Modeling Software
with Finite State
Machines

A Practical Approach

Ferdinand Wagner
Ruedi Schmuki
Thomas Wagner
Peter Wolstenholme

/\Auerbach Publications
A Taylor &Francis Group
Boca Raton New York

Auerbach Publications is an imprint of the
Taylor & Francis Group, an informa business

Published in 2006 by

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number-10: 0-8493-8086-3 (Hardcover)
International Standard Book Number-13: 978-0-8493-8086-0 (Hardcover)
Library of Congress Card Number 2005035224

This book contains information obtained from authentic and highly regarded sources. Reprinted material is
quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts
have been made to publish reliable data and information, but the author and the publisher cannot assume
responsibility for the validity of all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration
for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate
system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only
for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Modeling software with finite state machines : a practical approach / Ferdinand Wagner ... [et al.].
p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-8493-8086-0 (0-8493-8086-3 : alk. paper)
1. Computer software--Development. 2. Machine theory. I. Wagner, Ferdinand.

QA76.76.D47M625 2006
005.1--dc22 2005035224

[]
Visit the Taylor & Francis Web site at
I n O r I I I a http://www.taylorandfrancis.com

) Taylor & Francis Group and the CRC Press Web site at
is the Academic Division of Informa plc. http://www.crepress.com

© 2006 by Taylor & Francis Group, LLC

www.copyright.com
www.taylorandfrancis.com
www.crcpress.com

Other Auerbach Publications in

Software Development, Software Engineering,
and Project Management

The Complete Project Management
Office Handbook

Gerard M. Hill

0-8493-2173-5

Complex IT Project Management: 16
Steps to Success

Peter Schulte

0-8493-1932-3

Creating Components: Object Oriented,
Concurrent, and Distributed Computing
in Java

Charles W. Kann

0-8493-1499-2

The Hands-On Project Office:
Guaranteeing ROl and On-Time Delivery
Richard M. Kesner

0-8493-1991-9

Interpreting the CMMI®: A Process
Improvement Approach

Margaret Kulpa and Kent Johnson
0-8493-1654-5

1SO 9001:2000 for Software and Systems
Providers: An Engineering Approach
Robert Bamford and William John Deibler Il
0-8493-2063-1

The Laws of Software Process: A New
Model for the Production and
Management of Software

Phillip G. Armour

0-8493-1489-5

Real Process Improvement Using the
CMMI®

Michael West

0-8493-2109-3

Six Sigma Software Development
Christine Tayntor
0-8493-1193-4

Software Architecture Design Patterns
in Java

Partha Kuchana

0-8493-2142-5

Software Configuration Management
Jessica Keyes 0-8493-1976-5

Software Engineering for Image
Processing
Phillip A. Laplante 0-8493-1376-7

Software Engineering Handbook
Jessica Keyes 0-8493-1479-8

Software Engineering Measurement
John C. Munson 0-8493-1503-4

Software Metrics: A Guide to Planning,
Analysis, and Application

C.R. Pandian

0-8493-1661-8

Software Testing: A Craftsman’s
Approach, Second Edition

Paul C. Jorgensen

0-8493-0809-7

Software Testing and

Continuous Quality Improvement,
Second Edition

William E. Lewis

0-8493-2524-2

IS Management Handbook,

8th Edition

Carol V. Brown and Heikki Topi, Editors
0-8493-1595-9

Lightweight Enterprise Architectures
Fenix Theuerkorn
0-8493-2114-X

Outsourcing Software Development
Offshore: Making It Work

Tandy Gold

0-8493-1943-9

Maximizing ROl on Software
Development

Vijay Sikka

0-8493-2312-6

Implementing the IT Balanced Scorecard
Jessica Keyes

0-8493-2621-4

AUERBACH PUBLICATIONS

www.auerbach-publications.com
To Order Call: 1-800-272-7737 » Fax: 1-800-374-3401
E-mail: orders@crcpress.com

