
Konstantin Rubinov
Politecnico di Milano, Italy

Saint-Petersburg, Russia

⦿

⦿

Anatoly Shalyto Mauro Pezzè

Lugano, Switzerland

Singapore

Abhik Roychoudhury

Milan, Italy

Current focus:
research and teaching in program analysis, automated

software testing, security, and quality assurance for mobile
applications (Android)

RESEARCH BACKGROUND

§Automated test case generation, Design for testability
(with application in software recommendations systems)

§Analysis of software binaries, symbolic execution
(application in vulnerability detection and crash
reproduction)

§Analysis and testing of Android applications (application in
automated partitioning of Android apps for enhanced
security)

Konstantin Rubinov
Politecnico di Milano

MOBILE APP TESTING
STATE OF THE ART

ARM

Android and ARM
TrustZone

Mobile apps are designed for a portable device
with limited resources;
are instances of reactive non-terminating software
with dynamic/adaptive user interfaces, and
context-aware and react to changes in
environment and physical factors;
Apps are often hybrid -- presenting both mobile
and web content

ANDROID

Konstantin Rubinov
Politecnico di Milano

Mobile app vs. Web app

== ‘pages’ are alike with ‘activities’

== DOM is alike with XML view hierarchy

Mobile app vs. Embedded software

== limited resources; sensors

!= mobile apps can interact with other apps

Mobile app vs. Desktop application

!= app manages it’s lifecycle

!= complex input gestures (swipes, multi-touch)

!= contextual input (location, acceleration, gyroscope, etc.)

IS IT DIFFERENT?

“Only about 14% of the [600 open source] apps
contain test cases and only about 9% of the
apps that have executable test cases have
coverage above 40%.”

OBSERVATIONS

[P. Kochhar, F. Thung, N. Nagappan, T.
Zimmermann, and D. Lo. ICST 2015]

TESTING INFRASTRUCTURE

VERSION 1.0

Monkey
RunnerUI Automator

Accessibility
API

Random
Monkey

pseudo-random
streams of user and

system events

Jython; Multiple device
control; install; run; send

adb events; take
screenshots

Android Instrumentation Framework

JUnit

InstrumentationTestCase

Isolated; no UI access;
Mocked context;

doesn’t really work

UI access; Flaky; Manual
Wait and Sync;

precursor of Espresso

Cross-app functional UI
testing; Flaky; Manual Wait

and Sync; Can’t access
resources from R.class -
uses text matching; Slow;

Konstantin Rubinov
Politecnico di Milano

USER INTERACTION TESTING

Android Instrumentation
Framework

JUnit

InstrumentationTestCase

VERSION 2.0

Espresso

Accessibility
API (?)

UI Automator

Run Instrumentation and
UI actions together

Android-y matchers;
synchronization between the

Instrumentation and the UI thread;
finds UI elements

Android Testing Support
Library, merges the 3 major
Google-supported Android
automation frameworks:
* basic JUnit,
* Espresso,
* and UiAutomator

TouchUtils
Animations

Sync/Wait

EXTERNAL FRAMEWORKS

VERSION 1.0

Monkey
RunnerUI Automator

Accessibility
API

Random
MonkeyAndroid Instrumentation Framework

JUnit

Robotium

Calabash

Selendroid

Appium

Acceptance tests; Android
+ iOS; translates

Cucumber into Robotium

Hybrid apps; Finds UI
components; Selenium-style with web-

driver ; Clients in different
languages; Hybrid apps;

RobolectricKonstantin Rubinov
Politecnico di Milano

• Overlapping functionality between different frameworks

• Poor and conflicting testing documentation (esp. Google)

• Game app testing is weak/missing. Game apps bypass Android Views to draw
and thus cannot be tested as normal view resources (Testdroid solution has approached
it through image recognition)

• Activity testing is slow, requires mocking, and has to run on Emulator/Device
(addressed by http://robolectric.org - mimic how Android creates Activities and drives them through their
lifecycle)

• Active improvements in 2014-2015

• Automated test execution, but little or no automated test case generation

ANDROID INFRASTRUCTURE

STATE OF THE AFFAIRS
• Android emulators are slow and unstable

• “Flaky test” issue

• Input generation (Input data like user account is impossible to generate automatically)

• Supporting a wide range of devices, platforms and versions

• GUI models are limited (“Some events may change the internal state of the app without affecting

the GUI”), yet allow to cover large parts of app

• Isolating app behavior yet testing platform specific functionality

• State-sensitivity and state explosion

CHALLENGES

[Choudhary, Gorla and Orso ASE 2015]

