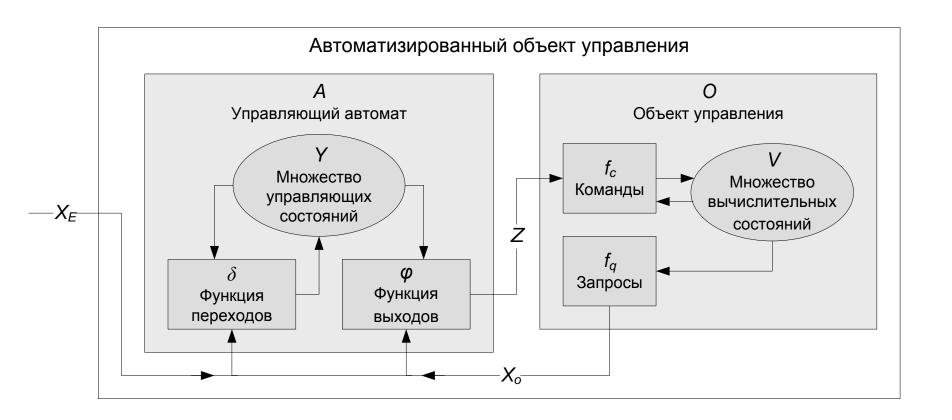
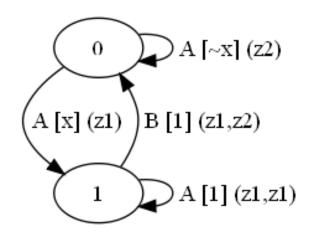

Применение методов решения задачи о выполнимости булевой формулы для построения управляющих конечных автоматов по сценариям работы

Владимир Ульянцев, ИТМО, КТ Научный руководитель: Федор Царев, аспирант кафедры КТ 20 июня 2011


Системы со сложным поведением

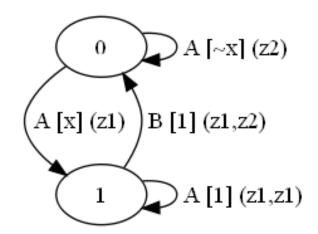
Система с простым поведением


Система со сложным поведением

Автоматное программирование

Управляющий автомат

- Управляющий конечный автомат
 - Поступают события
 - Лента переменных датчики модели
 - Последовательностьвоздействий

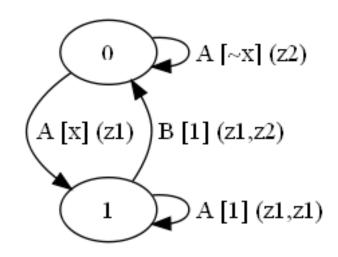


Тестовые примеры

- Сценарии работы
- Последовательность троек <*e*, *f*, *A*>
 - *e* входное **событие**;
 - *f* булева формула от входных **переменных**, задающая охранное условие;
 - А последовательность выходных воздействий

Постановка задачи

- По **сценариям** работы *Sc* построить управляющий конечный **автомат** из *k* состояний
- Не ищем необходимое k


Примеры сценариев работы

Автомат удовлетворяет:

• <A, $\sim x$, (z2)>

Не удовлетворяет:

• <A, x, (z2)>

Существующие подходы к построению автоматов

• Генетические алгоритмы

• Егоров К. В., Царев Ф. Н., Шалыто А. А. Применение генетического программирования для построения автоматов управления системами со сложным поведением на основе обучающих примеров и спецификации // Научно-технический вестник Санкт-Петербургского государственного университета информационных технологий, механики и оптики

• Эвристические алгоритмы – сжатие дерева тестов

 Lucas S., Reynolds J. Learning DFA: Evolution versus Evidence Driven State Merging // The 2003 Congress on Evolutionary Computation (CEC '03)