© 2006 by Taylor & Francis Group, LLC

Preface

This book discusses a topic that is among the central questions of software
development. Therefore, we must position ourselves in that area to justify
our right to express our opinion on that topic. Saying “we” implies at
least one person in the co-author group. We have worked for several
years in software development using various languages and development
environments. We did this in large, medium, and small companies, as well
as individually. We took part in projects in different positions as program-
mers, project leaders, managers, or consultants. We know software from
the university perspective as a scientific and teaching subject. Hence, we
have experienced software from several perspectives. We regularly read
books and journals ranging from IEEE journals to very simple marketing-
controlled papers. This experience allows us to have a well-established
opinion, which is independent of any pressure of specific professional
circumstances. For instance, I have a rather bad opinion about BASIC but
some co-authors did a good job with Visual Basic and see it in a better
light than I; thus, we managed to find a compromise view about that issue.

The book is organized in three parts. Two parts represent a specific
view on software development encouraging the use of state machines in
software design and implementation. The Vfsm method and the State-
WORKS tools, which are based on that method, are not simply concepts.
They have been tried over several years in many projects, proving their
sense and usefulness. The reader may agree with it or not, but the
discussion can be led only on a technical basis.

The first part may be the most controversial because it represents our
view about software, which is per se a complex issue of not only technical
character. Therefore, 1 explain in the first sentences of the Introduction
our background. We try also to limit our opinions to technical matters.

© 2006 by Taylor & Francis Group, LLC

vi B Modeling Software with Finite State Machines

The Vfsm concept discussed in the book is application oriented in
comparison to the code-oriented approach that is typical for nearly all
software development methods. There have always been trials to replace
a classical software development by approaches that are more appropriate
for inexperienced or occasional programmers. Interpretations of BASIC
programs, PLC programming, and the Smalltalk development environment
are all examples of software developments that do not require typical
compilation, linking, and code debugging. Those approaches can be called
“doing by trial” and are relatively safe as each written line can be tested
immediately — at least for its syntactical correctness. This creates an
illusion about the ease of programming. Of course, producing syntactically
correct code lines easily does not mean that we are writing anything
sensible. The known approaches of that kind do not provide any methods
that would allow large software projects to be developed successfully.

The essential concept of StateWORKS is to use a ready-made program
for realization of the most fragile part of software: the behavior. The work
of the developer is then concentrated on a specification of the behavior.
The input/output interface as well as any user interface must be pro-
grammed conventionally. The point is that in replacing coding of an
application’s behavior by a specification, we simplify the entire software
development as the ready-made execution part is a frame that determines
much of the software design. Effectively, many decisions about the soft-
ware design are automatically made, as enforced by the execution program.

To create such a development and execution environment, several
problems had to be solved. Behavior is the most complex part of software
and therefore the source of most obscure errors. To replace coding based
on continuous testing of conditions (if-then-else and case statements) we
needed a new method and also an environment that allows for its imple-
mentation. The method used by StateWORKS is well known: modeling
with state machines. To be successful, the method has also had to solve
the problems of designing systems of state machines. The virtual environ-
ment is the base of a development and execution environment. The
intimate meaning of those few sentences above are discussed in the book.

We must stress that the method proposed is not merely another way
of programming finite state machines, embedded in other software, for
certain applications — or parts of applications — which very obviously
could use them. We are proposing a major re-think about the way to
design software, in which most of the usual “control-flow” coding is
avoided, and the state machine concept is pushed much farther than
before, so as to take a predominant part in the design process.

We have written this book about a topic that has occupied us for several
years. All co-authors contributed, although in different ways. F. Wagner,
who invented the Vfsm concept, wrote most of the text in the book.

© 2006 by Taylor & Francis Group, LLC

Preface ®m vii

R. Schmuki’s achievement has been in the design and implementation of
the RTDB, which is the heart of the StateWORKS runtime system.
P. Wolstenholme’s deep understanding of control system problems was a
constant inspiration to improve the tools and the text. T. Wagner introduced
some fresh air in the established environment forcing us to re-think several
“obvious” concepts, which led to several improvements of the tools and text.

