Saint Petersburg State University of Information Technologies, Mechanics
and Optics

Department of Computer Technologies

V.V. Vedeneev, P.S. Solovjev

The Control System of “Zavalinka” Text Game

Version 0.1b

Programming with explicit state selection

Project Documentation

Saint Petersburg
2003

Contents

INTRODUGCTION L.ttt ettt ettt e ettt esae s es e e sbeens e e e seeeebneeneennee e 3
L TARGET SETTING ...ttt ettt et st n et bt et e e e sae e ebbe e s e e 3
2. THE DESCRIPTION OF APPROACHouiie ittt e 4
S EVENT DEFINITION ..ottt ettt ettt st st e sne e es e sne e e sneeas 5
3.1 EVENT “GAME STARTED” (EL) .eeeittieeitiieeeieeeieieeseieeeeteesteeesseeaeneeassneeeneeeeaneeessneaennsnnsensens 5
3.2. EVENT “SWITCHED TO SLEEP MODE" (E2) ...t tveeitteeeeieesieeessteeaeeessieeenseesaeeessseaennsnnssnees 5
3.3. EVENT “ STARTED RECEIVING THE DEFINITIONS” (E3) ..eeettveeirieeeiresiieeeneieeeeiesseieeeneeeeeneens 5
3.4. EVENT “FINISHED RECEIVING THE DEFINITIONS" (E4) «.eeeiueieiieeeeieeetiee e eeieeeeeeeneeee s 5
3.5. EVENT “THE PLAY ERS HAVE MADE THEIR CHOICE” (ED) ...eeeitteieieeeiiie e e e 6
3.6. EVENT “THE PLAYER HAS SENT A MESSAGE" (EB) +vvuvveeeeeeensereeieessieeeneeeeeeeesssneeeneneeeneens 6
4. DEFINITION OF THE OUTPUT ACTIONS. ...ttt s 6
4.1. ACTION “FINISH RECEIVING THE DEFINITIONS” (Z1) ..euveeeiieeseieeeeeesaeiesseeeeseeeeneees e e 6
4.2. ACTION “SWITCH TO SLEEP MODE" (Z2) +.euuveeetueeeeaeeeenieeeaiieeseteeeneeessneeessseaennseeenneeessseeennes 6
4.3. ACTION “ SCORE CALCULATION AND DISPLAY THE RESULTS” (Z3).eeeeeveeeseeeeiieeeeeeeeneeeenne 7
4.4, ACTION “ ANNOUNCE START OF THE GAME" (Z4) evveeeeeeeieeeeiee e eee s ae e e eneee s 7
4.5. ACTION “ ANNOUNCE THE TERM AND START RECEIVING OF DEFINITIONS” (Z5)cccvvenne. 7
4.6. ACTION “ STORE VERSION OF THE DEFINITION" (Z6).. e vteeeueeereeieeeeeeaeienseeeeseensseeesseeeennes 7
4.7. ACTION “ STORE THE PLAYER’ S CHOICE OF THE DEFINITION" (Z7) c.vveeivieeseeeeeeeeee e 7
5. AUTOMATON “MANAGEMENT OF THE GAME” (A0) ...ceoiieiiiiieiie e 7
5.1, VERBAL DESCRIPTION. ..ttt utttttaautteeaasaussesaasasnseeasaasseseasaassesaessnsssssasassseesanssssesasansnsseesansnns 7
5.2. THE SCHEME OF THE AUTOMATON CONNECTIONS......coiiiiiiiiie it seae e s s 7
5.3, TRANSITION GRAPHceeeteiesreeetieeeanresas e s sre e s snaesss e s steeessne e eseeeeseeennessaneessreeennnnessnnnas 8
6. CONGCLUSION ...ttt ettt et sttt bt et e st ehe et e e nteensees e e aneennesnnea 9
7. PROGRAM LISTING ..ottt ettt sttt et nae e e 10

Introduction

SWITCH-technology has been proposed by A.A.Shayto for the
algorithmization and programming of logic control. This technology was further
developed by the author together with N.I. Tukkel and applied to the development of
the event and object-oriented programs. For more details about this technology and
different examples of its usage see the following Web sites: http://is.ifmo.ru and
http://www.softcraft.ru.

This technology is convenient for technical objects control problems. In the
current work it is used for the IRC text game management.

The game “Zavalinka’ is developed for the IRC (Internet Relay Chat). Similar
game was developed earlier, but at that time SWITCH-technology wasn't used (the
game “Quiz”, server campus.ifmo.ru:6667, channel #womend). The goal of thiswork is
to concentrate control logic in the program code, to improve its readability and to create
the proper documentation. Finite state machine is used to describe the logic of the game.

Perl is chosen as the programming language, because it is convenient for text
processing. Perl doesn't have the switch operator, o the state-machine is implemented
with the if-else construction.

Regular expressons are used for text processing in Perl. They are also
implemented with finite state machine. Perl programs are generally platform-
independent.

