

Tel Aviv University
School of Education

Research proposal towards a degree of PhD

Subject:

REQUIREMENTS ATOMIZATION IN
SOFTWARE ENGINEERING EDUCATION

Submitted by: Hanania Salzer

I hereby declare my approval to supervise Hanania Salzer in his research

towards the degree “Doctor of Philosophy”, and I approve his research

proposal.

Supervisor: Dr. Ilya Levin

Signature: ___________________________

Subject in Hebrew:

����������	�
������	���������	����	���	�

Date: 18 May 2003 Number of words: 9,255

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 2 (of 52)

Table of Contents

1 ABSTRACT... 3

2 INTRODUCTION 5

3 LITERATURE REVIEW 6
3.1 ATOMIC REQUIREMENT (ATR)

SPECIFICATIONS .. 6
3.1.1 Requirements Specifications, Design

Specifications................................. 6
3.1.2 Requirements Atomization............. 7
3.1.3 ATRs’ Nominal Definition 8

3.2 CURRENT USES FOR THE TERM “ATOMIC
REQUIREMENT” ... 9

3.3 LOGIC CONTROL AND ATRS 10
3.3.1 System Partitioning into Control Unit

and Operational Unit..................... 11
3.3.2 Logo Example of Logic Control 12
3.3.3 ATRs and Logic Control 15
3.3.4 ATRs’ Procedural Definition......... 17

4 RATIONALE OF THE RESEARCH ... 18
4.1 ATRS IN COGNITIVE PROCESSES DURING

DESIGN .. 18
4.1.1 Handoff.. 18
4.1.2 Mental and Conceptual Models..... 19
4.1.3 Bits and Chunks of Information..... 20
4.1.4 Designing and Chunking 21
4.1.5 ATRs and Cognition 22

4.2 ATRS’ ROLE IN LEARNING THE CU-OU
INTERACTION... 25
4.2.1 Modularity and Logic Control....... 25
4.2.2 Control vs. Operation 26
4.2.3 Control Signals.............................. 26

5 RESEARCH HYPOTHESES 28
5.1 SCOPE.. 28
5.2 THE HYPOTHESES 28

6 SIGNIFICANCE OF THE RESEARCH
.. 30

7 METHODOLOGY 31
7.1 RESEARCH QUESTIONS 31
7.2 RESEARCH POPULATION 32
7.3 INDEPENDENT VARIABLE - SPECIFICATION

STYLE .. 32
7.4 DEPENDENT VARIABLES............................ 33

7.4.1 Number of Specification Bugs 33
7.4.2 Number of Software Bugs 34
7.4.3 Coupling Level............................... 34

7.4.4 Cohesion Level 35
7.4.5 Specification Style 35

7.5 VARIABLE DEPENDENCY 36
7.6 RESEARCH TOOLS...................................... 37

7.6.1 Object Analysis 37
7.6.2 Interviews 38

7.7 RESEARCH COURSE 38
7.7.1 Data Collection 39
7.7.2 Data Analysis................................. 40

8 APPENDIX: TERMS AND
DEFINITIONS.. 41

9 APPENDIX: COUPLING LEVELS AND
COHESION LEVELS 43

9.1 LEVELS OF COUPLING................................ 43
9.2 LEVELS OF COHESION................................ 43

10 APPENDIX: DERIVING VARIABLES
FROM ATRS .. 45

10.1 DEFINITIONS USEFUL FOR COMPARING ATRS
 ... 45

10.2 ATR’S SUITABILITY AS A VARIABLE 46
10.3 ATR’S VALIDITY AS A VARIABLE 47

11 BIBLIOGRAPHY................................... 48

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 3 (of 52) Abstract

1 Abstract

The proposed research belongs to the domain of technology education. It will

combine two fields of education – Software Engineering and computerized logic

control, both are within the broader scope of studying programming, electronics

and control.

It is based on the notion of Atomic Requirement (ATR), which is defined as a

requirement or design specification that is (a) associated with a system

functionality or component, (b) is well-formed and (c) would not be useful to

subdivide into more elementary requirements at the abstraction level where it is

being considered.

Field experience in the hi-tech industry suggests that ATRs, as opposed to non-

atomic specifications facilitates identifying specification bugs, reducing

implementation bugs, and identifying software bugs by tests. It is assumed that

ATRs’ effects result from two of their properties; they make elements of the

design to be explicit, and they handle concerns one at a time. Cognitive processes

might explain why these properties of ATRs would have the above effects.

This research will try to scrutinize the above claims, empirically and

quantitatively and as they might become expressed in the work of students

developing computerized logic control for software or software-hardware

systems.

First, it will be checked whether replacing non-atomic specification with ATRs

indeed results in students finding more bugs in the specifications, in making less

implementation bugs, and in identifying more software bugs by tests.

Next, it will check whether students engaged in designing a controlled system and

using ATRs, as opposed to non-atomic specifications, to document its design, are

more successful in segregating control logic from operational functionality, thus

designing the system with higher cohesion of the control unit. Also it will check

whether students using ATRs are more successful in identifying the control

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 4 (of 52) Abstract

signals, thus designing a system with lower coupling between its control unit and

its operational unit.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 5 (of 52) Introduction

2 Introduction

The proposed research draws together the fields of Software Engineering (SE) and

technology education. In particular, it deals with the atomization of requirements

specification and design specification, and with their utilization in the teaching of

computerized logic control.

The research proposal stems from the observations of Salzer (1999). His plain

intuition led to develop a technique of atomizing specifications (both requirement

and design), expecting for improvements in various parameters that were

important in the software development industry. Indeed, he reports of success,

such as reduced bug rate during software development and improved bug finding

during testing, and he offers explanations for the results. However, scientific

examination with quantitative data is needed in order to replace the “field

experience” with useful results. SE seems to be a natural domain for such

research. With the objective to examine the theory’s effectiveness in practice, the

research attempts to draw together SE and one of the education fields where basic

SE principles are first taught to students. The chapter “Literature Review”, below,

presents logic control as an education field that is likely to be suitable for this

purpose. The chapter “Rationale of the Research” offers reasoning why logic

control is a particularly suitable subject matter upon which atomic specifications

could be effectively compared to non-atomic specifications.

”Why is it so difficult to introduce RE [Requirements Engineering] research

results into mainstream RE practice?” This question, raised by Kaindl et al

(2002), is worth noting, even though RE (a sub-discipline of SE) deals only with

requirements specifications and not with design specifications. Among the reasons

for the difficulty to introduce RE research results into mainstream practice Kaindl

et al point towards the scope of disciplines looked at by researchers: “RE is by its

very nature interdisciplinary and needs to adapt and integrate results from other

disciplines, such as … cognitive science.” Indeed, the proposed research will

attempt to harness cognitive science to examine the effects of specification

atomization, and with the hope that its results will be introduced into the

technology education practice.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 6 (of 52) Literature Review

3 Literature Review

The literature review is divided into two. The first part is in this chapter. It begins

by outlining the notion of Atomic Requirements (ATRs). Then, it looks into

Atomic Requirements’ use in the literature. Finally, it summarizes some of the

Software Engineering (SE) principles that must be followed in the design of a

logic control component for a controlled system. It shows, where ATRs are

expected to support the adherence to these SE principles.

The literature review’s second part is in the next chapter, “Rationale of the

Research”. It lays down foundations for a mechanism by which ATRs might

supports SE.

3.1 Atomic Requirement (ATR) Specifications

The term (software) requirement has a variety of definitions, such as: “a condition

or capability that must be met by software needed by a user to solve a problem or

achieve an objective” (IEEE Std 610, 1991). Because requirements are usually

natural language statements, their quality varies. “Well-formed requirements” are

abstract, unambiguous, traceable and validatable (testable) (IEEE Std 1233,

1998). Atomic Requirements (ATRs) are well-formed requirements that, in

addition, are also the result of splitting complex requirements into elementary, or

indivisible, requirements. Usually, an ATR takes the form of a single sentence

using non-formal language, nevertheless precisely expressing a specification.