The book uses “we” instead of an impersonal form. In rare cases, “I” is
used to express my personal view: though it is my (F. Wagner’s) view, the
co-authors obviously support it or at least have not protested too strongly.

F. Wagner

Source Code

You can download StateWORKS development tools LE edition from
www.stateworks.com. As a buyer of the book you are entitled to free
registration of the software, which can then be used without a time limit.
To register, use the serial number printed on the inside of the book’s back
cover.

The software package contains the source code of all examples in the
book and the Appendices, including those printed in the book and extra
appendices for which we had no room.

Document Conventions

The book uses the following typographic conventions.

Example of

conventions Description

Vism The name of the Virtual finite state machine

VFSM The name of the Vfsm RTDB object

State_1 States are in italics

Timer_OVER Values (Control values and Actions) are in courier
Start_Timer

Format Names when used (defined) for the first time are

written in bold (these are generally cited in the Index)

StartingPressure

All words of formal names begin with a capital letter

Boolean OR operator

&

Boolean AND operator

Boxed text

Important text

© 2006 by Taylor & Francis Group, LLC

www.stateworks.com

viii ® Modeling Software with Finite State Machines

Trademarks, Registered Marks

StateWORKS
Beckhoff
Microsoft

MS Windows
MS Word

MS Excel

MS Access
Visual Studio
Statechart
QuatroPro
MySQL
Word Perfect
Eclipse
eXtreme

© 2006 by Taylor & Francis Group, LLC

About the Authors

Ferdinand Wagner holds the degree of
Ph.D. in electronic digital circuits from Tech-
nical University in Gliwice, Poland. He was
professor of electronics and computer sci-
ence at Polish and German universities, and
was an invited professor at CERN, Geneva
and Swiss Federal Institute of Technology in
Lausanne, Switzerland. He worked at several
industrial companies in Germany and Liecht-
enstein developing software for control
systems. He served as a consultant to AT&T,
Naperville, IL, USA and to industrial institu-
tions in Europe. He is author of several
books and papers on computer hardware
and software design.

Ruedi Schmuki is a project leader software
engineer at Unaxis, a Swiss semiconductor
equipment manufacturer. Previously, he was
involved with the development of hardware
and software for Contraves, based in Ziirich,
Switzerland. He graduated in electronic
engineering and holds a postgraduate
degree in system theory from the University
of Applied Sciences of Technology Buchs,
also in Switzerland.

© 2006 by Taylor & Francis Group, LLC

x W Modeling Software with Finite State Machines

Thomas Wagner is a member of the
design team in mobile communication at
Nortel Networks Germany. He develops
services and tools for Nortel’s Intelligent
Network platform. He has an M.S. degree
in electronic science from the University of
Karlsruhe, Germany.

Peter Wolstenholme graduated with a
B.Sc. from Manchester University in 1954
and stayed on for a research M.Sc. degree
relating to computer peripherals. Then,
at Ferranti, he worked on guided-weapon
and radar systems integration, and later
took project responsibility for the Argus
200 and Argus 400 control computers —
the latter was the first 1.C.-based com-
puter on the commercial market. He
moved to CERN, Geneva, in 1967, initially
to manage a computer-control project for
the Intersecting Storage Rings, and later
on arranging for the introduction of fiber-
optic communication, and for extension of the CERN internal networks
to cover the large site. Since 1990 he has been designing hardware and
software for various small companies. He has always been an enthusiast
for design methods that ensure that the designer knows the designs will
work correctly, in all circumstances, so that testing becomes a formality
rather than a debugging process.

