
A GA-based approach for test generation
for automata-based programs

Spring/Summer Young Researchers' Colloquium on
Software Engineering 2010, Nizhny Novgorod

Andrey Zakonov

Research supervisors: Oleg Stepanov, PhD

Anatoly Shalyto, PhD

St. Petersburg State University of Information
Technologies, Mechanics and Optics

Fac. of Information Technologies and Programming

Agenda

 Automata-based approach and problem of the
quality assurance

 Developing and testing automata-program:
1.  Creating model and formalizing requirements
2.  Defining test scenarios
3.  Creating executable tests
4.  Running tests

 Summary

2

event

Automata-based approach

 Automata-based program consists of:
 model, a formal automata (FSM)
  control objects

 Model defines behavior of the system

 Control objects interact with environment (input/output)

3

State 1 State 2
Inputs

Controlled
Object

Outputs
Controlled

Object

Problem of quality assurance

  The problem is to check program against its
specification requirements

  There are three parts of automata-program that could
contain errors:
 model
  controlled objects
  interaction of the automaton with its controlled objects

 There are ways to check automata-model (Model
Checking), but they don’t work for controlled objects and
system in whole

4

Proposed solution

 To use automata-tests to check the automata-based
system in whole (model + controlled objects)

 Automata-test simulates inputs to the system and
checks behavior of the system for this inputs

 Drawbacks of testing approach:
 can not guarantee the correctness of a program
 normally a labor intensive and very expensive task

5

Significance of the problem

 No approach or tools to test automata-programs

 Extended Finite State Machine (EFSM) related
approaches don’t support an interaction with controlled
objects

 Traditional testing approaches can not be applied to
automata-program as is:
 all benefits of automata approach would be lost
 metrics are not meaningful

 Testing is labor-intensive and requires automation tools

6

Steps to test an automata-program

1. Formalize natural language specification

2. Describe test cases

3. Create an executable test

4. Run tests and check implementation against its
specification

7

Agenda

 Automata-based approach and problem of the
quality assurance

 Developing and testing automata-program:
1.  Creating model and formalizing requirements
2.  Defining test scenarios
3.  Creating executable tests
4.  Running tests

 Summary

8

I. Formalize specification

  Specification usually is described in natural language

  Example of ATM-like system:
  system withdraws from an account
  initially sum on account is more then 0 and less then

100000
  user can withdraw infinitely while sum is positive
  user enters amount to withdraw, more then 1 000 and less

then 15 000
  no more then 50 000 can be withdrawn during one day of

operation

  Good only for manual testing

9

I. Groups of requirements

 Model’s requirements:
  system withdraws from an account
  user can withdraw infinitely while sum is positive
  no more then 50 000 can be withdrawn during one

day of operation

 Control objects’ requirements:
  initially sum on account is more then 0 and less then

100000
  user enters amount to withdraw, more then 1 000

and less then 15 000

10

I. Developing a model - FSM

 We define events:
  e0 – initialized
  e1 – user input
  e2 – transaction complete
  e3 – error

 A lot of logic is hidden in control objects’
implementation

11

I. Covered requirements

 Model’s requirements:
  system withdraws from an account
  user can withdraw infinitely while sum is positive
  no more then 50 000 can be withdrawn during one

day of operation

 Control objects’ requirements:
  initially sum on account is more then 0 and less then

100000
  user enters amount to withdraw, more then 1 000

and less then 15 000

12

I. Developing a model - EFSM
 Extended Finite State Machine supports

variables and suits for more complex models

13

I. Covered requirements

 Model’s requirements:
  system withdraws from an account
  user can withdraw infinitely while sum is positive
  no more then 50 000 can be withdrawn during one

day of operation

 Control objects’ requirements:
  initially sum on account is more then 0 and less then

100000
  user enters amount to withdraw, more then 1 000

and less then 15 000

14

I. More ways to describe requirements

 Controlled objects contain some logic, as using
EFSM is not always good:
  too complex model
  model’s requirements and control objects’

requirements would be mixed up

 Need to formalize requirements to check the
model and controlled objects implementation

 Design by contract approach
  preconditions, postconditions, invariants

15

I. Requirements as contracts

 Control object requirements can be added as pre-
and postconditions of the transitions

 Model’s requirements can be added as invariants to
the states

  Java Modeling Language (JML) to write
requirements

  Benefits of such approach:
  model shows specification requirements
  developer-friendly syntax

16

I. Developing a model – EFSM+JML

  Account:
  @ensures ext_sum >= 0  

&& ext_sum <= 100000"
  User input:

  @ensures ext_x >= 1000  
&& ext_x <= 15000"