[P. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo. ICST 2015]

RESEARCH SAMPLES

Dynodroid: An Input Generation System for Android Apps

Aravind Machiry Rohan Tahiliani Mayur Naik
Georgia Institute of Technology, USA

{amachiry, rohan_tahil, naik}@gatech.edu

ABSTRACT
We present a system Dynodroid for generating relevant in-
puts to unmodified Android apps. Dynodroid views an app
as an event-driven program that interacts with its environ-
ment by means of a sequence of events through the Android
framework. By instrumenting the framework once and for
all, Dynodroid monitors the reaction of an app upon each
event in a lightweight manner, using it to guide the gener-
ation of the next event to the app. Dynodroid also allows
interleaving events from machines, which are better at gen-
erating a large number of simple inputs, with events from
humans, who are better at providing intelligent inputs.
We evaluated Dynodroid on 50 open-source Android apps,

and compared it with two prevalent approaches: users man-
ually exercising apps, and Monkey, a popular fuzzing tool.
Dynodroid, humans, and Monkey covered 55%, 60%, and
53%, respectively, of each app’s Java source code on average.
Monkey took 20X more events on average than Dynodroid.
Dynodroid also found 9 bugs in 7 of the 50 apps, and 6 bugs
in 5 of the top 1,000 free apps on Google Play.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Experimentation

Keywords
GUI testing, testing event-driven programs, Android

1. INTRODUCTION
Mobile apps—programs that run on advanced mobile de-

vices such as smartphones and tablets—are becoming in-
creasingly prevalent. Unlike traditional enterprise software,
mobile apps serve a wide range of users in heterogeneous and
demanding conditions. As a result, mobile app developers,
testers, marketplace auditors, and ultimately end users can
benefit greatly from what-if analyses of mobile apps.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ESEC/FSE ’13, August 18-26, 2013, Saint Petersburg, Russia

Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

What-if analyses of programs are broadly classified into
static and dynamic. Static analyses are hindered by features
commonly used by mobile apps such as code obfuscation, na-
tive libraries, and a complex SDK framework. As a result,
there is growing interest in dynamic analyses of mobile apps
(e.g., [1, 12, 13, 25]). A key challenge to applying dynamic
analysis ahead-of-time, however, is obtaining program in-
puts that adequately exercise the program’s functionality.
We set out to build a system for generating inputs to

mobile apps on Android, the dominant mobile app platform,
and identified five key criteria that we felt such a system
must satisfy in order to be useful:

• Robust: Does the system handle real-world apps?

• Black-box: Does the system forgo the need for app
sources and the ability to decompile app binaries?

• Versatile: Is the system capable of exercising impor-
tant app functionality?

• Automated: Does the system reduce manual e↵ort?

• E�cient: Does the system generate concise inputs, i.e.,
avoid generating redundant inputs?

This paper presents a system Dynodroid that satisfies
the above criteria. Dynodroid views a mobile app as an
event-driven program that interacts with its environment by
means of a sequence of events. The main principle under-
lying Dynodroid is an observe-select-execute cycle, in which
it first observes which events are relevant to the app in the
current state, then selects one of those events, and finally
executes the selected event to yield a new state in which
it repeats this process. This cycle is relatively straightfor-
ward for UI events—inputs delivered via the program’s user
interface (UI) such as a tap or a gesture on the device’s
touchscreen. In the observer stage, Dynodroid determines
the layout of widgets on the current screen and what kind
of input each widget expects. In the selector stage, Dyno-
droid uses a novel randomized algorithm to select a widget
in a manner that penalizes frequently selected widgets with-
out starving any widget indefinitely. Finally, in the executor
stage, Dynodroid exercises the selected widget.
In practice, human intelligence may be needed for exer-

cising certain app functionality, in terms of generating both
individual events (e.g., inputs to text boxes that expect valid
passwords) and sequences of events (e.g., a strategy for win-
ning a game). For this reason, Dynodroid allows a user to
observe an app reacting to events as it generates them, and
lets the user pause the system’s event generation, manually
generate arbitrary events, and resume the system’s event DYNODROID

[A. Machiry, R. Tahiliani, and
M. Naik. FSE 2013]

Vision: “synergistically
combine human and
machine for testing”

Konstantin Rubinov
Politecnico di Milano

DYNODROID

Overview

• Finds relevant system events: what app can react to at each moment in
execution

• Considers both UI (leaf/visible nodes on View Hierarchy) and System
events (broadcast and system services)