3.1.1 Requirements Specifications, Design Specifications

The specification of a system, or any of its components, is a description of its

interface (Britton and Parnas, 1981). The interface specifications comprise the

system’s (or system component’s) requirements specifications. This implies that

specifying the internal design of a system involves listing its components, and

specifying each one. This insight establishes a recursive relationship between

components along the hierarchy of a system’s structure: the specifications of a

component residing at a certain level of the hierarchy is, at the very same time,

part of the higher level component’s internal design. In other words, every

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 7 (of 52) Literature Review

specification statement is a requirement specification relative to a component at

some level, and in the same time it is also an internal design specification of a

higher abstraction level (Harwell et al, 1993, Kilov and Ross, 1994, Ghezzi et al,

2003, pp.161-162). Because of this duality, all specifications are called here –

requirements specifications.

3.1.2 Requirements Atomization

The motivation for atomizing requirements is derived from the intrinsic dangers

posed by the use of non-atomic requirements. For instance, when developers and

testers look at a non-atomic requirement, they may recognize only some of the

functionality it implies, overlooking the rest. The result could be a bug, as well as

a test not looking for the bug. ATRs reduce this and other risks by making all

functionalities explicit, and by listing each, elementary functionality, separately

from the others. Therefore, chances are considerably better to achieve visibility of

intentions, hence unambiguity, with a set of ATRs than with an equivalent non-

atomic specification (Salzer, 1999).

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 8 (of 52) Literature Review

3.1.3 ATRs’ Nominal Definition

Figure 1: Concept map of ATRs' properties

Figure 1 summarizes the properties of ATRs described so far. The nominal

definition for an ATR unifies design and requirement specifications and

determines its atomicity:

An ATR is a requirement or design specification that is (a) associated with a

system functionality or component, (b) is well-formed and (c) would not be useful

to subdivide into more elementary requirements at the abstraction level where it is

being considered.

The ATR’s atomicity is embodied by part (c) of the definition. Following are

explanations for key phrases included in the definition:

�� Functionality or component. Before designers define software and

hardware components for a system, they describe the system as a list, or

hierarchy, of functionalities. For example, logical processes in Data Flow

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 9 (of 52) Literature Review

Diagrams and Use Cases are widely used for describing and organizing

system functionalities before any components are identified. Specifications

are associated first with functionalities, and later – with components.

When a specification is not associated with any specific component or

functionality then, by default, it is associated with the whole system,

which is located at the top of both the component hierarchy and the

functional hierarchy.

�� Well-formed. The term “well-formed” is defined in the IEEE standard

number 1233, 1998.

�� Abstraction level. Abstraction level refers to the degree of implementation

freedom. With the progress of a system’s definition process, each level’s

specifications are further elaborated in the next, lower level, which

consequently is less abstract. Practically, an abstraction level can be

identified with a set of functionalities or components that contain new

specifications derived from the specifications of the higher abstraction

level.

3.2 Current Uses for the Term “Atomic Requirement”

The terms “atomic requirement” and “atomic specification” have showed up

incidentally in journals and on the Internet. However, Atomic Requirements

(ATRs) have not been defined in the literature, and the potential advantages of

their use have not been discussed, except by Salzer (1999).

Different authors make different use the terms Atomic Requirements and Atomic

Specifications. Bolton et al (1992) and Sistla (1997) use the term atomic

requirement for simple requirements in contrast with more complex requirements.

Maiden et al (1997) too use the term atomic requirement for individual

requirements, and include atomicity among the eight dimensions involved in

understanding the relationship between a scenario and a requirement, but do not

define this dimension.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 10 (of 52) Literature Review

Harn et al (1999) give a few examples of “atomic issues” that seem to be really

atomic. On the other hand, they list many examples of what they call atomic

requirements and atomic specifications, but none of them is indeed atomic in the

sense of the definition given in the previous section, as demonstrated by the

following example: “R1.1-3.3: The control system must provide the function of

receiving data of base coordinates, target coordinates, coordinates of safety

point, target speed, and delay time of decision making; and computing data of

base position, target position, missile direction, missile speed, target and missile

intersection point, and missile reach time.” Lohr (1992) uses the term atomic

specification to denote sequential implementation in contrast to concurrent

implementation.

None of the above references includes indivisibility among the properties of what

they call atomic requirements, or provide an account of the benefits observed or

expected as a result of their atomicity.

3.3 Logic Control and ATRs

Logic control is the algorithm that controls the operation of an object by

determining timely variations in its state. The algorithm models the controlled

object’s states. “Each state in the algorithm maintains the object in the respective

state, and a transition to a new state in the algorithm corresponds to a transition

of the object to the respective state, thereby implementing the logic control”

(Shalyto, 2001).

The approach proposed in this section is based on the modular partition of a

controlled system into an operational unit (OU) and a control unit (CU), where the

latter implements logic control.

First, this section describes the relationship between the CU and the OU in terms

of well-designed modularity. Then it elaborates on the contribution of ATRs to

define the CU-OU interface in terms of well-designed modularity.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 11 (of 52) Literature Review

3.3.1 System Partitioning into Control Unit and Operational Unit

A controlled system can be viewed as composed of two high-level components,

the control unit (CU) and the operational unit (OU). The CU is the part of the

system responsible for taking the timely decisions that control the system’s

behavior. The OU is defined as all system components, except the CU. The

communication between the system and its environment is only across the OU-

environment interface. The CU does not interact directly with the system’s

environment; it communicates only with the OU. The OU can be viewed as an

interface between the CU and the system’s environment. Figure 2 presents two

pairs of input and output. The left-side pair is between the environment and the

OU, and the right-side pair is between the OU and the CU. From the CU design’s

point of view, this representation fully complies with the Four-Variable Model

(Parnas, 1995, Heitmeyer et al, 1996).

Input
Output

Environment

OU

Controlled System

CU

Figure 2: The system partitioning into an operational unit (OU) and a control unit (CU)

The system partition into a CU and an OU is a special case of system modularity.

The concept of designing modular systems is decades old. Modular design

constructs a system from a number of modules with well-defined interfaces; each

one is small enough and simple enough to be thoroughly understood and well

programmed (Parnas, 1972).

Parnas (1971) coined the term “information hiding”. It guides the designer to

decompose a system into modules that no longer correspond to steps in the

processing. Instead, every module is characterized by its knowledge of a design

decision, which it hides from all others. Its interface or definition is chosen to

reveal as little as possible about the module’s inner workings, called its “secret”.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 12 (of 52) Literature Review

Modular design brings with it great productivity improvements through better

comprehensibility and flexibility, faster and easier development, improved testing,

and re-usability of work-products (Parnas, 1972, Hughes, 1989). These design

properties are of significance in each one of the following cases: more than one

person is involved in the project; the project takes more than a couple of weeks;

the system will need to be maintained in the future or to be further developed

(Ghezzi et al, 2003, p. 1). At least two of these conditions are true for the several

months long projects of high school students building mobile robots.

Parnas (1972) suggested designing system modularity such that the design of each

module will be independent of other modules’ design. Two of the factors

contributing to module independence are coupling and cohesion1. These factors

are regularly discussed in software engineering textbooks, such as Ghezzi, et al

(2003, pp. 47-49).

Module coupling is the degree of connections between modules; hence it is a

measure of module interdependence. Level of coupling among modules must be

kept to the minimum in order to minimize the "ripple effect" where changes in

one module cause errors in other modules. The lowest level of coupling, hence the

best, is data coupling (Myers, 1975), where two modules communicate by passing

parameters of only primitive data elements. Two modules are content coupled if

one module references data contained inside another module.

3.3.2 Logo Example of Logic Control

Lego robots controlled by Logo programs are used in classrooms for exposing

students to hands-on experience with controlled systems (Resnick, Stephen and

Papert, 1988). Logo procedures, similar to the example in Figure 3, are frequent in

programs controlling Lego robots. This procedure implements the non-atomic

requirement specification:

1. When the light at sensor number 5 drops below 40% - turn on motor B.

1 See definition of coupling and cohesion in the “Dependent Variables” section of the “Methodology”

chapter and in the appendix “Coupling Levels and Cohesion Levels”.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 13 (of 52) Literature Review

The procedure in Figure 3 directly references data at input port number 5 in

another module (the Lego Interface, which is an electronic device communicating

between the Lego robot and a PC).

TO TURNLEFT
 WAITUNTIL [LIGHT5 < 40]
 TTO [MOTORA]
 OFF
 TTO [MOTORB]
 ON
END

Figure 3: An example Logo procedure

A well-designed CU is not aware of interface ports or the threshold value

determining a certain state, because these are “secrets” of OU components.