  Model
  @invariant today <= 50000" 17

I. Covered requirements

 Model’s requirements:
  system withdraws from an account
  user can withdraw infinitely while sum is positive
  no more then 50 000 can be withdrawn during one

day of operation

 Control objects’ requirements:
  initially sum on account is more then 0 and less then

100000
  user enters amount to withdraw, more then 1 000

and less then 15 000

C
on

tra
ct

s
E

FS
M

18

Agenda

 Automata-based approach and problem of the
quality assurance

 Developing and testing automata-program:
1.  Creating model and formalizing requirements
2.  Defining test scenarios
3.  Creating executable tests
4.  Running tests

 Summary

19

II. Defining test cases

 Convenient to describe test scenarios in natural
language

  Let’s define formally test case as a sequence of
transitions in the automaton
  easy conversion to and from natural language
  can be generated automatically

  Test scenario looks like:
  t1, t2, t4, t5, t2, t4, t5, t2, t4

20

Agenda

 Automata-based approach and problem of the
quality assurance

 Developing and testing automata-program:
1.  Creating model and formalizing requirements
2.  Defining test scenarios
3.  Creating executable tests
4.  Running tests

 Summary

21

III. Test scenario execution

  To execute the given path it’s necessary:
  provide events in the correct order
  provide values for the external variables

  External variable values come from environment:
  no access to environment on testing stage
  automation is wanted

  It’s a problem to guess these values:
  fulfill all the transition guards
  fulfill control objects’ contracts

22

III. Guessing variable values

 Genetic algorithm can be applied
  Fitness function estimates how good is given set

of values for the desired path:
  successful steps
  branch distance for failed steps
  location of failed steps

  Values with zero fitness will make the test
 GA is applied to solve optimization problem

23

III. GA details

  Chromosome is a vector of variable values
  <x1, x2, …, xn>"

  One-point crossover operator
<x1, x2, x3, x4> <x1, x2, x3, y4>"

" <y1, y2, y3, y4> <y1, y2, y3, x4>

  Mutation – replace random variable with random
number

  Fitness function
  branch distance:
  weighted sum, path

24

III. Guessing values example (1)

  Example of test cases:
  Three times withdrawal operation is successful,

forth time there is not enough on the account
  Twenty times withdrawal operation is

successful
 Different variable values are required for these

tests

25

III. Guessing values example (2)

  First test scenario transition path:
  t1, t2, t3, t2, t3, t2, t3, t2, t4

  Five external variables are used:
  ext_sum – initial value on the account;
  ext_x1 – first withdrawal;
  ext_x2 – second withdrawal;
  ext_x3 – third withdrawal;
  ext_x4 – failed to withdraw.

  Proof-of-concept tool accepts transition path and
returns set of variables

26

III. Generating executable tests

  Automatically found values:
  ext_sum = 15673;
  ext_x1 = 4357; ext_x2 = 8023;
  ext_x3 = 2162; ext_x4 = 9183;

  Executable test on Java can be created and run later
  Organizing big test suits are good for regression and

stress testing

27

Agenda

 Automata-based approach and problem of the
quality assurance

 Developing and testing automata-program:
1.  Creating model and formalizing requirements
2.  Defining test scenarios
3.  Creating executable tests
4.  Running tests

 Summary

28

IV. Running tests

  Behavior of the system need to be checked during
the evaluation of the given path

  If JML contracts are defined for states on this path
they would be checked at the runtime:
  JML Runtime Assertion Checker can be used

  In the example @invariant today <= 50000 will
be checked after each transaction

  In case of failing the condition an exception will be
raised

29

IV. Running tests

  Implicit requirements are always checked:
  deadlocks
  exception
  execution time
  etc.

  For real control objects contracts will be useful to
reveal inadequate implementation

30

Values that fail requirements

  Fitness function may take into the account model’s
specification

  It will help to find values that fail requirements
  Examine steps of the given path sequentially:

  try to fail at first step
  fulfill first step and fail second
  …
  fulfill first n-1 steps and fail nth step

31

Agenda

 Automata-based approach and problem of the
quality assurance

 Developing and testing automata-program:
1.  Creating model and formalizing requirements
2.  Defining test scenarios
3.  Creating executable tests
4.  Running tests

 Summary

32

Approach summary

1.  Specification is formalized using EFSMs and JML
contracts

2.  Test scenarios are described as a transition path
3.  GA-based tool is used to find variable values for

given path and executable tests are generated
4.  Tests are run automatically and JML requirements

fulfillment is checked at the runtime

33

Thank you

 Questions & Answers

  Andrew Zakonov, SPb SU ITMO
 andrew.zakonov@gmail.com

34