© 2006 by Taylor & Francis Group, LLC

Table of Contents

Part | The Problems of Software

1 Evolution of Software Developmentccccceeeeecerececeeeccneeecsneees 3
INELOAUCTION ..eiiiiiiiiiii e e
Programming Lan@UagESccoouiuiiiiiiiiiiiiiiiiii e

DN B4 L) 0]y PP P PP PPPPPPPPPPPPPPPPRE
BASIC CataStrOPRC......coiiiiiiiiiiiiii ettt e e e e e

Script Or MacCro NOTATIONScoovviiiiiieeiiiiiii et
There Are Many LanGUAZES.........cotiiiiiiiiiiiiieiaiiiiiieieee e e e e e eiieeeeee e e

METROAS ...t e
Basic KNOWIEAZEccoeiiiiieieieieeeee e
Specifying or Not?cccceeeiinns
CASE Tools

Agile Methods.........coooiiiiiieiieii.
Behavior Modeling.................ccceennn..
Development TOOIS............cccceeviiiiiiiiieennnnns
Recommended REAAINGuvviiviiiiiiiiiiiiiiiiiiiiieiieieeeeeeeeeeee e eeeeeeeeeeeeeeeeerereeereeeeees

2 The Price Of WEAKNESS ...ccceerurrerrureerceresanerossassossnsessnssssassossasssens 23
Software Development COSES...........coooiiiiiiiiiiiiiiiiiii e 23
Programming as @ HODDYccoooiiiiiiiiiiiiiiiiii e 24
Small SOftware ProjECtsoooiiiiiiiiiiiiiiiiic e 25
Large SOftWare PrOJECEScovviiiiiiiiiiiiiii et 26
Hardness Of SOftWAr€.c..oeoiiiiiiiiiiiiiiiieei e 28
Ease of Creating New Macro LangUages..............uuuruvervrvrvrvuvrrrerererarerererenennes 30

Do We Need So Many Programming Languages?............cccoveuvveeiieinnnnnnnen.e. 31
The Specifics of Programming Languagesccccovvviiiieiiinniiiiiieeiennns 32
The Specifics of a Software Project
Software Is EXPENSIiVeE ..ot

Xxi

© 2006 by Taylor & Francis Group, LLC

xii ® Modeling Software with Finite State Machines

MaIntENANCE COSTS ...ttt e e e e e e e e 35
SOFEWALE EITOIS ...ttt 35
SOFtWALE CRANGESooeiiieiiieeeee e 36
IN COAE W TIUSE ...ttt e 37
The Costs Of SOftWare ELTOISccoiiiiiiiiiiiiiiiiiiiiiii et 38

The Programmers’ WOrldcoooiiiiiiiiiiiiiiiii e 38
A Programmer il @ ProjecCt...........ccccviiiiiiiiiiiii 39
The Software Project Leader...........cocoiiiiiiiiiiiiiiiiiiiiciicci e 40

EXAMPIES Of DASASTEIS ...eevviiieeiiiieeiiiieeeiiieeeiiie e et e e et e e et e e e ibeeeenaeeeeensaeeeenneeeans 40

Recommended REAAINGc.ueeiiiiiiiiiiiiiiieiie ittt 42

3 Software as ENGINeering?cccceeeceeeeeereesreceseeecseeessnssessasasnns 43

IMEUNOMS ...ttt e et e et e et e e e e e aaaeeas 43
Fascination with GraphiCs............c.ccoociiiiiiiiiiiiiiiiiii e 45
Visual BasiC CRAOScooviiiiiiiiiiciii ettt 46
Object-Oriented Design IUSION............oooiiiiiiiiiiiiiiii e 47
UML THUSION 1.ttt ettt et 47
FOrmal MEthOGScoouviiiiiiiiiiiiieiit et 49
CASE ToOIS — Value fOr MONEY?cocuvieiiiieiiieiieeiieeiieeieeeiee e svee e 49
Programming or Specification Languages?.............coccveiiieiiiniiiiniieeinniiieeee. 50

DevelopmMENt CYCLE........uuiiiiiiiiiiiiiiii e 51
PrOtOUYPING ...coooiiiiiiiiiiiie e 51
SPECHICATION ..t 52
Software Development STEPSccceiiiiiiiiiiiiiiiiiiiii e 52
SOftware DOCUMENTALIONuuutiiiiiiiiiiiiiiiiiiiieieeeeeie ettt eeeeeeeeeeeeeeeeees 53
Testing and DEDUZZING........cc.uviiiiiiiiiiiiie ettt 54
Maintenance and SUPPOLLoooieiiiiiiiiiiiiaiiii e 55
HUMAN FACLOTS. ..ttt 55
SUIMMIATY ..ttt et e e ettt e e e e ieneee s 55