Instead, the CU communicates with the rest of the system (the OU) only via

binary input and output signals (Baranov, 1994, Levin and Mioduser, 1996) thus

providing pure data coupling.

The set of ATRs below is the result of splitting the non-atomic requirement

number �1 into several atomic requirements. The CU implements ATR number �2,

and the OU implements ATRs number �3 and �4:

2. Turn left when the robot is over a dark surface.

3. The robot is over a dark surface when the light at sensor number 5 drops

below 40%.

4. To turn left, turn off motor A, and turn on motor B.

According to these ATRs the OU sends to the CU binary signals indicating

whether the robot is over a dark surface or not. The CU sends to the OU a binary

signal whether to turn left or not. Obviously, the ATRs have facilitated the design

of data coupling between the CU and OU.

Module cohesion is the degree of inner self-determination of the module; hence it

measures the strength of the module’s independence. A module should be highly

cohesive. The best is a functionally cohesive module, which is one in which all of

the elements contribute to a single, well-defined task. The second best is the

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 14 (of 52) Literature Review

sequentially cohesive module, which is one whose functions are related such that

output data from one function serves as input data to the next function.

The example Logo procedure in Figure 3 carries out three functions: it taps a

certain hardware interface port (light sensor number 5), then it determines whether

the received input is below a certain threshold (40% of maximum brightness), and

finally, it controls the program flow according to the predicate’s outcome. This is

an example of sequential cohesion.

Replacing the non-atomic requirement specification �1 with the three ATRs �2, �3

and �4, results with the different functions implemented by separate modules.

Some OU modules handle inputs from certain sensors, and make them available

for the CU in the form of binary signals. Other OU modules respond to CU

signals by operating their respective actuators (such as certain motors). Finally,

the CU has only one function: to decide which OU functions to activate at any

point of time.

Clearly, the ATRs facilitated the design of a functionally cohesive CU module,

and functionally cohesive modules in the OU.

A possible outcome of the above approach is a learning process that would cut

back on mistaken allocation of control functionality to sensors and to actuators

(Mioduser et al 1996). The students would describe the functionality of the

system in question, and then atomize the resulting functional specifications. At

this point it would be straightforward to categorize the resulting ATRs as either

control or operation. The last step, in this classroom process, would be

identification of the system’s CU and allocation of the control functionality to this

CU. The remaining ATRs could be allocated to OU components.

Students tend to overlook the existence of control signals, which traverse between

a controller and the controlled components (Mioduser et al, 1996, Ma, 1999).

Segregation between the CU and the OU should lead students to discover the need

for a communication between the two components, and hence, to the need for

some kind of signals. Not only that, but also the abstract nature of the ATRs’ text

explicitly suggests what messages the binary signals carry.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 15 (of 52) Literature Review

When students build robots as a learning activity with the intention to study the

basic logic control principles, they may waste most of their focus and time on

non-control related issues (Martin, 1996, Hancock, 2001). As a remedy, students

should be guided to plan their system, and analyze the ATRs as described above.

The set of ATRs identified as the control functionality would reveal whether the

control constituent is too simple, whether the operational components are beyond

the students’ or their tools’ capabilities, or whether the predicted efforts, required

for developing each of the two parts, are unbalanced. Thus, before any time has

been wasted on building the actual system, teachers could assist their students

adjusting their plans to the academic needs and constraints.

3.3.3 ATRs and Logic Control

This research’s scope is limited to ATRs in the logic control context. In the logic

control context, An ATR relates binary input signals entering the CU with its

binary output signals. Following is a description of a special language of

transition formulae useful as a formal model for logic control (Levin and Levit,

1998). Later on, transition formulae will be shown to facilitate a formal definition

of ATRs in the context of logic control.

Transition formulae map binary input signals to binary output signals as follows.

The set LxxxX ,,, 21 �� of binary input signals is transferred from the OU to the

CU. The set of binary signals NyyyY ,,, 21 �� is the set of control

microoperations, transferred from the CU of the system to the OU. The CU

generates control microinstructions that are subsets of the microoperations set Y ,

which are executed concurrently. The OU performs microoperations in one-to-one

correspondence with the set Y .

A CU is associated with a set of transition formulae. A transition formula is

constructed as follows. The Boolean function i� consists of one Boolean product

(product term). Each product term i� , depending on a set of variables

LxxxX ,,, 21 �� , is put into correspondence with a control microinstruction iY ,

which is a subset of the microoperations set Y . Product term i� is assumed to be

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 16 (of 52) Literature Review

equal to 1 if and only if control microinstruction iY should be performed. The

resulting transition formula iF associated with iATR is defined as:

0YYF iiii �� ��

where

�
�
�

�

�
�

00

1

i

ii
ii if

ifY
Y

�

�
�

The expression 0Yi� in this formula tells explicitly that the ATR specifies only the

actions that should be taken when the condition i� materializes, but refrains from

explicating what should happen otherwise. When the condition in one ATR does

not realize, then the action specified in that ATR does not take place. The

transition formula conveys this information by stating that the microinstruction 0Y

(the empty microinstruction) is executed.

The correspondence between an ATR and its transition formula is demonstrated

below. Consider the following example ATR for a mobile robot that should avoid

touching obstacles:

5. Keep turning left as long as facing an obstacle that is too close.

ATR number �5 is one of the many specifications that define the robot’s logic

control. The threshold distance that is considered to be “too close” is defined in

another ATR. The robot’s CU receives from the OU two binary input signals:

x1=TRUE means that the robot faces an obstacle. x1=FALSE means that the robot

does not face an obstacle. x2=TRUE means that the robot is in safe distance from

any obstacle. x2= FALSE means that the robot is within dangerous proximity to an

obstacle. The CU transmits to the OU a binary signal, indicating a microoperation:

y1=TRUE signals the OU to make a turn to the right. y1=FALSE signals the OU

not to make a turn to the right.

Transition formula 1F corresponds to ATR number �5:

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 17 (of 52) Literature Review

	
 0211211 YxxyxxF ���

Every ATR in the context of logic control implementation is in a one-to-one

correspondence with a specific transition formula. The non-formal text in the

ATR and the formal transition formula carry the same information. The product

term i� represents the condition that the ATR describes. The control

microinstruction iY represents the operation that the ATR describes.

At the foundation of the proposed work’s approach is the reality that an ATR

carries the specification of the smallest meaningful quantum of functionality. The

one-to-one association between an ATR and the formal representation of a

corresponding transition formula makes evident the ATRs’ indivisibility. A direct

consequence of an ATR’s oneness is that it cannot carry a functionality that is

both control and operation. Therefore, after atomizing a sufficiently detailed set of

system specifications, the resulting ATRs can be segregated unambiguously into

two groups, control and operation.

3.3.4 ATRs’ Procedural Definition

Consequently, it is possible now to formulate a procedural definition for an ATR

in the context of logic control:

A control related atomic requirement specification (control related ATR) is a

requirement or design specification that is (a) associated with the system’s

control functionality, (b) is well-formed, (c) consists of a condition and of a

corresponding operation, and (d) the condition and the operation are indivisible

at the abstraction level where the specification is being considered.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 18 (of 52) Rationale of the Research

4 Rationale of the Research

The rationale of this research has two aspects, which are reflected also in this

chapter’s structure:

�� The potential role of ATRs in cognitive processes during system design,

and

�� The potential role of ATRs in learning the relationship between a

controlled system’s control unit (CU) and its operational unit (OU).

The first part creates the foundations for the second one.

4.1 ATRs in Cognitive Processes During Design

This section refers to cognitive processes to explain ATRs’ role in preventing

specification bugs from happen during system design and programming due to

multiple handoffs.

4.1.1 Handoff

The purpose of a requirement is to reproduce in the mind of the reader the

intellectual content, which was in the mind of the writer (Harwell, et al, 1993).

Harwell et al define a requirement specification’s quality as the extent to which

this reproduction takes place. In this work the definition’s scope is extended to

cover design specifications too.

