Test-Based Extended Finite-State Machines Induction with Evolutionary Algorithms and Ant Colony Optimization

Daniil Chivilikhin, Vladimir Ulyantsev, Fedor Tsarev

St. Petersburg National Research University of Information Technologies, Mechanics and Optics

GECCO-2012
Graduate Students Workshop
July 7, 2012
Overview (1)

• Part of a bigger project on automated software engineering and automata-based programming
• We focus on model driven-development
Overview (2)

Set of tests

EFSM

Specification

Model

Code
Automata-based Programming

- Entities with complex behavior should be designed as automated controlled objects
- Control states and computational states
- Events
- Output actions
Definitions

- **EFSM:**
 - input events
 - input Boolean variables
 - output actions

- **Test is a pair of two sequences**
 - Input sequence of pairs $I = \langle e, f \rangle$
 - e – input event
 - f – guard condition – Boolean formula on input variables
 - A – reference sequence of output actions

- **EFSM on the picture complies with**
 - $\langle A, \neg x \rangle, \langle A, x \rangle$
 - z_2, z_1

- **EFSM on the picture does not comply with**
 - $\langle A, x \rangle$
 - z_2
Example – Alarm Clock (1)

• Four events
 – H – button “H” pressed
 – M – button “M” pressed
 – A – button “A” pressed
 – T – occurs on each time tick

• Two input variables
• Seven output actions
Example – Alarm Clock (2)

Tests

• Test 1:
 – T
 – z5

• Test 2:
 – H
 – z1

• Test 3:
 – A, H
 – z3

• …
Example – Stack (1)

Tests

• Test 1:
 – push, pop
 – ok, return element

• Test 2:
 – push, pop, pop
 – ok, return element, error

• Test 3:
 – push, push, pop, pop
 – ok, ok, return element, return element

• …
Problems Considered

• Automated model design

![Diagram of specification to model]

• Model mining

![Diagram of model to code]
Reduction to Automated Model Design
Problem Definition

• Input data:
 – Set of tests
 – Number of states in EFSM (C)
• Need to find an EFSM with C states complying with all tests
Precomputations

• For each pair of guard conditions from tests compute:
 – If they are same as Boolean functions
 – If they have common satisfying assignment

• Time complexity:
 – $O(n^22^m)$ where n is total size of tests’ input sequences, m is maximal number of input variables occurring in guard condition (in practice m is not greater than 5)
Evolutionary Algorithms

- Random mutation hill climber and evolutionary strategy can be easily used
- Problem with genetic algorithms – no meaningful crossover (“it is hard to automatically identify functionally coherent modules in automata”)
- This problem can be solved with test-based crossover
Individual Representation

\{2, 0, {{A, x, 1, 0}, {T, !x, 1, 1}}, {{T, true, 1, 1}, {M, true, 0, 2}}\}

All EFSMs considered during one of evolutionary algorithm have the same number of states
Transition Labeling Algorithm

- Applied to each individual before calculation of fitness function
Mutation

• Change of transition
 – Final state
 – Event
 – Guard condition
 – Number of output actions

• Addition of deletion of a transitions
Fitness Function

\[
FF_1 = \frac{1}{|T|} \sum_{j=1}^{T} \left(1 - \frac{ED(O_j, A_j)}{\max(len(O_j), len(A_j))} \right)
\]

\[
FF_2 = \begin{cases}
10 \cdot FF_1 + \frac{1}{M} \cdot (M - \text{cnt}), & FF_1 < 1 \\
20 + \frac{1}{M} \cdot (M - \text{cnt}), & FF_1 = 1
\end{cases}
\]
Test-based Crossover

1. Input sequences of tests
2. EFSM
3. Output sequences
4. Output sequences are compared with reference

- Marked transitions are kept together in EFSMs
- Transitions used while processing these tests are marked
- 10% of tests for which edit distance between output and reference is minimal are selected
Example (1)

- Test set contains:
 - Test 1:
 - A \[x\], B \[y\]
 - z1, z2
 - Test 2:
 - A \![x]\], B \![y]\]
 - z2, z1
 - ...
Example (2)