Education REQUITEMENTScouieiiieiiieiiiesiie ettt eiee et e etee et e et e e snaeeseneenneeenes 56
WHhO IS @ PrOGIrAMMET?oovviiiiiiiiieeiiie et 56
Education as the Basis Of SKill...........ccocooiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeee 57
Missing SKill — EXAMPIESooooiiimiiiiiiiiiiiiiiiiiice e 57

COMCIUSIONIS ...ttt ettt ettt e e e et eeeeeeneneee 58

Recommended REAINGc..cocviiiiiiiiieiiieciii ettt seve e 60

Part Il Finite State Machines

4 Introduction, Definitions, and NOtationccccceeeererecneeeeeenenn. 63
Finite State MaChiNe........cc.ooiiiiiiiiiiiiieecii e e 63
State Machine Models and Presentationsoooovviiiiiieeiiiiiiiiiiie e 65

TrANSItON MATTIXooiiiiiei e 65
State TranSition DIAGLAMccoeoiuiiiiiiiiiiieiie et ettt eeeeereeseeeeereeeaee e e 67
OULPULS (ACTIONS) .veevvvieiiieiieeeiieeieeetee et e eteeeebeessaeeeeseesebeestseesabeeseeesseeenseeas 68
Moore and Mealy MOAEL..........cc..oovuieiiiiiiieiiieiie e 69
State TransSition TADIEccooiiiiiii e 69
EXAMIPLE ..o 73
Recommended REAAINGvuviiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeee e eeeeeeeeeeeeeeeeeeereeeeeeeeees 75

© 2006 by Taylor & Francis Group, LLC

Table of Contents W xiii

5 Hardware APPLiCAtIONS ...cccceueeeeeeerreereerirseeeecsrsreeeessssseeeessssseeanes 77
TOELOAUCTION ...ttt e e e e e eeeeeeeee 77
Limited to Boolean Signals.................uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieetieeeeeeeeeeeeeee e 77

Design Example — Traffic Light Control............ccccoooiiiiiiiiiiiiieee, 78
EPROM-Based IMpPlementationscccouiiiueiiieeeainiiiiiieeeeeieiiieieeee e 80
FPLA- or CPLD-Based Implementations..............cccoovviiiiieeeenniiiiiiieeeeenieee. 83
CONCIUSIONS ...ttt e e 83
Recommended REAINGcc...oooouiiiiiiiiiiiciii e 84

6 SOftWALe SPECITIC ceecuueeeereereereeerrneeecreeeerneecsseeesseeessneasssnseasneasnns 85
INELOAUCHION ...ttt et 85
Data and CONrOl FIOW........ooiiiiiiiiiiiieiiee ettt 86
Any Class of Signal May “Contain” the Control Value...........cccoooeviiieiiiinnniinceeeennn. 88