1. Target Setting

The aim of the work isto create the program for “Zavalinka’ game management.
The rules of this game are similar to the rules of the verbal game with the same name.

There are several Internet sites where the rules of the game are described. You
can find the rules at the following site:

http://ng.perm.ru/bin/knigalkonkurs/zavalina/zaval 1.htm.

The rules used in the current work follow:

Game rules. Quizmaster (bot) gives a term to the players (term is an
unintelligible word). During some predefined period of time the players should think of
the possible definitions of this term. The definitions should be convincing for other
players, to make them choose one of these definitions. The players tell their versions of
definitions secretly to the quizmaster. After that bot tells al given versions with the
original one and every player should choose the most suitable one.

Score calculation. The player who has guessed the right definition gets one
point. Besides, the players get pointsif their definitions were chosen by other players. (2
points for every player). The quizmaster caculates all scores after each turn and
announces the results.

http://is.ifmo.ru
http://www.softcraft.ru
http://ng.perm.ru/bin/kniga/konkurs/zavalina/zaval_1.htm

The game is managed by the game bot. The current work describes the
development of this bot. The project was called “Zavalinka” after the name of the verbal
game with same rules.

Pic. 1. The screenshot of the game.

T Zlmix]

e = S T =] -
M G EP0EE SO IEE RREE RS
Tlviivetised [Tleurdika psstopbs TKdsls

W mabiins [] [+0vat U et 7 mpreis S0 o ot SHIma sk, £ 6 o [HE SRy RiEn S safiepere bitan (Misala) =10 =
CHidallar BunppeTe HONEP DEPEOCD BO-DASERY HSENHE BAQNASTA DSREARSESHN EW
CKidallar 9 @ac #CTh 35 comgmd 1 dropsele & pieal & KISalla sHoas ar 1@ an F wra
Cparavajabar Mers parabajaa
fuserir pa

cHidallay parabajaba rapaceias 1 esikafes).
Cparabajabad uTe TH HATTHABEARELT
CHidslLar Ber mam TEpm— o M opad

CHidallar ¥ mac ecTh £ CoNgmA UTSOE PRELANCHTL BASE DSPEADSESHE ITAC0 TEPENES. Dapeante snpeneacied
npecsakTe | osery (Kidalla) b spsnaw

Cuserdy> TTem

thidallay 1) meivo: parabajasa o 350 eesami. 2} mecTo: BEidalla o B2 ouedesi. 3) mecro: Belana © 17h sukanE. 8)
mecTe ERr? o 1Ad emkama. 5} meCTo: HLLST © 10 oukasa . §) eocTel Peskalaz © 41 eedkape. T mecTe: Hakbyes c

Sh sdkares. A} wecTo: UarFalaney © S& sukase. 9) secTe: SERSER-G © 31 sssams. 18] secTe: Darla o 31 oukae.

CKidallar Epem spubiea mamex onpepoapEsd 2a0siUHLSCL .

CRidsllax 1) "mepconas mopsswas 8. uexees”

CHidallal Buuepers HONED DEPMOCD SO-DANERY HSSHHE SA0HEST L DgELE SEMHN §

cHidellar ¥ war e6Th 25 cEsgmn 1 svnmssre pospesar Kidalla swcas a1 1 = an 1

Cparskajalad HesRdpnTel OTEET HaSeCaTh

CHidullay B9T panl TOpewi L §aFiaseed

cHidallay ¥ Dac &ETh £ CoWgel WISGU Mg AADNENTL Baso OSgEADSENG FTAM0 TERMMEE. BapeaiTi S0pe e i
nperaindTe @ Ty (Kidalla) o egena

iKidailar Epaen spubea names onpegoacesd SasssiunsecL. .

CHidallal 1] "npw ENFERETEESEE EAEOPE TEECTH - [ATHCEESSE ONPEARVESSO0CD TEKCTA HA LAJANES DN e Esm
PATTTONERS 0T =AYAAE CTpEsm

CRidallal Bunppmrs HONSp DEPEOCD SO-DSNSRY MSSHHE SSQHEST DEpELE SERHN §

CHLARILAY ¥ BAE BETL 3% cEwgmd 1 ATORAATE B SHNBAT HEEAL1A wHEAs AT 1 @ A0 1

CUEREEr TCTEN

Ridallal Hrpa SLTaibddcia, B3 SEOOGEE DS (aEaEiTe ETait

tparabafabay A EjeaR wTpa BRAKEE ADTENATON SCTARZRAHRATRCA GLAN MEELED S0 sodoi

Cparaajaba) MECED eE NSTANLSE, UTE SOMES CHARTR H BS OAKSN| W0 NOSEATR

Cuser¥s L&, CARENEW

parssajabed W oemE

Cparsssjabs? toamme ggaet?

|

vl | 5@ W F || Seenw | oo | Bie, |[aec B, | @ | S | [T IR e

Pic.1. The screenshot of the game

2. The description of automata-based approach

The program is developed for the event-oriented IRC-system. The automata-
based approach, described below is used.