Any non-trivial software development process goes through several steps from its

conception to its development and delivery. The process may continue with

further cycles of maintenance and additional development. Regardless of the

development methodology – whether it is “Waterfall” or “Extreme Programming”

(XP) – each step in a top-down process generates a new abstraction level. Each

step makes the system definition more explicit; hence it generates a lower

abstraction level than the one from which it originates (Kilov and Ross, 1994).

Along the course of the system development process, specifications are handed

off from step to step in order to further elaborate and detail the design. The

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 19 (of 52) Rationale of the Research

definition of Harwell, et al (1993) suggests that during a hand off, a less than

perfect specification is likely to lose some of the information that it intended to

carry. Apparently, handoff is a weak point of the process. Mental and conceptual

processes might help explain this weakness.

4.1.2 Mental and Conceptual Models

Norman (1983) described the difference between the explicit, conceptual

description of a target system and its mental model. Using t to denote a particular

target system, C(t) to denote its conceptual model, M(t) to denote its mental

model, and � to denote a handoff, it is possible to describe the design process in

a student assignment as a series of handoffs:

1. A teacher conceives a system t to be built by students. The teacher has a

mental model of the target system: M(t).

2. The teacher composes an assignment statement that describes the to be

built system’s functionality. The teacher creates a conceptual model of her

own mental model: M1(t1) � C2(M1(t1)). The teacher believes that

everything in her mental model is also in the written conceptual model, but

this may be false. Hence, the conceptual model communicates a system

that might be a slightly different from what the teacher had in her mental

model: C2(M1(t1)) = C2(t2), where possibly t1 � t2.

3. Each student reads the assignment, and understands it, more or less, by

creating his or her own mental model: C2(M1(t1)) � M3(C2(M1(t1))), or

C2(t2) � M3(C2(t2)). This handoff is just another chance for further

information loss. Therefore, the student’s mental model may be different

from the one present in that assignment statement: M3(C2(t2)) = M3(t3),

where possibly t2 � t3. One may also assume that t1 � t3.

Each subsequent handoff takes one of the two forms listed below:

�� Understanding something communicated in a symbolic form, such as a

written or a spoken form: Cn(tn) � Mn+1(Cn(tn)).

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 20 (of 52) Rationale of the Research

�� Communicating one’s thoughts in a symbolic form: Mn(tn) � Cn+1(Mn(tn))

Furthermore, the two forms alternate during a process of subsequent handoffs:

M1(t1) � C2(t2) � M3(t3) � C4(t4) � … � Mn-1(tn-1) � Cn(tn)

Why would handoffs be vulnerable to information loss? Norman (1983) describes

mental models as incomplete, not accurate, and containing errors and

contradictions. Still, people will keep using a mental model even when they know

that it is deficient. Therefore, it is reasonable to assume that every time a model

passes through a mental model, it emerges in a conceptual model after,

potentially, attracting bugs.

4.1.3 Bits and Chunks of Information

Miller (1956) introduced the terms bit of information and chunk of information. A

bit is an elementary amount of information, such that it is just enough to make a

decision between two equally likely alternatives. Control related ATRs have been

described earlier in the context of logic control. The ATR’s text, consisting of an

indivisible condition and an action, is sufficient to make a decision between two

alternatives, whether to carry out the action or not. Hence, the control related

ATRs are the bits of a control unit (CU).

Miller (1956) proposes that people organize or group bits of information into

familiar units, which he calls chunks. For example, a person may think of a CU’s

functionality in two alternative ways. Sometimes it is useful to consider it as a

single chunk. At another time it is more suitable to consider a few of the

individual ATRs, the bits. From Miller’s findings it is possible to conclude that a

person’s mind can process seven, plus or minus two, ATRs simultaneously, but

the same person would have no problem dealing with a CU as a whole, regardless

of the number of ATRs it implements.

Transition formulae have been described earlier in the context of logic control.

One may predict that in order to successfully handle seven, plus or minus two,

transition formulae, each transition formula must be a chunk that can be counted

as “one”. The formal notation of transition formulae requires the reader to process

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 21 (of 52) Rationale of the Research

a number of distinct input variables and output microoperations. Therefore,

transition formulae are not likely to be valid chunks, since the number of variable

instances in, say, seven transition formulae would pile up to a number that is

beyond most people’s capabilities to handle at once. ATRs, on the other hand,

should be able to substitute the, sometimes complex, subsets of inputs and

microoperations into a verbally expressed concept that a person can think of as a

single item. Therefore, an ATR should be a useful chunk.

4.1.4 Designing and Chunking

The essence of design is invention. “Soar” is a candidate, unified theory of

cognition (Lehman et al, 1996). According to the Soar model, each time the

cognitive processes in the working memory (WM) cannot locate in the long term

memory (LTM) a rule (“association”) that would allow achieving a goal, it

stumbles into an impasse. The impasse triggers a new goal to generate a new rule

that should resolve the stalemate. The newly generated, and useful rule is called a

chunk. Inventing a new rule is called chunking.

There is no contradiction between Miller’s use of the chunk concept and that of

Lehman et al, in the Soar model. In both models, older chunks are used to create

newer ones, thus an old chunk is a bit for a new one. Chunking can describe the

creative activity of design as follows.

For the sake of simplicity, let’s assume that a designer considers a single

specification. In term of the Soar model, the problem space’s goal is to create a

more detailed, less abstract set of specifications, which will detail how the higher-

level specification will be realized. This goal implies that once the new, lower-

level specifications have been created, they fully cover the higher-level

specification.

In most cases, the designer does not find the more detailed specifications in his or

her LTM. The result is an impasse. The impasse triggers in the WM a new

problem space with a new goal: to invent a new specification that will suit the

new abstraction level, and that will satisfy the higher-level specification. Once the

new specification, a new chunk, has been generated, the designer adds it to the

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 22 (of 52) Rationale of the Research

original goal’s problem space. If the new specification does not fully cover the

higher-level specification, then a new impasse arises. The process is repeated until

the goal is achieved. At the end of these cycles the designer has a set of new

chunks, which is the required set of the target abstraction level’s new

specifications. Note that unless the designer takes the extra effort to document

each and every chunk, and unless this documentation is absolutely correct, the

new abstraction level’s conceptual model is deficient.

4.1.5 ATRs and Cognition

To motivate the difference between atomic (ATR) and non-atomic specifications,

a simple example presents the cognitive processes of design. Assume that a

programmer is assigned to write a program that retrieves from a database the

necessary data to be printed on a teller machine’s slip. The program collects the

raw data into a data structure for further processing. The assignment includes the

non-atomic specification in Figure 4.

Transaction-slip Data Retrieval

S-247: All transaction data are collected into a data structure

for the teller machine slip.

Figure 4: An example non-atomic specification

In terms of Soar, the programmer’s goal is to think out its realization in program

code. If the programmer likes to immediately put her thoughts in program code,

then the goal for her primary problem space is to generate program code that

populates the data structure. Basically, she has a single problem space for most of

the task at hand: to write the requested program.

The programmer has in her long-term memory (LTM) two relevant associations.

One is the list of transaction data available in the system’s database. The other is

that clients should be given only data that is useful for them.

The programmer’s first impasse could lead to generating the new chunk:

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 23 (of 52) Rationale of the Research

If using the “Collect all Transaction Data for a Teller Machine

Slip” problem space,

and the data is for a client of the bank,

then include only data useful for clients.

A new problem space is generated in the programmer’s WM, with the goal to

include only data that is useful for the clients. The programmer may have in her

LTM the information that through a few more steps will let her generate a set of

new chunks, such as:

If using the “Collect all Transaction Data for a Teller Machine

Slip” problem space,

and the data is for a client of the bank,

then include “transaction date” in the data structure.

This chunk is not yet useful to create the program code. The programmer, keeping

the above chunk in her working memory (WM), has a new impasse that induces

an additional problem space with the goal to write a piece of program code that

will retrieve the data from the data base. The resulting chunk is a mental model of

the program code, which the programmer immediately hands off, in the form of a

conceptual model, by writing down the actual program code.

At this point, the programmer’s WM has created a considerable hierarchy of

problem spaces. But that is not all, because the goal for the main problem space,

“Collect all Transaction Data for a Teller Machine Slip”, is far from being

achieved. The whole process repeats until the goals of all subordinate problem

spaces have been achieved, such as: “Include all Data Useful for the Client”,

“Retrieve XYZ from the Database”, “Add XYZ to the Data Structure”, etc.

