.115

3.325
4.149(a) 0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
pe

ed
up

Nr. of CPUs

linear(x)
Conv2D (lazy parallelization)
ConvUV (lazy parallelization)

Conv2D (default alg. expansion)
ConvUV (default alg. expansion)

(b)Fig. 2. (a) Performane and (b) speedup harateristis for omputing a typial orientation sale-spaeat 5Æ angular resolution (i.e., 36 orientations) and 8 (�u; �v) ombinations. Sales omputed are �u 2f3; 5; 7g and �v 2 f1; 2; 3g, ignoring the isotropi ase �u;v = f3; 3g. Image size is 512�512 (4-byte)pixels. Results obtained using 1 CPU per dual node. FINAL

20
CPUs

Conv2D Conv2DConvUV ConvUV

54.447
61.984

59.649

75.084
65.595

101.974
149.575

48.148
45.025
50.529

(s)

53.610
59.169

(2 CPUs
(s) (s) (s)

Lazy Parallelization

per node)

Default Alg. Expansion

47.8849.737
14.150
27.802
54.801

109.710
217.366

128
96
64
48
32
16
8
4
2

7.363

57.032
69.378
96.134

148.766
256.425

1.875
2.553
3.464
4.460
6.313

12.297
24.550
50.233
99.587

4.062
5.294 (a) 0

20

40

60

80

100

120

0 20 40 60 80 100 120

S
pe

ed
up

Nr. of CPUs

linear(x)
Conv2D (lazy parallelization)
ConvUV (lazy parallelization)

Conv2D (default alg. expansion)
ConvUV (default alg. expansion)

(b)Fig. 3. (a) Performane and (b) speedup harateristis as in Figure 2. Results obtained using 2 CPUsper dual node.ratio, ConvUV always is the fastest implementation on any number of nodes.The speedup graph of Figure 2(b) shows the importane of the lazy parallelizationapproah. Speedup values obtained on 64 nodes are 58.1 and 55.9 for Conv2D and ConvUVrespetively, in ase of lazy parallelization. These values drop to 11.5 and 4.5 in ase ofthe original approah of default algorithm expansion.Figure 3 shows similar results for measurements obtained in ase both CPUs on eahnode are used in the exeution. Even measurements for up to 128 CPUs deliver lose tolinear speedup. In this situation, however, performane is slightly degraded by the fatthat two CPUs on a single node need to pass messages through the same ommuniationport. Nonetheless, we an onlude that the appliation of lazy parallelization enables oursoftware arhiteture to produe highly eÆient parallel ode for these implementations.B. Retangular Size DistributionsAs disussed in [1℄, retangular size distributions are an e�etive way to haraterize vi-sual similarities between doument images. Here, the vertially and horizontally alignedregions of varying aspet ratios in a doument image are haraterized using multivariate,retangular granulometries. A granulometry an be thought of as a morphologial sieve,where objets not onforming to a partiular size and shape are removed at eah level ofthe sieving proess. The retangular granulometry, 	x;y, of input image S is given by	x;y(S) = S Æ (yV � xH); FINAL