1. The analysis of the problem is performed, set of the events and input
variables are designed.

2. One automaton or system of interconnected automata is designed.

3. The verba description (the list of the tasks, etc) is developed for each
automaton.

4. Each event is described in the verba form. Conditions, that cause the
occurrence of the event, and some notes for processing should be given.

5. The diagram of connections is designed for each automaton, in case there are
several automata— the diagram of their interactions, too.

6. Thetransition graph isdesigned for each automaton.

7. First, the template with “stubs’ is created. It is isomorphic to transition
graph. After checking, that it properly corresponds to the transition graph, the stubs are
changed with functions that implement output actions, for example, “score calculation”
output action.

3. Event Definition

The set of the following events has been designed according to the analysis of
the problem.

el — Game started

e2 — Switched to deep mode

e3 — Started receiving the definitions

e4 - Finished receiving the definitions
€5 — The players have made their choice
€6 — The player has sent a message

3.1. Event “Game started” (el)

The event occurs when the program has been started or the command “!start”
has been received from one of the players.

During the processing of this event, bot executes some initiating actions that are
necessary for the successfull start.

3.2. Event “ Switched to sleep mode” (e2)

The event occurs when the command “!stop” has been received from the players
or the players have been silent for some predefined period of time at the channel.

When the event occurs, bot stops the game and switches to sleep mode.

3.3. Event “ Started receiving the definitions” (e3)

The event occurs when term is successfully displayed at the channel.

When the event occurs, bot starts receiving the definitions. The corresponding
message is displayed. Bot starts tracking the time for players to think of the term
definitions.

3.4. Event “Finished receiving the definitions” (e4)

The event occurs when the time for playersto think is over.

When the event occurs, bot sarts waiting for the players choice. The
corresponding message is displayed and bot stops tracking the time for players to think
about the definitions.

3.5. Event “The players have made their choice” (e5)

The event occurs when the time for definition receiving is over.
When the event occurs, bot calculates new scores. The corresponding message is
displayed.

3.6. Event “The player has sent a message” (e6)

The event occurs when some message from one of the players has been received.
The message should differ from the control command.

This event can be processed in different ways depending on the type of message
and on the state of the automaton.

4. Definition of the Output Actions

The following output actions are used in the program:

z1 - Finish receiving the definitions

z2 — Switchto deep mode

z3 — Score calculation and display the results

z4 — Announce the start of the game

z5 — Announce the term and start receiving the
definitions

z6 — Storeversion of the player’ s definition

z7 — Storethedefinition, that player has chosen

4.1. Action “Finish receiving the definitions” (z1)

The action adds the right definition to the list of players definitions and shuffles
all of them. It assigns a number for each definition and displays the definitions at the
channel.

4.2. Action “Switch to sleep mode” (z2)

The action displays the message telling that the game bot is switching to Sleep
mode.

4.3. Action “Score calculation and display the results”
(z3)

The action creates the result table, displays it, adds scores to the players and
stores the scores in the database.

4.4. Action “Announce start of the game” (z4)

It displays message about the start of the game.
4.5. Action “Announce the term and start receiving of
definitions” (z5)

The term is chosen randomly, then it is displayed at the channel for players. The
bot starts tracking the time for players to think of the definition.

4.6. Action “Store version of the player’s definition” (z6)

If the player has given the definition, it is stored otherwise the warning for the
player is displayed.

4.7. Action “Store the definition, that player has
chosen” (z7)

The player’s choice is being analyzed. The warning is displayed if:
the player has already given the definition;
the player has entered not a number or anumber is out of range;
the player has chosen his definition.

Otherwise the player’ s choice is stored.

5. Automaton “Management of the game” (AO)

5.1. Verbal description

This automaton controls the game.

Specid “waiting” mode was created to avoid the idle work of the bot. Events
that make bot switch back and forth to the waiting mode have been added.

For the diagram of the connections and transition graph of the automaton see the
pic. 2, 3.

5.2. The scheme of the automaton connections

Sama started

Srdtched to slsap moda

Slarted receiving the def nitions

Fin shad rezeiv ng the definitions

Tha alayers have made thair choica

Tha player has went a messaga

&l

ad

a3

a4

=]

L]

z1

z2

z3

zd

Z3

x4

Finish raca wing the definitions

Switch tc =leap moda

v

\ 4

Goara calculation ard display e results
»
fnnounee the start of the gama

»

fnnounce the tarm and stark
receiving the def nitions o
»

Store wersicn of the player's
dafiniticn .
Lal

Siora tha definition the payar has

CI0sEn >

Pic.1. Connections diagram of the automaton «M anagement of the game»

5.3. Transition graph

Q. Waiting for =1art

el fzd

Y
1. Announcerment of tha

term

o3 ‘2T

3. Waiting Far the playar's

Z3

oz 123 choica
N A
-
- 4
a3 23
ad 21
a2 izd
2. Definition recaiving
a3

)

o3 fzg

Pic.2. Transition graph of the automaton «Management of the game»

6. Conclusion

At the first glance it seems, that there is no sense in using automata
programming for such a simple problem. However, the experience gained during the
development of the previous text game (Quiz) has shown that the traditional methods of
programming (with Boolean flags, etc) may cause many errors. It's often difficult to
find and fix these errors.