The seven, plus minus two, limit on the number of concurrent chunks in WM, is

extended through shuffling information between WM and LTM, and between

WM and external memory, such as written text. Every shuffle, or handoff, that

involves the mental model is vulnerable to damage. This damage is cumulative,

and seems to build up fast.

An alternative design process may eliminate many of the chances for information

degradation. In the above example, the programmer performed complex design

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 24 (of 52) Rationale of the Research

activities in her mind. In the following example, on the other hand, the designer

performs a number of design steps and documentation before handing off the

design to the programmer.

The designer breaks down the specification in Figure 4 into ATRs suitable for the

next, second abstraction level (Figure 5). Then he handles each ATR of the

second abstraction level – separately. In the next step, again he breaks down the

second abstraction level ATRs, creating the third abstraction level ATRs (Figure

6). At this time, or even earlier, the designer completes the design with standard

ATRs, as described by Salzer (1999). The standard ATRs cover issues such as

data retrieval from the database, and error handling. (The example does not show

them.)

Transaction-slip Data Retrieval

S-601: Slip data is collected into a data structure for the

teller machine slip.

S-602: Only information useful for the Client is included in

slip data structure.

Figure 5: Second abstraction level

Transaction-slip Data Useful for the Client

S-603: Transaction’s short description

S-604: Transaction date

S-605: Transaction amount

Figure 6: Third abstraction level

In this, alternative process, the designer works on small hierarchies of problem

spaces. External memory is used to store chunks generated during the process,

thus trading-off extra physical action for reduced mental complexity (Norman,

1983).

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 25 (of 52) Rationale of the Research

It is expected that because of the difference in the cognitive processes, a step-by-

step process, such as described for the designer (second example), will

accumulate considerably less bugs then a single-shot process, such as described

for the programmer (first example).

In summary, this work hypothesizes that the vulnerability to information loss

during handoff is affected by the individual specification statements’ complexity.

One may expect that an ATR, which carries the smallest possible amount of

meaningful information, hence presents the simplest goal for a problem space,

would be the optimal item for a loss-less handoff of information. Therefore, this

research will examine whether the loss of information when handing off atomic

specifications (ATRs) is less than the loss of information when handing off non-

atomic specifications.

The practical effect of improved information retention along the development

process should be a better identification of bugs by specification validation (see

hypothesis number 1.a) and by software testing (see hypothesis number 1.d) as

well as less bugs making their way into programs (see hypothesis number 1.c).

For the same reason, views of teachers and students regarding to the expectations

from an assignment will be less dissimilar (see hypothesis number 2).

4.2 ATRs’ Role in Learning the CU-OU Interaction

This section refers to ATRs’ potential ability to enlighten the segregation between

a controlled system’s OU and CU, and the communication between them in a way

that facilitates students’ understanding the basics of logic control.

4.2.1 Modularity and Logic Control

Most ATRs, at the lowest abstraction level, can be assigned to exactly one

software unit, while this is not true for non-atomic specifications (Salzer, 1999). It

is speculated that teaching students to allocate each ATR to either a control

component or to an operational component, should lead them to recognize the

functional difference between a system’s control and operational components.

Thus students are expected to apply functional (i.e., the best) module cohesion

when they design a system’s control component (See hypothesis number 1.b).

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 26 (of 52) Rationale of the Research

Furthermore, ATRs facilitate data (i.e., the best) coupling between the CU and the

OU, as described in the next section.

4.2.2 Control vs. Operation

Building physical artifacts is an important educational tool in learning the basics

of logic control (Lewis, 1994). Some researchers observed that students, when

were given the freedom of creativity, engaged into tasks that they did not have the

skills to make into reality. Many of Martin’s undergraduate students (Martin,

1996) started off their mobile robot projects with high level plans for control only

to find out rather late in their project’s lifecycle that it was too complex to

implement. Programming a robot to behave in interesting or intelligent ways – in

ways that have some apparent autonomy – can be surprisingly hard. Students

often find that goals must be repeatedly scaled back as the complexity of

seemingly simple behaviors is revealed (Hancock, 2001).

These observations could be explained by students’ inability to distinguish

between control and operational functionalities.

4.2.3 Control Signals

The observations of Mioduser et al (1996) lead to the conclusion that even in the

case of correct identification of components and functionality (device knowledge)

in a feedback system, children may misallocate control functionalities relative to

the components. Ma (1999) reports a case with a high-school student who failed

to allocate more than one function to the same physical component. Both studies

observe three constituents of the mental model for a feedback system:

components, functions and signals. They find that students are not always aware

of the signals moving between a system’s control and operational components.

Control signals may be viewed as taking the role of “stuff” in and among

“autonomous objects” in the conception of mental model proposed by Williams et

al (1983). de Kleer and Brown (1983) define the “stuff” as the (sometimes

abstract) means to transmit information among a machine’s comstituents as

represented by a mental model.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 27 (of 52) Rationale of the Research

These findings raise a problem; students tend to ignore the signals that operational

and control components send to each other. The section “Logic Control and

ATRs”, in the “Literature Review” chapter, elaborated on the one-to-one

correspondence between control-related ATRs and transition formulae. It is

speculated that students will identify the textual counterparts of the transition

formulae variables (the phrases that stand for the “x”-es and for the “y”-s) as the

control signals traversing between the CU and the OU (See hypothesis number

1.f).

It is expected that crisp identification of control signals will help students to

comprehend the notion of data coupling between the CU and the OU (See

hypothesis number 1.b).

It is expected that understanding the coupling between the CU and OU, and the

cohesion within each of these two parts of a controlled system, will have the

overall effect of understanding the CU-OU functional segregation (see hypothesis

number 1.e) and comprehending the CU’s role as the control module in a

controlled system.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 28 (of 52) Research Hypotheses

5 Research Hypotheses

The hypotheses in this research revolve around the proposition that ATRs,

through their atomicity lead to a number of measurable benefits, in the area of

software programming education and in learning basic logic control concepts.

5.1 Scope

The notion of Atomic Requirement (ATR) provokes questions concerning their

utilization and questions regarding to their composition. The research focuses on

questions regarding to ATRs’ utilization and effectiveness only. Questions that

look into the process of ATRs’ composition are left for a possible future work.

This research will evaluate the hypotheses listed below.

5.2 The Hypotheses

All hypotheses listed below relate to students learning programming, software

development or controlled system development. In addition, these hypotheses are

presented in the context where students receive assignments in the form of written

requirement or design specifications, and develop software programs that should

comply with those specifications. In this context we propose the following

hypotheses:

1. Students receiving requirement or design specifications in the form of

ATRs as compared to students receiving requirement or design

specifications in the form of non-atomic specifications, perform better in

the following areas:

a. Through review, they identify more of the bugs existing in the

requirement or design specifications.

b. They design software applications with better modularity in terms of

lower coupling between modules and higher cohesion within

modules.

c. While programming, they make fewer bugs in their programs.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 29 (of 52) Research Hypotheses

d. Through testing, they identify more of the bugs that they make in the

software programs written by them or by others.

e. They learn faster and better the notion of CU and the segregation

between the CU module(s) and the OU modules.

f. They learn faster and better the notion of control signals, which

traverse between the CU and the OU.

2. Teachers who work with students receiving requirement or design

specifications in the form of ATRs as compared to Teachers who work

with students receiving requirement or design specifications in the form of

non-atomic specifications, make a less biased evaluation of the extent to

which students’ software programs meet the assignment goals.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 30 (of 52) Significance of the Research

6 Significance of the Research

If indeed ATRs prove to reduce the frequency of specification bugs, then they

could be a significant supplement to requirements and specifications’ validation.

While validation help identify and remove bugs after they have occurred, the use

of ATRs would prevent bugs form happening on the first place.

This research intends to contribute to the following fields of education:

�� Learning sound Software Engineering (SE) notions and practices, in

particular:

o Software modularity in terms of cohesion and coupling

o Requirement based software unit development and testing

(verification).

o Requirement coverage in software unit development and testing.

�� Underlying theory of computerized logic control.

Research results may justify the inclusion of ATRs among the techniques that

students use with the aim to facilitate the following insights during the students’

studies:

�� The role of the Control Unit (CU) as a special module within a controlled

(or automated) system will be comprehended.