21where H and V are the horizontal and vertial line segments of unit length entered atthe origin, and x and y are independent sale parameters ontrolling the width and heightof the retangle used for �ltering. Of most interest in desribing the visual appearaneare the measurements taken on the �ltered images 	x;y(S). One useful measurementfor granulometries is the retangular size distribution. The retangular size distributionindued by the granulometry G = f	x;yg on image S is given by:�G(x; y; S) = A(S)� A(x;y(S)))A(S) ;A(X) denoting the area of set X. As suh, �G(x; y; S) is the probability that an arbitrarypixel in S is �ltered by a retangle of size x� y or smaller.B.1 Sequential ImplementationTo obtain partiularly eÆient sequential ode for generating retangular size distribu-tions, we have taken advantage of several properties of retangular granulometries andsize distributions. First, eah retangular �lter is deomposed into 1-dimensional �lters,eliminating the need to �lter a doument by retangles of all sizes. Next, the need touse �lters inreasing linearly in size is removed by applying linear distane transforms forhorizontal and vertial diretions. These transforms are implemented by using reursivealulateRetangularSizeDistribution(IMAGE inIm, INT w, INT h) fvertIm = verDist(inIm, 0);area = redueOp(inIm, "sum");FOR (y=0; y�h; y++) DOoy = (y/2h)*(inIm.height+1);vThreshIm = horDist(binPixOpC(vertIm, oy, "greaterthan"), 0);�ltered = -1;FOR (x=0; x�w; x++) DOIF (�ltered != 1.0) THENox = (x/2w)*(inIm.width+1);hThreshIm = binPixOpC(vThreshIm, ox, "lessequal");hThreshIm = binPixOpC(verDist(hThreshIm, MAXVAL), oy, "greaterthan");hThreshIm = binPixOpC(horDist(hThreshIm, MAXVAL), ox, "lessequal");�ltered = (area - redueOp(hThreshIm, "sum")) / area;FI... and save '�ltered' for urrent x,y ombination ...ODODgListing 5: Condensed pseudo ode for fast alulation of retangular size distributions;maximum size of alulated �lters denoted by 'w' and 'h'. Funtions 'horDist' and 'verDist'perform horizontal and vertial distane transforms, using reursive �lter-pairs. FINAL

22forward/bakward �lter pairs. Lastly, the need to explore large, at regions of the sizedistributions is eliminated by halting the �ltering for the urrent �lter when its propertiesguarantee that the �ltered result will be idential.Pseudo ode for the presented problem is given in Listing 5. It should be noted that theuse of reursive �lters results in a implementation whih is notoriously hard to parallelize(as is shown in the results provided in the remainder of this setion). A less eÆientsequential solution would be to use sieving without deomposition. This boils down to amorphologial sale-spae, and is omparable to the appliation of Setion V-A.B.2 Parallel ExeutionAs before, the sequential ode of Listing 5 diretly onstitutes a parallel program aswell. When applying default algorithm expansion for parallelization, the program su�ersfrom the same problem as the appliation desribed in Setion V-A: it results in exeutionof many ostly Satter and Gather operations. Lazy parallelization avoids all suh re-dundant ommuniation steps automatially, and again results in optimal ommuniationbehavior with respet to the abstration level of message passing programs. In e�et,the input image is sattered throughout the parallel system only one, and no additionalommuniation steps are required for resolution of data struture state inonsistenies.It should be noted, however, that speedup harateristis are not expeted to be as goodas those presented in Setion V-A. This is beause the applied reursive �lter operationsare hard to parallelize eÆiently. In our library we apply a fast two-step redistribution ofthe partitioned image data to always math the horizontal and vertial �ltering diretions.Although this approah does result in fast parallel exeution, we are aware of the fatthat additional optimizations are possible (suh as the appliation of a multi-partitioningtehnique [6℄). This part of the pre-parallelized ode is not a�eted by lazy paralleliza-tion, however, as data redistribution plays no role in the introdution or removal of datastruture state inonsistenies.B.3 Performane EvaluationMeasurement results for the two generated parallel versions of the presented algorithmare given in Figure 4. It should be noted that these results represent a lower bound onFINAL

23
CPUs

’79x119’’39x59’’39x59’ ’79x119’

167.566
167.792
163.865
160.874
166.163
209.964
157.439

49.283
47.201
45.319

(1 CPU

174.986
183.054

Default Alg. Expansion

per node) (s) (s) (s) (s)

Lazy Parallelization

1

2.621
3.014
5.109

10.097
21.297
41.975

64
48
32
24
16
8
4
2

45.462
2.587

44.235
43.441
44.157
55.955
41.975

12.984
10.732
9.673
9.778

11.198
19.029
38.174
80.279

157.439

3.476
2.870 (a) 0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
pe

ed
up

Nr. of CPUs

linear(x)
79x119 (lazy parallelization)