Предлагаемый подход

- Свести задачу построения автомата к хорошо изученной NP-полной задаче
 - SAT задача удовлетворимости булевой формулы

$$(X1 \text{ or } X2 \text{ or } \overline{X3})$$

$$(\overline{X1} \text{ or } \overline{X2} \text{ or } \overline{X3})$$

$$(\overline{X1} \text{ or } \overline{X2} \text{ or } \overline{X3})$$

$$(\overline{X1} \text{ or } \overline{X2} \text{ or } \overline{X3})$$

$$(\overline{X1} \text{ or } \overline{X2} \text{ or } \overline{X3})$$

$$(\overline{X1} \text{ or } \overline{X2} \text{ or } \overline{X3})$$

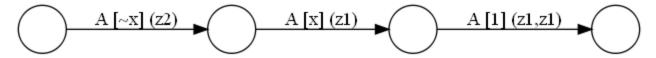
$$(\overline{X1} \text{ or } \overline{X2} \text{ or } \overline{X3})$$

$$(\overline{X1} \text{ or } X2 \text{ or } \overline{X3})$$

Доказательство NP-полноты

- Доказательство принадлежности классу NP
- Доказательство принадлежности классу NPтрудных задач

Доказательство принадлежности классу NP

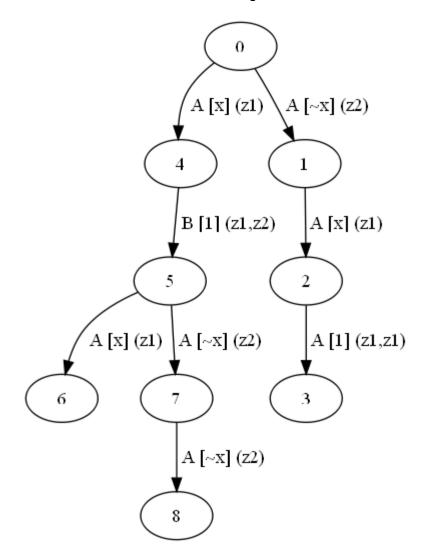

- На языке сертификатов
 - Язык *L* двоек *<Sc, k>*
 - *k* в унарной системе счисления
 - Сертификатом является автомат
 - Верификация за полином

Доказательство принадлежности классу NP-трудных задач

- Сведем задачу из NPC к нашей (по Карпу)
- Задача построения **автомата- распознавателя** по двум словарям S+ и S-
 - Является NP-полной согласно работе
 - E Mark Gold. Complexity of automaton identification from given data. Information and Control, 1978
- Каждому автомату-распознавателю соответствует управляющий автомат

Основная идея алгоритма

• «Раскраска» сценариев

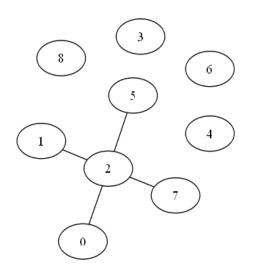

- Сопоставим каждому состоянию каждого сценария состояние искомого автомата
- Состояния искомого автомата будем различать цветами

Этапы работы алгоритма

- Построение дерева сценариев.
- Построение графа совместимости.
- Построение булевой КНФ-формулы
- Запуск SAT-солвера
- Построение автомата по найденному выполняющему набору значений переменных.

1. Построение дерева сценариев

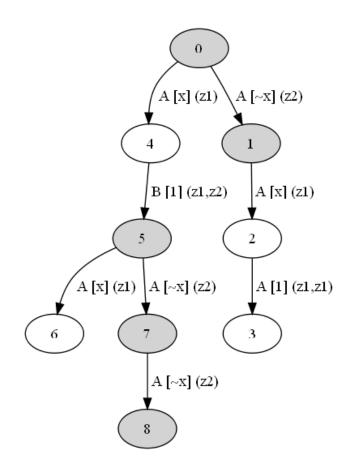
- Сценарии из заданного множества *Sc*
- Пример дерева для трех сценариев:


2. Построение графа совместимости

- Динамическое программирование
- Для каждой **пары** вершин за *O*(1)

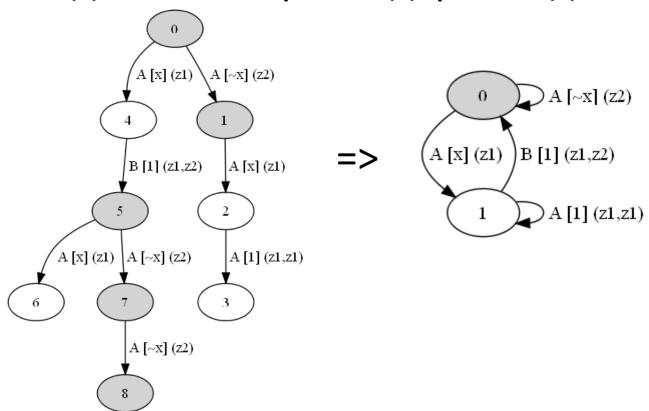
3. Построение КНФ-формулы

- Переменные:
 - $\circ x_{v,i}$ верно ли, что вершина v имеет цвет i
 - \circ $y_{a,b,e,f}$ верно ли, что в автомате **переход** из a по событию e и условию f ведет в b
 - Вспомогательные переменные

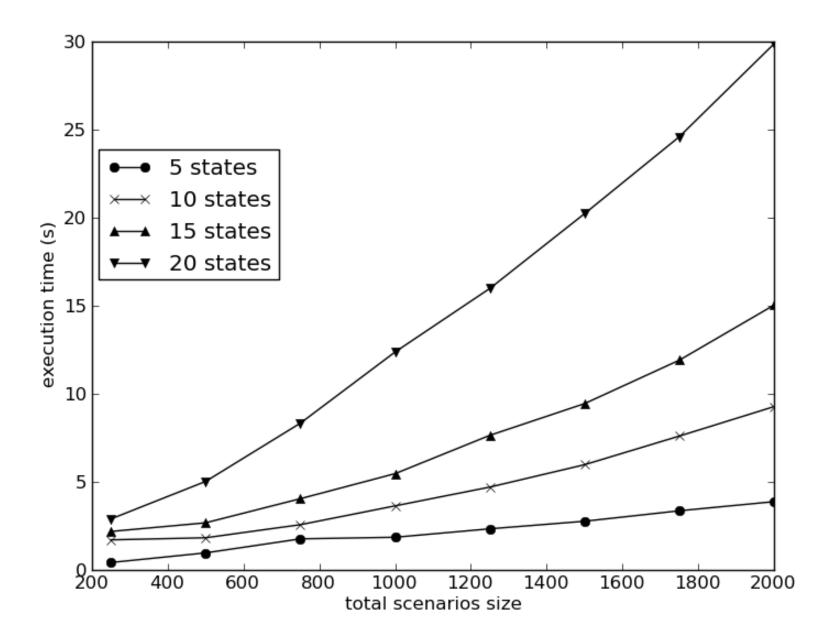

=>DIMACS CNF $O(|V|^2C^2)$

4. Запуск сторонней программы для нахождения значений переменных

- Используется cryptominisat
 - Победитель SAT RACE 2010
 - Кроссплатформенность


5. Построение автомата (1)

- Раскраска дерева
 - По **значениям** переменных $x_{v,i}$, задающих цвета вершин дерева сценариев


5. Построение автомата (2)

• Объединение вершин дерева одного цвета

Экспериментальное исследование

- Задача о будильнике менее одной секунды
- Детальное исследование:
 - Генерируется автомат
 - По нему генерируется набор тестов

Результаты

- Доказана NP-полнота поставленной задачи
- Разработан **метод построения автоматов** по сценариям работы программы
- Разработано **инструментальное средство**, реализующее разработанный метод машинного обучения

Спасибо за внимание!