�� Control signals and other “stuff” that traverse within and through systems

(Mioduser et al. 1966) would naturally emerge.

Research results may have the following implications:

�� Improvements in curricula for teaching programming and teaching

computerized logic control

�� Improvements in training students in the discipline of programming and

the discipline of logic control.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 31 (of 52) Methodology

7 Methodology

7.1 Research Questions

For an explanation of the dependent and independent variables mentioned in this

chapter, please refer to the correspondingly named sections in this chapter.

1. Can students identify more of the bugs existing in the requirement or

design specifications when the specifications are in the form of ATRs than

when the specifications are in the form non-atomic specifications?

2. Does the students’ design demonstrate better modularity in terms of (a)

lower coupling between modules and (b) higher cohesion within modules

when they receive requirement or design specifications in the form of

ATRs than when they receive requirement or design specifications in the

form of non-atomic specifications?

3. Do students make fewer bugs when programming from requirement or

design specifications in the form of ATRs than when programming from

requirement or design specifications in the form of non-atomic

specifications?

4. Do students identify more of the bugs existing in programs when they test

against requirement or design specifications in the form of ATRs then

when they test against requirement or design specifications in the form of

non-atomic specifications?

5. Do students learn (a) faster and (b) better the notion of CU and the

segregation between the CU module(s) and the OU modules when the

system is described with requirement or design specifications in the form

of ATRs then when the system is described with requirement or design

specifications in the form of non-atomic specifications?

6. Do students learn (a) faster and (b) better the notion of control signals,

which traverse between the CU and the OU, when the system is described

with requirement or design specifications in the form of ATRs then when

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 32 (of 52) Methodology

the system is described with requirement or design specifications in the

form of non-atomic specifications?

7. Do teachers make a less biased evaluation of the extent to which students’

software programs meet the assignment goals when they work with

students receiving requirement or design specifications in the form of

ATRs as compared to teachers who work with students receiving

requirement or design specifications in the form of non-atomic

specifications?

7.2 Research Population

The research population (subjects) will consist of high school and undergraduate

students learning one of the following topics:

�� Programming with a Third Generation (3G) procedural language, such as

C or Pascal

�� Principles of computerized logic control

�� Mobile robot design and construction, including its programming.

7.3 Independent Variable - Specification Style

Specification Style is an independent variable describing an object that

communicates functionality, such as an assignment, a requirement statement or an

oral description of another object’s functionality. Specification Style has two

values:

�� Atomic. All specifications in the statement are ATRs, that is, all of them

are well formed (IEEE Std 1233, 1998) as well as atomic (Salzer, 1999).

�� Non-atomic. All specifications in the statement are well formed (IEEE Std

1233, 1998) but many are not atomic.

The explicit information in atomic and non-atomic specifications can be

compared, as described in “Appendix: Deriving Variables from ATRs”.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 33 (of 52) Methodology

Specification Style is useful as both independent and dependent variable, as

described in the ”Dependent Variables” section below.

7.4 Dependent Variables

Some of the dependent variables require the identification of the equivalents of

ATRs present within objects such as statements including non-atomic

specifications, and software components. The “Appendix: Deriving Variables

from ATRs” explains how this is done.

7.4.1 Number of Specification Bugs

A specification bug in a requirement specification or in a design specification is

an explicit or implied ATR that is incorrect. Some of the discrepancies, defined

below as cases of bugs, are subjective. A missing ATR, as well as an incorrect

one, are both specification bugs. An ATR is deemed to be incorrect in the

following cases:

�� An ATR in a design or requirement specification contradicts another ATR

in the same specifications.

�� An ATR in a requirement or design specification contradicts another ATR

in a specification at a higher abstraction level.

�� A reviewer determined that an ATR is incorrect.

�� One or more ATRs are missing when a reviewer has determined that the

ATRs in a requirement or design specification do not fully cover an ATR

that is present in a specification at a higher abstraction level.

�� A reviewer has determined that an ATR is missing, although that ATR has

no explicit roots in a specification at a higher abstraction level.

This variable represents the number of specification bugs that students discover.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 34 (of 52) Methodology

7.4.2 Number of Software Bugs

Comparing the list of ATRs actually implemented by a software component with

the list of ATRs in the design specifications of that software component is the

underlying approach to reveal software bugs. The two main techniques for making

such comparison are test and code review.

One should assume that there are no bugs in the respective design specifications.

A software bug is defined as one of the following:

�� A missing ATR. An ATR that is present in the design specification but is

missing from the software component.

�� An unwanted ATR. An ATR in the software component that does not

exist in the design specifications, and that hampers the software

component’s functionality. Note that this definition includes a subjective,

hence not absolute opinion.

7.4.3 Coupling Level

Module coupling is the degree of connections between modules; hence it is a

measure of module interdependence. Level of coupling among modules must be

kept to the minimum in order to minimize the "ripple effect" where changes in

one module cause errors in other modules. The lowest level of coupling, hence the

best, is data coupling (Myers, 1975), where two modules communicate by passing

parameters. Two modules are content coupled if one module references data

contained inside another module.

See “Appendix: Coupling Levels and Cohesion Levels” for an ordered list of

coupling level names.

Coupling level between the CU and OU in a particular design is a measure of the

segregation between the CU and OU in that design. Therefore, a CU-OU interface

designed with data coupling is considered to be an indication of understanding the

notion of control signals.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 35 (of 52) Methodology

7.4.4 Cohesion Level

Module cohesion is the degree of inner self-determination of the module; hence it

measures the strength of the module’s independence. A module should be highly

cohesive. The best is a functionally cohesive module, which is one in which all of

the elements contribute to a single, well-defined task. The second best is the

sequentially cohesive module, which is one whose functions are related such that

output data from one function serves as input data to the next function.

See “Appendix: Coupling Levels and Cohesion Levels” for an ordered list of

cohesion level names.

A CU designed with high level of cohesion indicates comprehension of logic

control implementation in a CU.

7.4.5 Specification Style

Specification Style is useful as both independent and dependent variable. As an

independent variable, students are exposed to an object that communicates

functionality in one or the other specification style. As a dependent variable it

describes an object that is the work product of students, such as design

specifications and oral descriptions. The values that Specification Style takes are

listed and defined in the “Independent Variable - Specification Style” section

above.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 36 (of 52) Methodology

7.5 Variable Dependency
Table 1: Dependency of variables related to students

Dependent Variables

Non-atomic

Specification

Style

n=40

Atomic

Specification

Style

n=40

Number of specifications

bugs identified

Number of

software bugs

Number of

software bugs identified

Coupling Level

Cohesion Level
Independent V

ariables

Specification Style

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 37 (of 52) Methodology

Table 2: Dependency of variables related to teachers

 Dependent Variables

Non-atomic

Specification

Style

n=4

Atomic

Specification

Style

n=4

Number of specifications

non-bugs identified as

Number of

software non-bugs

Number of specifications

bugs missed

Independent V
ariable Number of

software bugs

missed

7.6 Research Tools

This section lists, and describes briefly the various tools that are required in this

research. Only a small number of the subjects will be interviewed, time

permitting.

7.6.1 Object Analysis

The purpose of object analysis is to evaluate objects and compare objects through

bug counts, missing and excessive functionality and, where relevant, also

Specification Style. The objects will include teacher work products, such as

assignments, student work products, including documents, interview records,

software source code and, in the case of mobile robots, also hardware.

To analyze an object, first it will be studied to reveal the lists of ATRs that it

comprises. For a software component, the list includes any ATRs that the software

can demonstrate. For this reason, demonstrating an ATR by running tests is more

reliable than identifying it through review of its source code.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 38 (of 52) Methodology

Second, ATRs lists from different objects will be compared and analyzed to

reveal the existing functionality, missing functionality and incorrect functionality

(bugs).

In addition, analysis of the objects that communicate functionality will show its

Specification Style, whether atomic or non-atomic.

7.6.2 Interviews

In the interviews subjects will be asked to describe the specifications in various

contexts. Thus, the record of an interview is just another case of an object that

communicates functionality.

The researcher in the present work will interview individual students, possibly

detached from the regular course of classroom lessons. Teachers will be

interviewed too. The reviews will be documented by taking notes as well as by

recording on a voice recorder.