39x59 (lazy parallelization)
79x119 (default alg. expansion)

39x59 (default alg. expansion)

(b)Fig. 4. (a) Performane and (b) speedup for omputing retangular size distributions for doument imageof size 350�517 (2-byte) pixels. Maximum size of alulated �lters either 39�59 or 79�119. Resultsobtained using 1 CPU per dual node. Note: speedup lines for either approah essentially oinide.the obtainable speedup for this appliation, as the size of the input images was reduedto 350�517 pixels only. As an be seen in Figure 4(a), lazy parallelization results insigni�ant performane gains for any applied number of proessors. In ontrast, defaultalgorithm expansion behaves badly, and even results in a performane drop at all times.Figure 4(b) shows that the maximum number of nodes that an be used e�etively forsuh a small-sized input image is about 32. Even though lazy parallelization has resulted inthe removal of all redundant ommuniation, the ost of the ommuniation steps appliedin the reursive �lter operations is signi�ant in ase the number of proessors beomeslarge. Still, the di�erenes in the exeution times for the two parallelization strategies areenormous, and learly show the importane of redundant ommuniation removal.
CPUs

’79x119’’39x59’ ’39x59’ ’79x119’

167.999
171.133
164.093

179.605

161.686
159.686

272.451

50.003
47.397
45.871

(2 CPUs

173.023
183.948

(s) (s) (s) (s)

Lazy Parallelization

per node)

Default Alg. Expansion

46.3584.536
3.627
3.578
5.933

12.066
28.040

128
96
64
48
32
16
8
4
2

5.008

43.969
43.163
43.330
48.145
74.211

33.589
26.295
17.839
16.375
13.267
13.122
21.898
45.055

104.443

9.207
7.769 (a) 0

20

40

60

80

100

120

0 20 40 60 80 100 120

S
pe

ed
up

Nr. of CPUs

linear(x)
79x119 (lazy parallelization)

39x59 (lazy parallelization)
79x119 (default alg. expansion)

39x59 (default alg. expansion)

(b)Fig. 5. (a) Performane and (b) speedup as in Figure 4. Results obtained using 2 CPUs per dual node.Note: speedup lines for either approah essentially oinide. FINAL

24
CPUs

’79x119’’39x59’’39x59’ ’79x119’

5278.840
5308.092
5452.276
5593.406
6412.121
6941.262
4589.818

1489.291
1454.710
1453.866

(1 CPU

5245.239
5340.271

Default Alg. Expansion

per node) (s) (s) (s) (s)

Lazy Parallelization

1

68.652
109.284
216.679
497.145
779.486

1263.277

64
48
32
24
16
8
4
2

1478.558
53.967

1505.077
1551.239
1749.873
1985.855
1263.277

100.792
134.180
197.962
253.647
393.763
781.175

1789.319
2821.391
4589.818

27.926
37.048 (a) 0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
pe

ed
up

Nr. of CPUs

linear(x)
79x119 (lazy parallelization)

39x59 (lazy parallelization)
79x119 (default alg. expansion)

39x59 (default alg. expansion)

(b)Fig. 6. (a) Performane and (b) speedup for omputing retangular size distributions for doument imageof size 2325�3075 (2-byte) pixels. Maximum size of alulated �lters either 39�59 or 79�119. Resultsobtained using 1 CPU per dual node. Note: speedup lines for either approah essentially oinide.Figure 5 shows similar results in ase both CPUs on eah node are used in the exeution.As eah dual node an ommuniate through one port only, ommuniation overhead hasinreased in omparison to the results presented in Figure 4. As a result, the maximumnumber of proessors that an be used e�etively is now redued to only 16.Figure 6 shows that, for a muh more realisti input image of size 2325�3075 pixels,lazy parallelization still provides very good speedup harateristis: 45.5 on 64 proes-sors | an eÆieny of 71.2%. As before, default algorithm expansion does not deliverany performane gains at all. Figure 7 shows similar results in ase of using both CPUson eah node. Given these results, we onlude that lazy parallelization also generateseÆient parallel ode for the presented retangular size distribution extration algorithm.
CPUs

