Maximum Likelihood Scaffold Assembly
Anton Akhi, Alexey Sergushichev, Fedor Tsarev
St. Petersburg National Research University of Information Technologies, Mechanics and Optics
Genome Assembly Algorithms Laboratory

Scaffolding Problem
- The process of DNA assembly is usually divided into two parts: assembling contigs and assembling scaffolds from contigs
- Scaffolding is an important step of genome finishing
- Contig is a relatively long continuous fragment of DNA sequence
- Scaffold is an ordered set of oriented contigs with distance estimations between them
- Scaffolds are usually assembled from contigs using mate-paired libraries with large fragment size (usually greater than 1 Kbp)

Distance Estimation
- Maximum likelihood principle
- The resulting likelihood is a product of the connecting reads probabilities and probability that all other reads do not connect contigs
- Taking into account connecting mate-pairs:
 \[P(d_{i1}, d_{2i} | d) = f_{\mu, \sigma}(d_{i1} + d_{2i} + d + 2r)^{\frac{1}{L}} \]
 \[\prod_{i=1}^{n} P(d_{i1}, d_{2i} | d) \times \left(1 - \sum f_{\mu, \sigma}(s) \frac{w_s}{L}\right)^{B-i} \]
- \(w_s \) – number of possible ways for a pair of reads with insert size \(s \) to connect a pair of contigs
- \(n \) – number of mate-pairs connecting contigs
- Finding the most likely distance using ternary search

Experiments
- *E. Coli* genome
- Set of 502 contigs: N50 = 18047, minimum length 235, maximum length 73908, average length 9126
- Three sets of 600000 mate-pairs generated by MetaSim: length 36, mean insert size 3000, standard deviation 300
- Distance estimation algorithm was compared with SOPRA and GAPEST. For each algorithm average absolute difference between estimated and correct distances was computed:

<table>
<thead>
<tr>
<th>Read set</th>
<th>SOPRA</th>
<th>GAPEST</th>
<th>GAMLET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set1</td>
<td>209±15</td>
<td>175±14</td>
<td>149±13</td>
</tr>
<tr>
<td>Set2</td>
<td>139±13</td>
<td>217±17</td>
<td>153±13</td>
</tr>
<tr>
<td>Set3</td>
<td>215±15</td>
<td>172±14</td>
<td>153±13</td>
</tr>
</tbody>
</table>

- Scaffolding algorithm was compared with OPERA

Preliminaries
- Normal insert size distribution \(N(\mu, \sigma) \) with probability density function \(f_{\mu, \sigma}(x) \)
- Uniform position distribution
- \(L \) – genome length
- \(R \) – number of mate-pairs in library
- Reads are aligned to contigs with Bowtie
- Proposed algorithm (GAMLET) consists of two parts: distance estimation and contig ordering and orientation

Ordering & Orientation
- Maximum parsimony principle
- Building graph with contigs as vertices and connections as edges
- Removing high-degree vertices and short contigs
- Building draft scaffolds along shortest edges
- Searching for shortest paths between draft scaffolds
- Merging scaffolds along the shortest paths
- Contig orientation is found using mate-pair alignment orientation. Only mate-pairs connecting contigs in the same scaffold are considered.

Conclusions
- Proposed distance estimation method is more precise on average than SOPRA and GAPEST
- Proposed algorithm assembles longer scaffolds with fewer number of misassemblies
- Proposed algorithm is an order of magnitude faster than OPERA: 1.5 min. vs. 15 min. on *E. Coli* dataset

Acknowledgements
Research is supported by the federal program “Research and scientific-pedagogical personnel of innovative Russia in 2009-2013” (contract 16.740.11.1495, agreement 14.B37.21.0562)

Access to the Genome Assembly Algorithms Laboratory:
http://genome.ifmo.ru/en/