The written and recorded dialogues will be analyzed to identify and list ATRs.

Such lists are assumed to reflect the ATRs present2 in the interviewees’ mental

models.

Researchers routinely pick their subjects’ brains by interviewing them or by

recording subjects’ conversations. To analyze the obtained free-style texts,

researchers make various assumptions that enable conversion of this raw material

into abstract, comparable data, which is supposed to reflect the interviewee’s

mental model. The ATRs’ list extracted from an interview does just that.

7.7 Research Course

During the research we shall monitor students from several learning fields3

(programming, basics of logic control and mobile robots). The students will

receive assignments in two different Specification Styles.

2 At the time of the interview.
3 A “learning field” is not considered as a variable in this research.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 39 (of 52) Methodology

We shall split the subjects in each learning field into two groups:

�� Group A students will receive assignments using the non-atomic

Specification Style

�� Group B students will receive assignments using the atomic Specification

Style.

The subjects will do the following activities:

�� Design. The subjects will document their detailed design specifications to

meet the assignment requirements.

�� Construction. The subjects will construct the software that they have

designed.

�� Testing and bug fixing. The subjects will test the software against the

requirement and design specifications. They will document and fix any

bugs that they may find.

7.7.1 Data Collection

Both groups within a learning field will be assigned with the same task and will

carry it out.

After the student complete their assignment, the objects that comprise their work

products will be collected. The collected objects will include program source

code, program executables, working robots and documentation written by the

students.

In addition, a few of the subjects will be interviewed. Subjects may be asked, for

example, to describe the functionality of the objects that they have created or to

explain the roots of a bug.

All objects will be analyzed, as described earlier, to create an ATRs list for each

object. The work products will be further analyzed by means of the respective

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 40 (of 52) Methodology

ATRs list with the aim of characterizing them according to the dependent

variables listed earlier.

7.7.2 Data Analysis

The dependent variables will be correlated with the independent variable with the

purpose of responding to the research questions.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 41 (of 52) Appendix: Terms and Definitions

8 Appendix: Terms and Definitions

Atomic Requirement (ATR). The nominal definition for an ATR, in this work,

is: a well-formed requirement or design specification associated with a system

component that would not be useful to subdivide into more elementary

requirements at the abstraction level where it is being considered.

ATR. See Atomic Requirement.

Control Unit (CU). A software or hardware component of a controlled system

whose sole role is to decide what actions the operational unit (OU) takes at any

moment. This thesis only deals with discrete-event logic control. For this effect

the CU sends the OU bi-level operation initiating signals called microoperations

and receives bi-level signals about the OU’s state.

Control signal. The CU and OU communicate via two types of control signals:

The CU sends binary signals to the OU, called microoperation, that tell the OU

whether to do something or not to do it.

The OU sends binary signals to the CU to inform the CU of the OU’s and its

environment’s state.

Control Related ATR. The procedural definition for a control related ATR, in

this work, is: a requirement or design specification that is (a) associated with the

system’s control functionality, (b) is well-formed, (c) consists of a condition and

of a corresponding operation, and (d) the condition and the operation are

indivisible at the abstraction level where the specification is being considered.

Controlled System. In this work, a controlled system is one that contains the

functionality to control the system itself. In many controlled systems it is possible

to identify the components that carry out the control functionality; these

components are called Control Units. (Note: for the purpose of this work, a

system controlled by an entity external to the system is not a controlled system.)

CU. See Control Unit.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 42 (of 52) Appendix: Terms and Definitions

Operational Unit (OU). The OU is defined as all system components, except the

CU.

OU. See Operational Unit.

Software Engineering (SE). Software Engineering is the field that deals with the

building of software systems that are so large or so complex that they are built by

a team or teams of engineers. Usually, these systems exist in multiple versions

and are in service for many years. During their lifetime, they undergo many

changes: to fix defects, to enhance existing features, to add new features, to

remove old features, or to be adapted to run in a new environment. (Ghezzi et al,

2003, p 1.)

OU. See Operational Unit.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 43 (of 52) Appendix: Coupling Levels and Cohesion

9 Appendix: Coupling Levels and Cohesion Levels

Myers (1975) defined the notions of module coupling and module cohesion

(strength) and their respective levels.

9.1 Levels of Coupling

Levels of coupling in increasing order of their relative strength:

1. Data. Only primitive data elements are passed as parameters between

components.

2. Structure. Data structures are passed as parameters between components.

Also called stamp coupling.

3. Control. Control flags are passed as parameters between components.

4. External. Individual data items are organized into a common store.

5. Common. Data structures are organized into a common store.

6. Contents. One component directly modifies data or control flow of

another.

9.2 Levels of Cohesion

Levels of cohesion in decreasing order of their relative strength:

1. Functional. Every processing element is essential to single function, and

all such essential elements are contained within one component.

2. Sequential. Output from one function is input to the next one.

3. Communicational. Functions operate on or produce the same data set.

4. Procedural. Tasks grouped together to ensure mandatory ordering.

5. Temporal. Performs several tasks in sequence, related only by timing (not

ordering).

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 44 (of 52) Appendix: Coupling Levels and Cohesion

6. Logical. Logically related tasks or data placed in same component.

7. Coincidental. Component's parts are unrelated.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 45 (of 52) Appendix: Deriving Variables from ATRs

10 Appendix: Deriving Variables from ATRs

One may wonder whether the information given to the different groups of

research subjects differ not only in the specification style, as defined in the

“Methodology” chapter, but also in the amount of explicit information. The

amount of information in non-atomic specifications can be compared with the

amount of information in atomic specifications after atomizing the former ones.

This appendix lists definitions by which one may compare the equivalents of

ATRs among lists of non-atomic specifications, software components, etc., and

argues that the comparison is valid. The definitions are useful for interpreting the

research variables.

10.1 Definitions Useful for Comparing ATRs

ATRs’ comparison is one of the underlying techniques planned for this research.

The ATR’s procedural definition (see earlier in this document) lead to the

following basic definitions useful for comparison of ATRs and for ATR based

comparison of objects:

�� Object. An object in this context is something that explicitly and/or

implicitly communicates or implements specifications.

Example objects are programming assignments, oral descriptions of

systems, and software components’ source code. A programming

assignment is an object that the teacher gives to students. It communicates

the features (functional and non-functional) that the teacher expects from

the students to implement in a program. Depending on the style of the

assignment, the teacher’s expectations may be fully or only partially

explicit. Similarly, a system’s oral description is an object that

communicates some of system’s perceived specifications. A software

component source code is an example for an object that implements a set

of specifications.

�� Matching ATRs. Two ATRs match if they translate into identical formal

expressions.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 46 (of 52) Appendix: Deriving Variables from ATRs

�� Contradicting ATRs. Two ATRs contradict if they translate into two

logically contradicting formal expressions.

	
 021121201111 , YxxYxxFYxYxF ����� are examples for two

contradicting formal expressions. F1 says that Y1 is executed only when x1

is true, while F2 says that x1 must be false in order to execute Y1. More

formally: the product of F1 and F2 is zero (false).

�� ATRs’ list. By analyzing an object, it is possible to make an inventory –

In the form of an ATRs’ list – that includes all the functionality

implemented or communicated by the object.

ATRs’ lists are important tools in this research by making possible the

comparison among very different objects.

�� Missing ATR. An ATR is not present in an ATRs’ list if it does not match

any of the ATRs in the list. An ATR that should be present in a list, but is

not – is missing from that list.

�� Redundant ATRs. Two ATRs are redundant if they match and they are in

the same ATRs’ list.

10.2 ATR’s Suitability as a Variable

Tal-Levy, et al (2001) identified atomic condition-action statements, which they

called "rules", in young children’s descriptions and definitions for simple

controlled systems. They counted rules and even half-rules to quantify the

children's maturity levels in regard to technology comprehension. Similarly, this

research uses atomic specifications to identify elementary specification items, but

in a larger scale and from many different sources.

ATRs are suitable for use as variables in this research because even when two,

very differently phrased ATRs are compared, it is possible to tell with high

confidence whether they carry the same information or not. This is the direct

result of ATRs’ very nature. Each ATR encompasses only a single, atomic,

functionality. Because of their simplicity, an analyst (in this case, the researcher)

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 47 (of 52) Appendix: Deriving Variables from ATRs

can concentrate on comparing two specific ATRs by simultaneously holding the

two respective mental models in his or her “working memory”.