• Randomized exploration (select a widget by penalize frequently
selected ones)

• The approach is black box, it works iteratively and finds registered
listeners dynamically

• Allows intermediate manual input

•Dynodroid exclusively covers 0-26% of code;
an average of 4%

•Dynodroid + Manual input covers 4-91% of
code per app; an average of 51%

Evaluation

DYNODROID

Systematic Execution of

Android Test Suites in Adverse Conditions

Christoffer Quist

Adamsen

Aarhus University, Denmark

quist@cs.au.dk

Gianluca Mezzetti

Aarhus University, Denmark

mezzetti@cs.au.dk

Anders Møller

Aarhus University, Denmark

amoeller@cs.au.dk

ABSTRACT
Event-driven applications, such as, mobile apps, are di�cult
to test thoroughly. The application programmers often put
significant e↵ort into writing end-to-end test suites. Even
though such tests often have high coverage of the source code,
we find that they often focus on the expected behavior, not on
occurrences of unusual events. On the other hand, automated
testing tools may be capable of exploring the state space
more systematically, but this is mostly without knowledge
of the intended behavior of the individual applications. As
a consequence, many programming errors remain unnoticed
until they are encountered by the users.
We propose a new methodology for testing by leveraging

existing test suites such that each test case is systematically
exposed to adverse conditions where certain unexpected
events may interfere with the execution. In this way, we
explore the interesting execution paths and take advantage
of the assertions in the manually written test suite, while
ensuring that the injected events do not a↵ect the expected
outcome. The main challenge that we address is how to
accomplish this systematically and e�ciently.
We have evaluated the approach by implementing a tool,

Thor, working on Android. The results on four real-world
apps with existing test suites demonstrate that apps are
often fragile with respect to certain unexpected events and
that our methodology e↵ectively increases the testing quality:
Of 507 individual tests, 429 fail when exposed to adverse
conditions, which reveals 66 distinct problems that are not
detected by ordinary execution of the tests.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
UI testing; automated testing; mobile apps; Android

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
As of May 2015 more than 1.5 million Android apps have

been published in the Google Play Store.1 Execution of
such apps is driven by events, such as, user events caused
by physical interaction with the device. One of the primary
techniques developers apply for detecting programming errors
is to create end-to-end test suites (also called UI tests) that
explore the UI programmatically, mimicking user behavior
while checking for problems. Testing frameworks, such as,
Robotium,2 Calabash,3 and Espresso4 are highly popular
among Android app developers. As a significant amount of
the software development time is often devoted to testing
[19], it is not unusual that test suites have high coverage of
the source code and incorporate a deep knowledge of the
app UI and logic. Furthermore, the result of each single
test can be of critical importance to sanction the success
of the entire development process, as tests may be used for
verifying scenarios in the business requirements.

Nevertheless, due to the event-driven model, only a tiny
fraction of the possible inputs is typically explored by such
test suites. As the test cases are written manually, they tend
to concentrate on the expected event sequences, not on the
unusual ones that may occur in real use environments. In
other words, although the purpose of writing test suites is to
detect errors, the tests are traditionally run in “good weather”
conditions where no surprises occur.

Our goal is to improve testing of apps also under adverse
conditions. Such conditions may arise from events that
can occur at any time, comprising notifications from the
operating system due to sensor status changes (e.g. GPS
location change), operating system interference (e.g. low
memory), or interference by another app that concurrently
accesses the same resource (e.g. audio). It is well known that
Android apps can be di�cult to program when such events
may occur at any time and change the app state [13, 14, 22,
29]. A typical example of bad behavior is that the value of a
form field is lost when the screen is rotated.
As a supplement or alternative to manually written test

suites, many automated testing techniques have been created
aiming to find bugs with little or no help from the devel-
oper [3, 4, 6, 7, 12, 13, 14, 22, 23, 25, 27, 29]. The primary
advantage of such techniques is that they can, in principle, ex-
plore the state space more extensively, including the unusual
event sequences. However, these techniques generally cannot

1http://www.appbrain.com/stats/number-of-android-apps
2http://code.google.com/p/robotium
3http://calaba.sh/
4http://code.google.com/p/android-test-kit

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive version was published in the following publication:

ISSTA’15, July 12–17, 2015, Baltimore, MD, USA

c� 2015 ACM. 978-1-4503-3620-8/15/07...