’79x119’’39x59’ ’39x59’ ’79x119’

5227.423
5301.129
5357.002

7735.314

5691.093
6056.997

9009.303

1411.593
1453.676
1449.308

(2 CPUs

5196.682
5160.945

(s) (s) (s) (s)

Lazy Parallelization

per node)

Default Alg. Expansion

1470.20648.265
71.430

170.621
275.947
620.755

1038.741

128
96
64
48
32
16
8
4
2

35.155

1477.051
1574.845
1668.469
2110.848
2480.137

78.356
89.133

126.047
173.008
258.796
613.643
986.406

2278.433
3753.409

21.655
25.145 (a) 0

20

40

60

80

100

120

0 20 40 60 80 100 120

S
pe

ed
up

Nr. of CPUs

linear(x)
79x119 (lazy parallelization)

39x59 (lazy parallelization)
79x119 (default alg. expansion)

39x59 (default alg. expansion)

(b)Fig. 7. (a) Performane and (b) speedup as in Figure 6. Results obtained using 2 CPUs per dual node.Note: speedup lines for either approah essentially oinide. FINAL

25C. Performane Comparison with Related ToolsIn [27℄ we have made a performane omparison between our software arhiteture andseveral related tools desribed in the literature. The omparison is based on a well-knownstereo vision appliation whih | in its parallel behavior | is omparable to the linedetetion appliation of Setion V-A. The following briey presents the main results.First, a omparison is made with results obtained for the stereo vision appliation writ-ten in a speialized parallel programming language (SPAR [24℄), whih was exeuted onthe same parallel mahine as used in the above evaluation. Also, the odes generated bythe SPAR front-end and that of our own arhiteture were ompiled in an idential man-ner. Measurements showed our arhiteture to provide superior sequential performane ofabout a fator 5, and better speedup | learly indiating that the overhead from our lazyparallelization approah is muh smaller than that of the SPAR run time system.Seond, a omparison is made with results obtained for an implementation in the Adaptparallel image proessing language [34℄. A true omparison with this work turned out todiÆult, however, as the results were obtained on a signi�antly di�erent mahine (i.e., aolletion of iWarp proessors, with a better potential for obtaining high speedup than ourDAS luster). Even so, our software arhiteture showed superior performane (of abouta fator 2) with omparable speedup harateristis over a large range of proessors.Most interesting, however, is the omparison with Easy-PIPE [20℄, a library-based soft-ware environment for parallel image proessing similar to ours. The most distintive fea-ture of this arhiteture is that it inorporates a mehanism for ombining data and taskparallelism. Also, Easy-PIPE does not shield all parallelism from the appliation pro-grammer. As a onsequene from these di�erenes, Easy-PIPE has the potential of out-performing our arhiteture, whih is fully user transparent, and stritly data parallel.However, performane and speedup harateristis for the stereo vision appliation ob-tained on the very same DAS luster show that our implementations far better exploit theavailable parallelism than Easy-PIPE . Part of the di�erene is aounted for by the fatthat Easy-PIPE does not inorporate an expliit inter-operation optimization mehanismfor removal of redundant ommuniation. In addition, the run time parallelization over-head of Easy-PIPE turned out to be muh higher than that of our software arhiteture.FINAL