Thanks to this property of ATRs, an analyst can compare two lists of ATRs and

identify the ATRs that match, the ATRs that contradict, the ATRs that are present

in one list and not in the other list, and the redundant ATRs.

10.3 ATR’s Validity as a Variable

ATRs’ validity and usefulness in comparing two functionality lists is itself a direct

outcome of this works’ hypotheses. Therefore, it is not possible to validate this

kind of use for ATRs before the research concludes. This is like a person trying to

lift himself up by his own bootstraps.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 48 (of 52) Bibliography

11 Bibliography

Baranov, S. (1994). Logic Synthesis for Control Automata. Kluwer Academic

Press.

Bolton, D., Jones, S., Till, D., Furber, D. and Green, S. (1992). Knowledge-based

support for requirements elicitation: A progress review. Technical Report

TCU/CS/1992/23, City University, 1992. GMARC Project Report R44.

Britton, K. H., and Parnas, D. L. (1981). A-7E Software Module Guide. Naval

Research Laboratory (NRL) (NRL Memorandum Report 4702).

de Kleer, J. and Brown, J. S. (1983). Assumptions and Ambiguities in

Mechanistic Mental Models. In Mental Models, Gentner, D. and Stevens, A. L.

(Eds.), Lawrence Erlbaum Associates, Hillsdale, New Jersey, pp. 155-190.

Ghezzi C., Jazayeri, M., and Mandrioli, M. (2003). Fundamentals of Software

Engineering, 2nd Ed. Upper Saddle River, New Jersey: Prentice Hall.

Hancock, C. (2001). Children’s Understanding of Process in the Construction of

Robot Behaviors. Varieties of Programming Experience, AERA 2001, Seattle.

Harn, M., V. Berzins, and Luqi (1999). Evolution of C4I Systems. Command and

Control Research and Technology Symposium, United States Naval War College,

Newport, Rhode Island, June 29 - July 1, 1999, pp. 1361-1380. Naval

Postgraduate School

Harwell, R., Aslaksen, E., Hooks, I., Mengot, R., Ptack, K. (1993). What Is A

Requirement? Proceedings of the Third International Symposium of the NCOSE.

Heitmeyer, C. L., Jeffords, R. D. and Labaw, B. G. (1996). Automated

Consistency Checking of Requirements Specifications. ACM Trans. on Software

Eng. and Methodology, 5(3), 231-261.

Hughes, J. (1989). Why Functional Programming Matters. Computer Journal,

32(2), 98-107.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 49 (of 52) Bibliography

IEEE Std 1233, 1998 edition. Guide for Developing System Requirements

Specifications. IEEE Standards, Software Engineering, Volume One, Customer

and Terminology Standards. IEEE, Computer Society.

IEEE Std 610.12-1990, 1991 edition. IEEE Standard Glossary of Software

Engineerirng Terminology. IEEE Standards, Software Engineering. IEEE,

Computer Society.

Kaindl, H., Brinkkemper, S., Bubenko Jr, J. A., Farbey, B., Greenspan, S. J.,

Heitmeyer, C. L., Leite†, J. C. S., Mead, N. R., Mylopoulos, J., Siddiqi, J. (2002).

Requirements Engineering and Technology Transfer: Obstacles, Incentives and

Improvement Agenda. Requirements Engineering, 7(3), 113-123.

Kilov, H. and Ross, J. (1994). Information Modeling: An Object-oriented

Approach, pp. 28-32. Prentice-Hall (1994)

Lehman, J.F., Laird, J.E. and Rosenbloom, P.S., (1996). A gentle introduction to

SOAR, an architecture for human cognition. In S. Sternberg and D. Scarborough

(Eds.) Invitation to Cognitive Science, Volume 4.

Levin, I. and Levit, V. E. (1998). Controlware for Learning with Mobile Robots.

Computer Science Education, 8(3), 181-196.

Levin, I., and Mioduser, D. (1996). A Multiple-Constructs Framework for

Teaching Control Concepts. IEEE Transactions of Education, 39(4), 488-496.

Lewis, P. H. (1994). Introducing Discrete-Event Control Concepts and State-

Transition Methodology into Control Curricula. IEEE Transactions of Education,

37(1), 65-70.

Lohr, K. P., (1992). Concurrency Annotations for Reusable Concurrent Software.

In OOPSLA ’92, Proceedings, p. 327–340, Vancouver, Canada, October 1992.

Ma, J. (1999). A Case Study of Student Reasoning About Feedback Control In a

Computer-Based Learning Environment. 29th ASEE/IEEE Frontiers in Education

Conference (12d4), 7-12. San Juan, Puerto Rico:.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 50 (of 52) Bibliography

Maiden, N., Minocha, S., Manning, K. and Ryan, M., (1997). A Software Tool

and Method for Scenario Generation and Use. Third International Workshop on

Requirements Engineering: Foundation for Software Quality RESFQ', June 16-

17, 1997, Barcelona, Spain

Martin, F. G. (1996). Ideal and Real Systems: A Study of Notions of Control in

Undergraduates Who Design Robots. In Constructionism in Practice: Rethinking

the Roles of Technology in Learning, Y. Kafai and M. Resnick (Eds.), pp. 297-

322. Mahwah, NJ: Lawrence Erlbaum.

Miller, G. A. (1956). The Magical Number Seven, Plus or Minus Two: Limits on

Our Capacity for Processing Information. The Psychological Review, 63, 81-97.

Mioduser D., Venezky, R. L., and Gong, B. (1996). Students' Perceptions and

Designs of Simple Control Systems. Computers in Human Behavior, 12(3), 363-

388.

Myers, G. J. (1975). Reliable Software Through Composite Design, pp. 19-54.

New York: Petrocelli/Charter.

Norman, D. A. (1983). Some Observations on Mental Models. In Mental Models,

Gentner, D. and Stevens, A. L. (Eds.), Lawrence Erlbaum Associates, Hillsdale,

New Jersey, pp. 7-14.

Parnas, D. L. (1971). Information Distribution Aspects of Design Methodology.

Proceedings of the 1971 IFIP Congress, 339-344.

Parnas, D. L. (1972). On the Criteria to be Used in Decomposing Systems into

Modules. Communications of the ACM, 15(12), 1053-1058.

Parnas, D. L. (1995). Functional Documentation for Computer Systems. Science

of Computer Programming, 25(1), 41-61.

Resnick, M., Stephen, O. and Papert, S. (1988). LEGO, Logo, and Design.

Children's Envs. Quart., 5(4), 14-18.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 51 (of 52) Bibliography

Salzer, H. (1999). ATRs (Atomic Requirements) Used Throughout Development

Lifecycle. 12th International Software Quality Week (QW99), 1, (6S1), San Jose,

CA.

Shalyto, A. A. (2001) Logic Control and “Reactive" Systems: Algorithmization

and Programming. Automation and Remote Control, 62(1), 1-29.

Sistla, P., Yu, C. T. and Venkatasubrahmanian, R. (1997). Similarity Based

Retrieval of Videos. In Proceedings of IEEE ICDE, Birmingham, UK, pp. 181-

190.

Tal-Levy, S., Mioduser, D. and Talis, V. (2001). Concrete-Abstractions Stage in

Kindergarten Children's Perception and Construction of Robotic Control Rules.

PATT 2001 Proceedings.

Williams, M. D., Hollan, J. D. and Stevens, A. L. (1983). Human Reasoning

About a Simple Physical System. In Mental Models, Gentner, D. and Stevens, A.

L. (Eds.), Lawrence Erlbaum Associates, Hillsdale, New Jersey, pp. 131-154.

Hanania Salzer
Tel Aviv University, School of Education

 Requirements Atomization
in Software Engineering Education

Research proposal towards a degree of PhD

Last Saved: 18 May, 2003 52 (of 52) Bibliography

(This page has been intentionally left blank.)

	Title Page
	Table of Contets
	Abstract
	Introduction
	Literature Review
	Rationale of the Research
	Research Hypotheses
	Significance of the Research
	Methodology
	Appendix - Terms and Definitions
	Appendix - Coupling Levels and Cohesion Levels
	Appendix - Deriving Variables from ATRs
	Bibliography