http://dx.doi.org/10.1145/2771783.2771786

�
�
�
��
��

��
� �
��	
���� �

�
���

�
��
	
�����������

��

��
��
� �

���������

�
��
�
��
�
��

������ �

�
�
�

83

THOR
http://brics.dk/thor

[C. Q. Adamsen, G. Mezzetti, and
A. Møller. ISSTA 2015]

Extend existing test
cases with neutral
system events

• Test adverse conditions, yet injecting expected events

• Injecting neutral system events (An event sequence n is neutral if
injecting n during a test t is not expected to affect the outcome
of t)

• Examples: Pause → Resume; Pause → Stop → Restart; Audio
focus loss → Audio focus gain;

• Orig. test cases are redundant. Optimization: omit injecting n in
abstract state s after event e, if (n, s, e) already appears in the
cache (uses View Hierarchy)

Approach

THOR

Konstantin Rubinov
Politecnico di Milano

• Systematic system event fuzzing based on existing test cases
with the focus on activity lifecycle changes

• Finds suitable locations for injecting events in TCs

• Localizes faults (a variant of delta debugging for failing TCs)

• Minimizes rerunning (ignores injections that are redundant)

• Provides fault classification and criticality (Element disappears; Not

persisted; User setting lost; Crash; Silent fail; Unexpected screen; etc.)

THOR

Overview

• Works for Robotium (and Espresso) test suites

• 4 open-source Android apps (with a total of 507 tests)

• 429 tests of a total of 507 fail in adverse conditions

• revealed 66 distinct problems

• 18 of the 22 critical bugs found by Thor are not crashes

Evaluation

THOR

WHAT’S NEXT?

Business
logic

User/sensor
interactions

OS
interactions

• Activities in isolation - business logic, unit testing

• Message passing between activities (Intents), integration testing

• Explore application GUI; guided/random exploration;

• Activity/Fragment/app Life-cycle changes/related interactions

• Interaction with OS, sensors

• Interactions with other apps and services, web info

• Security/Privacy/Energy testing (not covered here)

• Distributed testing (run on multitude of read devices and simulators)

WHAT TO TEST AND HOW?

ANDROID

Konstantin Rubinov
Politecnico di Milano

• Android emulators are slow and unstable

• “Flaky test” issue

• Input generation (Input data like user account is impossible to generate automatically)

• Supporting a wide range of devices, platforms and versions

• GUI models are limited (“Some events may change the internal state of the app without affecting the GUI”),
yet allow to cover large parts of app

• Isolating app behavior yet testing platform specific functionality

• State-sensitivity and state explosion

CHALLENGES

[Choudhary, Gorla and Orso ASE 2015]

[P. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo. ICST 2015]

Developer is not provided with tools or
models to manage the state configuration

during design time, while testing approaches
seek to explore the visible state and basic

system interactions

ACTIVITY STATE

• Activity state (Paused, Resumed, etc.)

• Activity’s Fragments, AppBar states

• Shown Views/Widgets (Visibility, Font, Animation state)

• Model (business logic) state

• BackStack (order in which each activity is opened in a Task)

• Background services

• Sensors, screen orientation

Business
logic

User/sensor
interactions

OS
interactions

Aggregate state is extremely large

App models are needed to reason
about these states

and
automatically generate test cases

to cover state combinations

CURRENT WORK @
POLITECNICO

COMPREHENSIVE EVENT-
BASED TESTING

https://github.com/Simone3/Thesis by Simone Graziussi

• Static analysis for : resource release, best practices, double
instantiation (e.g., location acquire/release)

• Framework for lifecycle testing, works with Espresso/Robotium
(e.g., test app while after Activity.onCreate())

• Temporal assertion language for event-based testing works
with Espresso/Robotium built on RxJava (express causality and
order)

Konstantin Rubinov
Politecnico di Milano

RESEARCH PROPOSALS

Static analysis: integrating
with automated program
repair ; novel dynamic/
adaptive interface checks

RESEARCH PROPOSALS

Lifecycle testing:
automatic test case
generation; novel
mechanisms for
dynamic testing of
Fragments

RESEARCH PROPOSALS

Temporal assertion
generation: automated
assertion placement;
automated collection of
oracles for temporal
assertions; automated
test case generation

Konstantin Rubinov
Politecnico di Milano

RESEARCH PROPOSALS
Layout/fragmentation issues:

• automated testing dynamic/
adaptive interfaces;

• automated generation of
layout oracles and
constraints;

• optimal device selection for
dynamic interface testing

find	me:

http://futurezoom.in
email: konstantin.rubinov@polimi.it

Konstantin Rubinov
Politecnico di Milano