26VI. Related WorkFor obtaining eÆient library-based parallel image proessing appliations, the impor-tane of inter-operation optimization has been aknowledged before. Morrow et al. [19℄desribe an environment for data parallel image proessing similar to ours. One of theimportant features of this environment is its self-optimizing lass library , whih is ex-tended automatially with optimized parallel operations. During program exeution, asyntax graph is onstruted for eah statement in the program, and evaluated only whenan assignment operator is met. At �rst exeution of a program, eah syntax graph istraversed, and an instrution stream is generated and exeuted. In addition, any syntaxgraph for ombinations of primitive instrutions is written out for later onsideration byan o�-line optimizer. On subsequent runs of the program a hek is made to deide if anoptimized routine is available for a given sequene of library alls. In omparison with lazyparallelization, this optimization approah has several drawbaks. First, the optimizationproess is performed at ompile-time only, and has inherent problems with data-dependentonditionals and loop onstruts. Next, optimized performane is obtained only for runsfollowing the initial exeution of a program. Finally, the approah may guarantee optimalperformane of sequenes of library routines, but not neessarily of omplete programs. Itshould be noted that the approah of Lee et al. [15℄ is quite similar to that of Morrow et al.;as a onsequene it su�ers from the very same problems as well.A related approah to obtaining eÆient ode for library-based sienti� appliations isthe onept of Telesoping Languages introdued by Kennedy et al. [12℄. In this approah,high performane for full appliations is ahieved by exhaustively analyzing and preom-piling a given library | whih is annotated with domain-spei� optimizations that shouldnot be disovered unaided | to produe a proessor that reognizes and optimizes libraryoperations as primitives in a domain-spei� language. The goal of preompilation is tospeialize di�erent versions of eah library routine for sets of onditions that hold whenthe routine is invoked. The entire set of speialized routines is olleted in a database thatpermits eÆient ode seletion and inlining when full appliations are ompiled. Althoughmany other forms of optimization are inorporated (a.o.: self-tuning for portability, whihis omparable to our ASTG-approah referred to in Setion IV-A), of most relevane to thisFINAL

27paper is the fat that the Telesoping Languages approah also onsiders ombinations oflibrary operations on data strutures for multiple distribution types. In omparison to lazyparallelization, however, the presented approah has several disadvantages. First, as inthe approah of Morrow et al. desribed above, optimization is performed at ompile-timeonly, resulting in diÆulties with data-dependent onditionals and loops. Moreover, therequired preompilation an be extremely time-onsuming, and results in a large databaseof operations from whih only a few routines will generally be invoked at run time. Also,to be able to deal with di�erent shapes and sizes of data strutures (whih generally re-main unknown until run time), the database of alternative implementations is extendedeven further. Although it has not been emphasized so muh before, lazy parallelizationan easily deal with this problem by remaining exible in the number of nodes to be used,and by allowing for run time seletion of a single state transition from a set of multiplealternatives, depending on a struture's size and shape. As indiated in [25℄, this solutionhas been integrated leanly and elegantly, and without measurable run time overhead.To our knowledge, usage of fsm spei�ations is new in the �eld of library-based par-allelization tools. Moreover, the appliation of an fsm de�nition seems not to have beenonsidered at all in the �eld of parallel image proessing. In related researh areas ofparallel omputation, however, fsm de�nitions have been applied before. For example,Chatterjee et al. [4℄ apply a �nite state mahine for the generation of optimal ommu-niation sets in distributed-memory implementations of data-parallel languages suh asHPF. As in our ase, results indiate that the fsm approah requires very little run timeoverhead. For ad-ho optimization of spei� algorithms and appliations fsm de�nitionshave been applied suessfully as well [5℄, [18℄.Interestingly, our approah to �nding optimal performane of operations as well asomplete appliations is related to several projets in other domains. The SPIRALprojet [23℄, [30℄, for example, is aimed at the design of a system to generate eÆientlibraries for digital signal proessing algorithms. SPIRAL generates eÆient implementa-tions of algorithms expressed in a domain-spei� language, alled SPL, by a systematisearh through the spae of possible implementations. Other e�orts in automatially gen-erating eÆient implementations of programs inlude FFTW [7℄ for adaptively generatingFINAL