The program correctness can be checked right after creation of the code with
“stubs’. The authors used this opportunity for debugging. The messages about state ids
and output actions were logged in the stubs. The code worked properly. The transition
graph was used to check all of the transitions and all of the executed output actions.

Nowadays beta-testing is performed to find out the players wishes. The
automata-based programming should simplify the modification of the program.

7

. Program listing

#!/usr/bin/perl -w

H*

33 3333333333%¥F 3333333333333333*wF 3333FH*

Modul e: bot _I'l. pl
Descri ption: Bot “Zaval i nka”
The last nodification: 2003-01-24

==[Used nodul es] ==

strict; # warni ng activation
Net : : | RC; # nodul e connection for | RC usage
ni ckdb; # nodul e connection for nick database usage

==[Constants]==

$Bot Ver si on=' v0_1b' ; # bot version

$Channel =' #zaval i nka' ; # channel nanme where bot will be | ocated
$ServerNane='irc.womru'; # | RC server address

$Ser ver Port =6667; # port which is used by |IRC server

==[Colours in IRC]==

$cwhite = "\ 00300";
$cnor mal = "\ 00301";
$cbl ue= "\ 00302";
$cgreen= "\ 00303";
$cred = "\ 00304";
$cbr own= "\ 00305";
$cpurple = "\ 00306";
$corange = "\ 00307";
$cyel | ow = "\ 00308";
$clightgreen = "\ 00309";
$ccyan = "\ 00310";
$clightcyan = "\ 00311";
$cli ghtblue = "\ 00312";
$cpi nk = "\ 00313";
$cgrey = "\ 00314";
$clightgrey = "\ 00315";

==[Consol e colours]==

$anormal = "\ 033[Ont';
$agrey = "\ 033[1nt';

$ai nvert = "\ 033[7nt';

$ared = "\ 033[0; 31n';
$agreen = "\ 033[0; 32nt';
$ayel | ow = "\ 033[0; 33nt';
$abl ue = "\ 033[1; 34nt';
$api nk = "\ 033[1; 35n';
$al i ght bl ue = "\ 033[1; 36n';
$anhite = "\ 033[1; 37ni';

$ti met oget ask = 60; # waiting period (in seconds) for defenition receiving

$ti met oget answer = 25; # waiting period for players’ choice

salutation nessage frombot after connection to the server

my

$Hel | oMessage = "$cred Hell o everybody! It’'s ne again!";

farewel |l nessage from bot before di sconnection from server

¥ 3338 323 33

$ByeMessage = "$cred Nice talking to you. But it's time for |eaving. Bye,
$State = 0; # initial state of automaton “Zavalinka”.
$basefile = "../bot/logs/ macbase.txt"; # file with term base

$logfile = ">>zavalina.log"; # file with channel |ogs
$termin =""; #

$opred = ' #

$countv = O; #

$ganers = 0; #

ever ybody";

10

Initialization]

$Bot Ni ck=Next Ni ck('");
$Bot Real Ni ck=$Bot Ni ck; #
Ydef i n=();

% dni ck=();
%gamer _choi ce=();
%def i n_owner=();
Y%scores=();

$1 =" undef';

SI G INT}=\&qui t;

33333333%*

H* ©»

H*

The aut omat on

setting bot’'s nanme at the channel

action at program exit

==[The automaton “Managenent of the game”]==

“Managenent of the gane”

#
I nvocati on: OnEvent (Event, [Paraml [, ParanR]])
Paraneters: Event - event
Paraml - optional paraneter, it depends on the event
Paranm2 - optional paraneter, it depends on the event
sub OnEvent {

ny $Event = shift; # reading of the event

State of the autonmaton sO

if($State == 0){

if ($Event eq
z4();

$State =

"el'){

1
}

State of the automaton sl
telsif($State){
z5();
receiving the definitions”
if ($Event eq 'e3'){
$State = 2;
}

State of the autonmaton s2
}elsif($State == 2){
if ($Event eq 'e2'){
22();
$State =

0;

Yel sif($Event eq
has occured
z1();
$State =

"ed'){

3,

}el sif($Event eq
happened

'e6'){

z6(shift,
has chosen”

}

State of the autonmaton s3
telsif($State){
if ($Event eq 'e2'){
22();
$State =

shift);

0;

}el sif($Event eq
has occured

"e5'){

z3();
resul ts”
$State = 1;
}el sif($Event eq 'e6'){
occured
z7(shift, shift);
pl ayer has chosen”