• Test set contains:
 – Test 1:
 • A [x], B [y]
 • z1, z2
 – Test 2:
 • A ![x], B ![y]
 • z2, z1
 – …
Example (3)

Parents

Offsprings

Parents:
- 0
 - A[x] / z1
 - A[!x] / z1

Offsprings:
- 0
 - A[x] / z1
 - A[!x] / z2
 - A[x] / z2

- 0
 - A[!x] / z1
 - A[x] / z1
 - A[!x] / z2
 - A[x] / z2
Example (4)

- Duplicate and contradictory transitions removal
- Showing for state 0 of first offspring
Example (5)

• Both offsprings pass both tests
Ant Colony Optimization

• Graph:
 - Nodes – finite-state machines
 - Edges – mutations of finite-state machines
 - Graph is too big to be constructed explicitly

Algorithm:
1. Graph $G = \{\text{random FSM}\}$
2. While (true)
 - Launch colony on graph G
 - Update pheromone values
 - Check stop conditions:
 - if stagnation, restart
Choosing the Next Node

Transition to best successor

\[P = P_0 \]

\[P = 1 - P_0 \]

Mutation

\[f(A) = 10 \]

\[f(A_4) = 9 \]

\[f(A_3) = 0 \]

\[f(A_2) = 12 \]

\[f(A_1) = 8 \]

\[\tau = 1 \]

\[\tau = 8 \]

\[\tau = 9 \]

\[\tau = 10 \]

“Roulette” method

\[p_{Av} = \frac{\tau_{uv}}{\sum_{w \in \{A1,A2,A3,A4\}} \tau_{uw}} \]
Update Pheromone Values

• Quality of solution (ant path) – max value of f among all nodes in path

• New pheromone value on edge:

$$
\tau_{uv} = \rho \tau_{uv} + \Delta \tau_{uv}^{best}
$$

• $\rho < 1$ – evaporation rate

• $\Delta \tau_{uv}^{best}$ – max pheromone value ever added to the edge (u, v)
Choosing Start Nodes on Restart

- **Best path** – path from some node to a node with max value of f
- Start nodes are selected with “roulette” method from nodes of best path
Experiments (1)

• Six algorithms:
 – a genetic algorithm with traditional crossover (GA-1)
 – a random mutation hill climber (RMHC)
 – (1+1) evolutionary strategy (ES)
 – a genetic algorithm with test-based crossover (GA-2)
 – GA-2 hybridized with RMHC (GA-2+HC)
 – ant colony optimization (ACO)

• Input data: 38 tests for alarm clock
 – total length of input sequences 242
 – total length of reference sequences 195

• 1000 runs of each algorithm
Experiments (2)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA-1</td>
<td>855390</td>
<td>38882588</td>
<td>5805943</td>
<td>4588736</td>
</tr>
<tr>
<td>RMHC</td>
<td>1150</td>
<td>9592213</td>
<td>1423983</td>
<td>957746</td>
</tr>
<tr>
<td>ES</td>
<td>1506</td>
<td>9161811</td>
<td>3447390</td>
<td>856730</td>
</tr>
<tr>
<td>GA-2</td>
<td>32830</td>
<td>599022</td>
<td>117977</td>
<td>83787</td>
</tr>
<tr>
<td>GA-2+HC</td>
<td>26740</td>
<td>188509</td>
<td>53706</td>
<td>48106</td>
</tr>
<tr>
<td>ACO</td>
<td>2440</td>
<td>210971</td>
<td>53944</td>
<td>46293</td>
</tr>
</tbody>
</table>
Experiments (3)

Median number of fitness function evaluations

Maximal number of fitness function evaluations

ACO
GA-2+HC
GA-2
ES
RMHC
Summary

• Test-based crossover greatly improves the performance of GA
• GA on average significantly outperforms RMHC and ES
• ACO outperforms GA-2
• Difference between average performance of ACO and GA-2+HC is insignificant
Thank you!

Questions?