28time-optimal FFT algorithms, and the ATLAS projet [35℄ for deriving eÆient imple-mentations of basi linear algebra routines.Finally, our work shares ommon goals with that of Baumgartner et. al. [3℄, in thesearh of an optimal data partitioning strategy with minimal ommuniation overhead forappliations in the �eld of quantum hemistry and physis. As in our extended approahnot disussed here, an operator tree is generated, in whih multiple data partitioning andommuniation strategies are inorporated. This approah is also entirely stati, however,and inludes no possibility for partial optimization performed at run time.VII. ConlusionsIn this paper we have presented a �nite state mahine based approah for ommuniationminimization of data parallel regular domain problems. The approah, referred to aslazy parallelization, onsiders a sequential program, whih is parallelized automatially byinserting ommuniation operations and loal memory management operations wheneverneessary. The approah always generates a legal, orret, and eÆient parallel versionof any sequential program implemented on the basis of so-alled parallelizable patterns,where eah suh pattern represents a generi desription of a lass of sequential algorithmswith similar behavior in terms of data aesses to array-like strutures.The main advantage of the optimization approah is that it an be applied on the y atrun time. As all required data aesses are de�ned for eah operation, deisions regardinginter-proess ommuniation an be deferred to the atual moment of intended exeution.As suh, lazy parallelization is very easy to implement, and performs without measurablerun-time overhead. In omparison with other methods desribed in the literature, lazyparallelization requires no prior knowledge regarding the behavior of loops and branhes,and run-time adaptation to data struture shapes and sizes is easily integrated [25℄.In onlusion, lazy parallelization on the basis of a �nite state mahine spei�ationhas proven to onstitute a surprisingly simple, yet e�etive method for global optimiza-tion of data parallel regular domain problems. Essentially, the simpliity stems from theknowledge ontained in the de�nition of parallelizable patterns, and from the high levelabstrations inorporated in the �nite state mahine de�nition. Consequently, we feelthat the appliability of the approah extends beyond the domain of library-based lowFINAL