}
}

Action z1 "Finish receiving the

#

“Wiiting for start”

if the event el “Gane started” has happened

execute action z4 “Announce the start of the gange”

switch to node s1 “Announcenent of the ternf
“Announcenent of the ternt

execute action z5 “Announce the termand start

if the event e3 “Started receiving the definitions”
switch to node s2 “Definition receiving”

“Definition receiving”

if the event e2 “Switched to sl eep npde” has occured

execute the action z2 “Switch to sleep node”
switch to node sO “Wiiting for start”

H* H

if the event e4 “Finished receiving the definitions”

execute action z1 “Finish receiving the definitions”
switch to node s3 “Wiiting for the player’'s choice”

if the event e6 “The player has sent a nessage” has

execute action z6 “Store the definition, the player
“Waiting for the player’s choice”

if the event e2 “Switched to sl eep nbde” has occured

execute action z2 “Switch to sleep node”

switch to node sO “Wiiting for start”

if the event e5 “The players have made their choice”
execute action z3 “Score cal culation and display the
switch to node s1 “Announcenent of the ternf

has

if the event e6 “The player has sent a nessage”

execute action z7 “Store the the definition, the

definitions"

11

The action adds the right definition to the list of players’ definitions and shuffles

all of them It assigns a nunber for each definition and displays the definitions

at the channel

sub z1{
& = ();
Y%defin_owner = ();
ny $var = 0;
ny $var2 = 0;
for (my $i = 0; $i < ($ganers+l); ++$i){
@=(@&, $i);
$1->privmsg($Channel, 'The tinme for definition receiving is over.');
for (my $i = 0; $i < ($ganers+l); ++$i){
$var = int(rand($gamers+1-$i));

$var2 = $s[$var];
$s[$var] = $s[$ganmers-$i];
$I - >pri vnsg($Channel , "S$cred". ($i +1)."$cli ghtbl ue)
\"". $defin{S$idnick{$var2}}."\"");
$defi n_owner { ($i +1)} = $i dni ck{$var2};
}

$1 ->pri vmsg($Channel , $cbl ue. "Pl ease, choose the nunber of the right definition:"

$1 ->pri vimsg($Channel , $cbl ue. "You have ".$cgreen. $ti met oget answer . $cbl ue.

' seconds!".$cgrey." In private nmessage send to $Bot Real Ni ck number from".

$cgreen. "1". $cgrey." to ".$cgrey. ($ganers+l));
$1 - >schedul e($ti met oget answer, \ &Get _Choi ce_Ti neout);
%ganmer _choi ce=();

}

Action z2 “Switch to sleep node”
#

The action displays the nmessage telling that the ganme bot is switching to sleep node

sub z2{

$1 ->pri vmsg($Channel , $cgreen."The game is stopped, for its resunption please type

in $cred!start$cnormal ");

}

Action z3 “Score calculation and display the results”
#
The action creates the result table, displays it, adds scores to the players
and stores the scores in the database
sub z3{
ny $gamer _ni ck;
ny $gamer_score;
foreach $ganer_nick (sort keys ¥scores){
$gamer _score=$scor es{$ganer _ni ck};
if ($gamer_ni ck ne $Bot Real Ni ck) {

$1 - >privnsg($Channel , $cbrown. $gamer _ni ck." Has got".$ganer _score."

Score(s).");
AddScor e($gamer _ni ck, $ganer _score);

Y%scores=();
Fl ushBase() ;

}
Action z4 "Announce the start of the gane"
#
1t displays nmessage about the start of the gane
sub z4{
$1 ->pri vmsg($Channel , $cgreen."The game has started(l’' m awake!)$cnormal ");
}

Action z5 "Announce the termand start receiving of definitions"

#

The termis chosen randomy, then it is displayed at the channel for players
The bot starts tracking the tinme for players to think of the definition

sub z5{
Get _randomtermn();
$1 ->privmsg($Channel, $cblue."Here is a termfor you: $cred $termn");
$1 ->pri vimsg($Channel , $cbl ue. "You' ve got ".$cgreen. $ti met oget ask. $cbl ue.
' seconds to offer its definition.".$cgrey.
Send all your versions to bot (".$cgreen."$Bot Real Ni ck".
$cgrey.") in private nmessage");
$1 - >schedul e($ti net oget ask, \&Get _Defi nitions_Ti neout);

Ydefin=();
$def i n{ $Bot Real Ni ck}=$opred;
% dni ck=()

12

$i dni ck{ 0} =$Bot Real N ck;

$ganer s=0;
}
Action z6 "Store version of the player’s definition"
#

|f the player has given the definition, the given definition is stored otherw se
the warning for the player is displayed
sub z6{

ny $nsg=shift;

ny $nick=shift;

if($defin{$nick} eq ''){
$I - >privneg($nick, $cblue."For term $cred\"$term n\"$cblue the definition is
accepted $clightblue\"$nmsg\"");
$def i n{ $ni ck} =$nsg;
$ganer s=$ganer s+1;
$i dni ck{" $gamer s"} =$ni ck;
}el sef
$I - >privnsg($nick, $cred."You' ve already given the definition.");
}

}

Action z7 "Store the definition, the player has chosen"
#

The player’'s choice is being analyzed. The warning is displayed if:

the player has already given the definition;

the player has entered not a nunber or a nunber out of range;
the player has chosen his definition.

Otherwi se the player’'s choice is stored

sub z7{

ny $nsg=shift;
ny $nick=shift;

ny $nune$nsg- 0;
ny $d_owner;

i f ($ganmer _choi ce{$nick} eq undef){
if (($nunmp0) && ($nunx=($ganers+1))){
$d_owner =$def i n_owner { $nunt;
if ($d_owner ne $nick){
$gamer _choi ce{ $ni ck} =$num
if ($defin_owner{$nun} eq $Bot Real Ni ck) {
$scor es{ $ni ck} =$scor es{ $ni ck} +1;

$scor es{ $d_owner } =$scor es{ $d_owner} +2;

$1 ->privnsg($nick, $cgreen."Your choice\"".$num"\" has been taken in
account.");

}el sef

$1->privneg($nick, $cred."It’s not allowed to choose your own definition

)

}el sef

$1->privneg($nick, $cred."You need to enter the number from
".$cgreen."1".$cred." to $cgreen”.($ganers+1)."");

}el sef

$I - >privnsg($nick, $cred."You' ve al ready chosen the definition:
".$cgreen. $defin{$d_owner});
}

-

#
==[Auxiliary procedures]==
#

#
Timer event creation
#
s

ub Get _Definitions_Ti meout{
OnEvent (' e4d');
}

sub Get _Choi ce_Ti nmeout {
OnEvent (' e5');
OnEvent (' e3');

}

It determ nes the nunber of terns in the base

13

sub cal c¢{
$countv = O;

ny $answz;
open(I NP, $basefile);
while(my $s = <INP>){
$s =~ s/\n//;
$s =~ s/\r//;

it (($s == I\@.*)1)){
if(length($1) < 15){
$answ2 = $1;
}el sef
$answ2 = "";

}el sef
if ((length($answz)
$count v++;
}

1= 0) & (length($s) < 30)){

}

}
cl ose(I NP);
}

1t returns the term which was chosen at
sub Get_randomterm n{

random from t he dat abase

ny $vopr = int(rand($countv));
ny $answ;,
print "The term $vopr from $countv the terms\n";
open(I NP, $basefile);
while(my $s = <INP>){
$s =~ s/\n//;
$s =~ s/\r//;

if (($s =~ \@.*)/)){

if(length($1) < 15)({
$answ = $1;
}el sef
$answ = "";
}el sef
$vopr--;
if ((length($answ) !'= 0) && (length($s) < 30)){
if ($vopr < 0){
$opred = $s;
$termn = $answ;
| ast;
}
}
}
}
}
Nick setting
sub Next N ck{
my $a=$_[0];
ny $r = 'undef';
ny @ = ('Kidalla', 'Pechka', 'Bot', 'Zavalinka');
for (my $i = 0; $i <= $#l; $i++){
if ($I[$i] eq $a) {
$r = $I[$i + 1];
}
}
if ($r eq 'undef') {
$r = $I[0];
}
if ($aeq'') {
$r = 'K .tine;
}
return $r;
}
#
==[IRC handlers]==
#

Successful connection with server
sub on_connect {
ny $self = shift;

print "$ayel |l ow Joi ni ng $Server Nane. ($al i ght bl ue $Channel

$ayel | ow)
$sel f->j oi n($Channel) ;

...$%anormal ";

14

}

Server nessages after connection
sub on_init {
ny ($self, $event) = @;
ny (@rgs) = ($event->args);
shift (@rgs);

print "$abl ue*** @rgs $anormal\n";

}

Sonmebody has |eft the channel
sub on_part {
ny ($self, $event) = @;
ny ($channel) = ($event->to)[0];

printf "$alightblue*** $awhite%%$alightblue has |eft channel %$anornal\n", $event-
>ni ck, $channel ;

}

Somebody has joi ned channel including us
sub on_join {

ny ($self, $event) = @;

ny ($channel) = ($event->to)[0];

i f($event->ni ck eq $Bot Ni ck){
$l = S$sel f;
print "$agreen DONE$anormal\n";
$Bot Real Ni ck = Next Ni ck($Bot Ni ck) ;
$sel f - >ni ck($Bot Real N ck) ;
$Bot Ni ck = $Bot Real Ni ck;

$sel f->privmsg(' Ni ckServ',"identify <here_password>");

$sel f->privmsg(' ChanServ',"identify $Channel <here_password>");
$sel f->privnsg(' ChanServ',"op $Channel $Bot Real Ni ck");