29level image proessing appliations. This is partiulary true for the domains of signal pro-essing and linear algebra appliations, whih inlude similar patterns of ommuniationand alulation. Referenes[1℄ A.D. Bagdanov and M. Worring. Multi-sale Doument Desription using Retangular Granulometries. InDoument Analysis Systems V, LNCS 2423, pages 445{456, August 2002.[2℄ H.E. Bal et al. The Distributed ASCI Superomputer Projet. Operating Systems Review, 34(4):76{96,Otober 2000.[3℄ G. Baumgartner et al. A High-Level Approah to Synthesis of High-Performane Codes for Quantum Chem-istry. In Proeedings of the 2002 ACM/IEEE Conferene on Superomputing, pages 1{10, Baltimore, Mary-land, USA, November 2002.[4℄ S. Chatterjee, J. Gilbert, F. Long, R. Shreiber, and S. Teng. Generating Loal Addresses and CommuniationSets for Data Parallel Programs. Journal of Parallel and Distributed Computing, 26(1):72{84, April 1995.[5℄ J.M. Constantin, M.W. Berry, and B.T. Vander Zanden. Parallelization of the Hoshen-Kopelman AlgorithmUsing a Finite State Mahine. International Journal of Superomputer Appliations and High PerformaneComputing, 11(1):31{45, Spring 1997.[6℄ A. Darte, D. Chavarr��a-Miranda, R. Fowler, and J. Mellor-Crummey. Generalized Multipartitioning for Multi-dimensional Arrays. In Proeedings of the 16th International Parallel & Distributed Proessing Symposium,Fort Lauderdale, Florida, USA, April 2002.[7℄ M. Frigo and S.G. Johnson. FFTW: An Adaptive Software Arhiteture for the FFT. In Pro. InternationalConferene on Aoustis, Speeh, and Signal Proessing, pages 1381{1384, Seattle, USA, May 1998.[8℄ J.M. Geusebroek, A.W.M. Smeulders, and H. Geerts. A Minimum Cost Approah for Segmenting Networksof Lines. Int. Journal of Computer Vision, 43(2):99{111, July 2001.[9℄ J.E. Hoproft, R. Motwani, and J.D. Ullman. Introdution to Automata Theory, Languages, and Computation(2nd Edition). Addison Wesley, 2000.[10℄ L.H. Jamieson, E.J. Delp, C.-C. Wang, J. Li, and F.J. Weil. A Software Environment for Parallel ComputerVision. IEEE Computer, 25(2):73{75, February 1992.[11℄ Z. Juhasz and D. Crookes. A PVM Implementation of a Portable Parallel Image Proessing Library. InProeedings of EuroPVM'96, pages 188{196, Munih, Germany, Otober 1996.[12℄ K. Kennedy et al. Telesoping Languages: A Strategy for Automati Generation of Sienti� Problem-SolvingSystems from Annotated Libraries. Journal of Parallel and Distributed Computing, 61:1803{1826, 2001.[13℄ D. Koelma, P.P. Jonker, and H.J. Sips. A Software Arhiteture for Appliation Driven High PerformaneImage Proessing. In Parallel and Distributed Methods for Image Proessing, Proeedings of SPIE, volume3166, pages 340{351, San Diego, California, USA, July 1997.[14℄ C. Lee and M. Hamdi. Parallel Image Proessing Appliations on a Network of Workstations. ParallelComputing, 21(1):137{160, January 1995.[15℄ C. Lee, Y.-F. Wang, and T. Yang. Global Optimization for Mapping Parallel Image Proessing Tasks onDistributed Memory Mahines. Journal of Parallel and Distributed Computing, 45(1):29{45, August 1997.[16℄ P. Maurer. Logi Simulation Using Networks of State Mahines. In Proeedings of Design, Automation andTest in Europe Conferene 2000 (DATE 2000), pages 674{678, Paris, Frane, Marh 2000. FINAL