$sel f->privnsg(' ChanServ',"protect $Channel $BotReal Ni ck");

calc();
$sel f->privnsg($Channel, $Hel | oMessage) ;
nEvent (' el');
nEvent (' e3');
}el sef
printf "$alightblue*** $awhite¥%$alightblue (%) has joined channel
Y%s$anormal \ n", $event - >ni ck, $event->userhost, S$channel ;

open(MsG, $logfile);
print MSG "[".localtine(time)."]".$event->nick." Joined $Channel\n";
cl ose(MsG);

if (GetScore($event->nick)<0){
$1->me($event->nick, "A very interesting gane is offered at the channel!");
$1->me($event - >ni ck, "Gane rules. Quizmaster (bot $Bot Real Ni ck)
"offers a termto the players (termis a strange word). During set"
period of time the players should think of the termdefinitions "
Then the players tell their versions of definitions secretly to the
qui zmaster in private messages. After all bot tells all versions "
"with the original one. The players shoose the nobst suitable "

$1 - >me($event - >ni ck, "Score cal cul ation. Every player who guessed "
" the right definition gets one point. Besides,the players "
"get points if their definitions were chosen by others "
"2 points for the m staken player ".
"The qui zmaster cal cul ates scores and announces the results");
$1 - >me($event - >nick, "The foll owi ng conmands are accepted at the channel
"Istart !stop !'won 'help 'top.");
}
}
}

The private nmessage has been recei ved PRI VMSG
sub on_nsg {

ny ($self, $event) = @;

ny ($nick) = $event->nick;

ny ($arg) = ($event->args);

OnEvent (' e6', $arg, $nick);

print "$agreen*$ni ck*$awhite ", ($event->args), "$anormal\n";

15

open(MsG, $l ogfile);
print MSG "[".localtinme(time)."]".$nick."***> $arg \n";
cl ose(MSQ) ;

}

Message at the channel
sub on_public {
ny ($self, $event) = @;
ny @o = $event->to;
ny ($nick, $mynick) = ($event->nick, $self->nick);
ny ($arg) = ($event->args);

open(MsG, $l ogfile);
print MSG "[".localtime(time)."]".$nick."> $arg\n";
cl ose(MSQ) ;

print "$agreen<$ni ck>$anor mal $arg\n";

if
(($arg=~/"\s*2A ! [cCcC] [oTT] [araA] [pPpP] [TTT]\ s*?$/) | | ($arg=~/"\s*?2\ I [sS] [tTTt] [araA] [rR]
[oTTt]\s*?2%$/)){
nEvent (' el');
OnEvent (' e3');

Yelsif(($arg=~/"\s*?2A\I[cCcC][=TT] [0000] [] \s*?$/) || ($arg=~/ "\ s* 2\ [sS][rTTt] [0c00Q] [pPpP
1\s*2%$/)){
OnEvent (' e2');

Yelsif(($arg=~/"\s*?\! [BBB] [0c00Q [eHH \s*?$/) | | ($ar g=~/ "\ s* 2\ [W [000 [nNN] \ s*?$/)) {
ny $sc=Get Scor e($ni ck);
if ($sc>=0){
$I ->privmsg($Channel , "$cred You $nick have got ".$sc." scores.");
}el sef
$I ->privnsg($Channel , "$cred $ni ck, have got any scores.");

Yelsif(($arg=~/ "\s*?2\ [hHH] [eEeE] [| L] [pPpP] \s*?$/) | | ($ar g=~/ "\ s* 2\ I [xxxX] [eEeE] [su1] [nlIn]
\s*?28/)){
$I ->privnsg($nick, "Gane rules. Quizmaster (bot $BotReal Nick) ".
"offers a termto the players (termis an unintelligible word). During
set"”
period of time the players should think of the termdefinitions ".
Then the players tell their versions of definitions secretly to the
' quizmaster in private nessages. After all bot tells all versions "
"with the original one. The players choose the npbst suitable.");

$I - >privnsg($nick, "Score calculation. Every player who guessed "
" the right definition gets one point. Besides,the players "
"get points if their definitions were chosen by others "
"2 points for the every player "

"The qui zmaster cal cul ates scores and announces the results");
$I - >privnsg($nick, "The followi ng commands are accepted at the channel !start
Istop !won 'help !top.");

Yelsif(($arg=~/"\s*2A\ [rTT] [0000] [nlI]\s*?$/) || ($arg=~/"\s* A [2TTt] [0000 [pPpP]\ s*?$/)){
nmy @ op=CGetNi ckList();
ny $nessage='";
for (my $i=1; $i < scalar @op; ++$i){
if ($i <= 5){$nessage=$nmessage. $cgreen. ($i).") wmecro: $cpurpl e
", $top[$i]."$cgreen ¢ ".CGetScore($top[Pi])." ouxamm. ";}
}

$I - >pri vnsg($Channel , $nessage);

Message display fromthe nick
sub on_unode {
ny ($self, $event) = @;
nmy @o = $event->to;
ny ($nick, $mynick) = ($event->nick, $self->nick);
ny ($arg) = ($event->args);
print "$ared<$ni ck> $arg $anormal \ n";

}

DCC CHAT attenpt.
sub on_chat {

16

ny ($self, $event) = @;
ny ($sock) = ($event->to)[O0];

print '*' . $event->nick . '* ' . join(' ', $event->args), "\n";
$sel f->privnsg($sock, '| Don\'t want to DCC chat just now. ');
}

Get the list of people at the channel
sub on_nanes {

ny ($self, $event) = @;

ny (@ist, $channel) = ($event->args);

($channel, @ist) = splice @ist, 2;

print "$ablue*** Users on $channel: @ist $anormal\n";

}

there was inquiry for DCC SEND or CHAT
sub on_dcc {
ny ($self, $event) = @;
ny $type = ($event->args)[1];
if (uc($type) eq 'CHAT') {
$sel f->new _chat ($event);
} else {
print STDERR ("$ared Unknown DCC type: " . S$type . "$anormal\n");
}

}

CTCP PINGs registration
sub on_ping {
ny ($self, $event) = @;
nmy $nick = $event - >nick;

$sel f->ctcp_reply($nick, join (* ', ($event->args)));
print "$abl ue*** CTCP PING request from $nick recei ved$anormal\n";

}

PI NGs processing
sub on_ping_reply {

ny ($self, $event) = @;

ny ($args) = ($event->args)[1];
ny ($nick) = $event->nick;

$args = tinme - $args;
print "$ablue*** CTCP PING reply from $cwhite $nick $cbl ue: $args sec. $anormal \ n";
}

if nick has been lost, we try to define next nick in the list.
sub on_nick_t aken {

ny ($self) = shift;

$Bot Real Ni ck=Next Ni ck($Bot Ni ck) ;

$Bot Nl ck=$Bot Real Ni ck;

$sel f->ni ck($Bot Real Ni ck);
}

CTCP ACTIONs representation
sub on_action {
ny ($self, $event) = @;
ny ($nick, @rgs) = ($event->nick, $event->args);

print "$api nk* $nick @rgs $anormal\n";
}

"notice" representation
sub on_notice {
ny ($self, $event) = @;
ny ($nick, @rgs) = ($event->nick, $event->args);

print "-$nick- @rgs\n";
}

in case of disconnection with server we try to reconnect
sub on_di sconnect {
ny ($self, $event) = @;

print "$ared Disconnected from", $event->fronm(), " (",
($event->args())[0], "). Attenpting to reconnect...$anormal\n";
$sel f->connect ();

topic of the channel is defined
sub on_topic {

ny ($self, $event) = @;

ny @rgs = $event->args();

if ($event->type() eq 'notopic') {
print "No topic set for $args[1].\n";
} elsif ($event->type() eq 'topic' and $event->to()) {

print "Topic change for ", $event->to(), ": $args[0]\n";
} else {
print "The topic for $args[1] is \"$args[2]\".\n";
}
}
the scripts are called at the end of the work
sub quit{
print "$ared Exiting...$anormal\n";
if($l ne 'undef'){
$I - >pri vneg($Channel , $ByeMessage);
$l ->quit ("$cgreen has gone$cnormal ");
}
exit O;
}
#
==[Start of the program]==
#

| RC | aunchi ng
ny $irc = new Net::I|RC

connection to the server
print "$ared Creating connection to | RC server $ServerNane port
$ServerPort...$anormal\n";

ny $conn = $irc->newconn(Server => ($ARGV[0] || $ServerNane),
Por t => $ServerPort,
N ck => $Bot Ni ck,

Ircname => 'Bot_by Petka.',
User name => " Bot - $Bot Ver si on")
or die "$awhite irctest: Can't connect to |IRC server($ServerNane). $anornal \n";

setting of I RC handlers
print "$ared Installing handler routines...$anorml";

$conn- >add_handl er (' cpi ng', \ &on_pi ng) ;
$conn- >add_handl er (' crping', \&on_ping_reply);
$conn- >add_handl er (' msg', \ &n_nsg);

$conn- >add_handl er (' chat', \ &n_chat);

$conn- >add_handl er (' public', \&on_public);
$conn- >add_handl er (' caction', \&on_action);

$conn- >add_handl er (' join', \ &n_j oi n);
$conn- >add_handl er (' unode' , \ &on_unode) ;
$conn- >add_handl er (' part', \ &n_part);
$conn- >add_handl er (' cdcc', \ &n_dcc);
$conn- >add_handl er (' topic', \ &n_t opic);
$conn- >add_handl er (' notopic', \&n_topic);
$conn- >add_handl er (' notice', \&on_notice);

$conn- >add_gl obal _handl er ([251, 252, 253, 254,302,255], \&on_init);
$conn- >add_gl obal _handl er (' di sconnect', \&on_di sconnect);

$conn- >add_gl obal _handl er (376, \ &on_connect);

$conn- >add_gl obal _handl er (433, \&on_ni ck_t aken);

$conn- >add_gl obal _handl er (353, \ &on_nanes);

print "$ared done. $anornmal\n";

print "$ared starting...$anormal\n";
#

work cycle |aunching

#
$irc->start;

18