30[17℄ Message Passing Interfae Forum. MPI: A Message-Passing Interfae Standard (version 1.1). Tehnial report,University of Tennessee, Knoxville, Tennessee, June 1995. Available at http://www.mpi-forum.org.[18℄ D. Miliev and Z. Jovanovi. A Finite State Mahine Based Formal Model of Software Pipelined Loops withConditions. International Journal of Computer Researh, 10(1):11{20, 2001.[19℄ P.J. Morrow, D. Crookes, J. Brown, G. MAleese, D. Roantree, and I. Spene. EÆient Implementationof a Portable Parallel Programming Model for Image Proessing. Conurreny: Pratie and Experiene,11:671{685, September 1999.[20℄ C. Niolesu and P. Jonker. EASY-PIPE - An Easy to Use Parallel Image Proessing Environment Based onAlgorithmi Skeletons. In Proeedings of the 15th International Parallel & Distributed Proessing Symposium,San Franiso, California, USA, April 2001.[21℄ C. Niolesu and P. Jonker. A Data and Task Parallel Image Proessing Environment. Parallel Computing,28(7{8):945{965, August 2002.[22℄ M. Prieto, I.M. Llorente, and F. Tirado. Data Loality Exploitation in the Deomposition of Regular DomainProblems. IEEE Transations on Parallel and Distributed Systems, 11(11):1141{1149, November 2000.[23℄ M. P�ushel, B. Singer, M. Veloso, and J. Moura. Fast Automati Generation of DSP Algorithms. In Proeed-ings of the International Conferene on Computational Siene, LNCS 2073, pages 97{106, 2001.[24℄ C. van Reeuwijk, A.J.C. van Gemund, and H.J. Sips. Spar: A Programming Language for Semi-AutomatiCompilation of Parallel Programs. Conurreny: Pratie and Experiene, 9(11):1193{1205, November 1997.[25℄ F.J. Seinstra. User Transparent Parallel Image Proessing. PhD thesis, Intelligent Sensory InformationSystems, Faulty of Siene, University of Amsterdam, The Netherlands, May 2003.[26℄ F.J. Seinstra and D. Koelma. P-3PC: A Point-to-Point Communiation Model for Automati and Opti-mal Deomposition of Regular Domain Problems. IEEE Transations on Parallel and Distributed Systems,13(7):758{768, July 2002.[27℄ F.J. Seinstra and D. Koelma. User Transpareny: A Fully Sequential Programming Model for EÆient DataParallel Image Proessing. Conurreny and Computation: Prat. Exper., 16(6):611{644, May 2004.[28℄ F.J. Seinstra, D. Koelma, and A.D. Bagdanov. On the Corretness of Lazy Parallelization. Tehnial ReportSeries, Vol. 2004-01, Intelligent Sensory Information Systems, Faulty of Siene, University of Amsterdam,The Netherlands, Marh 2004.[29℄ F.J. Seinstra, D. Koelma, and J.M. Geusebroek. A Software Arhiteture for User Transparent Parallel ImageProessing. Parallel Computing, 28(7{8):967{993, August 2002.[30℄ B. Singer and M. Veloso. Learning to Construt Fast Signal Proessing Implementations. Journal of MahineLearning Researh, 3:887{919, Deember 2002.[31℄ C. Soviany. Embedding Data and Task Parallelism in Image Proessing Appliations. PhD thesis, DelftUniversity of Tehnology, The Netherlands, May 2003.[32℄ J.M. Squyres, A. Lumsdaine, and R.L. Stevenson. A Toolkit for Parallel Image Proessing. In Parallel andDistributed Methods for Image Proessing II, Pro. SPIE, volume 3452, San Diego, USA, July 1998.[33℄ R. Taniguhi et al. Software Platform for Parallel Image Proessing and Computer Vision. In Parallel andDistributed Methods for Image Proessing, Pro. SPIE, volume 3166, pages 2{10, San Diego, USA, July 1997.[34℄ J.A. Webb. Implementation and Performane of Fast Parallel Multi-Baseline Stereo Vision. In Proeedingsof the 1993 DARPA Image Understanding Workshop, pages 1005{1010, April 1993.[35℄ R.C. Whaley, A. Petitet, and J.J. Dongarra. Automated Empirial Optimization of Software and the ATLASProjet. Parallel Computing, 27(1{2):3{25, January 2001. FINAL

Frank Seinstra reeived the MS degree in Computer Siene from the Vrije Universiteit in Amsterdam in 1996,and the PhD degree in Computer Siene from the University of Amsterdam in 2003. The subjet of his PhDthesis is "User Transparent Parallel Image Proessing". His researh interests inlude parallel and distributedprogramming, automati parallelization, performane modeling, and sheduling, espeially in the appliation areaof image and video proessing.
Dennis Koelma reeived the MS and PhD degrees in Computer Siene from the University of Amsterdam in1989 and 1996, respetively. The subjet of his PhD thesis is "A Software Environment for Image Interpretation".Currently, he is working on Horus: a software arhiteture for researh in aessing the ontent of digital images.His researh interests inlude image and video proessing, software arhitetures, parallel programming, databases,graphial user interfaes, and image information systems.
Andrew Bagdanov reeived the BS and MS degrees in Mathematis and Computer Siene from the Universityof Nevada, Las Vegas, where he was a member of the Information Siene Researh Institute. He is urrently�nishing his PhD thesis in Computer Siene (title: "Style Charaterization of Mahine Printed Texts") at theUniversity of Amsterdam. His researh interests inlude doument understanding, pattern reognition, imageproessing, and funtional programming languages.