Digital INPUL.....coiiiiiiiiiiiiii e 88
Command INPUL ... 88
Numerical INPUL ... 89
Parameter........... s 89
Data Processing RESULLcoooiiiiii e 90
THIMIET ..ottt e 920
State MACKINEoooiiiiiiiiiiiiicee e 91
External and Internal SigNalS..........cccooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiaiaiaeaeeeaearaeeeeneaees 91
What abDoUt OULPULS?coooiiiiiiiiiiiiiiiiii e e e e 91
Digital OULPUL.......c.oooiiiiiii 92
Command OULPUL.......ccoiiiiiiiiiiiiii e 92
Numerical OULPUL.......ccooiiiiiiiiiiiii i 92
Data Processing OULPUL........o.uuuuiiiiiiiiiiiiie e 92
T ... 93
SUIMMIIATY oottt ettt e e e e et et e e e e e e eeaaba e e e eeeeenes 93
Event-DIiven SOfEWATEcoiiiiiiiiiiiiiiit ettt 94
Event as a Control Signal................cccooiiiiiiiiiiiiii e 94
State Machine or Combinational SYStem?.............eeiiiiiiiiiiiiiiieiiiiiieee e 96
Models of a Finite State Machine............cccoiiiiiiiiiiiiiiiii e 98
Application-Based State Machine Models...............ccccceeiiiiiiiiniiiiiiiiiiine. 929
State Machine Execution MOAEISuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieieeenees 100
Coding as a Universal SOIUTIONoooiiiiiiiiiiiiiiiiiii e 101
Table-Driven Software to Reduce Coding Effortccooeiiiiniiiiiniiiiiniieennn. 103
Limits of the Coded SOIUtIONSccceiiiiiiiiiiiiiiiiciiieee e 104
Recommended REAAINGuvvviiviiiiiiiiiiiiiiiiiiiieieieieeeeeeeeereeeeeeeeereeeeeeeeeeererereeeeeeees 105

7 Misunderstandings about FSMccueeerveercrveresserecsnencssncecnns 107
Historical Background............coooiiiiiiiiiiiiiiii e 107
SOfEWALE SYSTEIMIS. ...iiiiiiiiiiie ettt e e e e e e e 108

Event-Driven MOAELcooiiiiie 109
Parser ProbIeml.........ccooiuiiiiiiiiiiiiii it 109
State EXPLOSION ..o 110
SigNal LIfETIME ...ccoeeeieieieeeee e 112
State MAChINE SIZEccc.oviiiiiiiiiiiiiiiii e 113
Interface between State Machinescccoociiiiiiiiiiniiiiiiniiii e 114

© 2006 by Taylor & Francis Group, LLC

xiv ® Modeling Software with Finite State Machines

A Flowchart Is Not a State MacChine............ccooouiiiiiiiiiiiniiiiinic e 114
FLOWCRALT ...ttt 114
EXAMPLE ..o 115
What Is a Flowchart FOIr? ...t 118

INVENTIONS ... 120

CONCIUSIONS ..ttt et e ettt e e e et e e e e e e 121

Recommended REAAINGuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeee et eeeeeeeeees 122

8 Designing a State MacChineccccvueeeeeevreeeeeerceeeecsrreeeeessraeeaen 123

A State Machine Models BEhaviorcooiiiiiiiiiiiiiiiieee e 123

Mealy OF MOOTE MOMEISccoiuiiiiiiiiieeiiiie ettt e et e e 124

Actions (Entry, Input, EXit, TranSition)cooouiiiiiieiiiiiiiiieee e 126

DEIINING STATESvvvviuiuiiitiiiiiiitieittateaataaatatstaeessssaesssssssesssesssssssssssasssssssssssssessssrererens 127

Acknowledgment Principle (Busy and Done States)cccccceeeernniiiiiieeeennnnnns 127

The Role Of @ TIMEToooiiiiiiiiiiiiiiii e 129

Error States and ALAmIS.........ooooiiiiiiiiiiiiiii i 129

Completeness of the DESIGN..........c.ccoooiiiiiiiiiiiiiiiiiii e, 132
Hiding Control INfOrmation..........coooiiii e 133

Example — Pedestrian Traffic LIGNtS.........ccccccoiiiiiiiiiiiiiiiccccc e 133
The REQUITEIMENESeviiiiieiiiiiiiiit e e et e e ettt e e e ettt e e e e e et eeaeeeanas 133
The SPECIICALIONeeeiiiiie e 134
The Specification Must Be Understandablec.ccoooiiiiininiiinenn. 137

Example — Pressure SUPEIVISIONccouiiiiiiiiiiiiiiiiiieiee et e e e e e 138
The REQUITEIMEIIESeviiiiieiiiiiiiiiee e ettt e e e e e e e e 138
The SPECIICAtIONeiiiiiiiiiiiiiii e 139
The OutPUt FUNCHOMNooutiiiiiiiiiiieiiiieie et 142
The State Transition DIAZLaAMoooiiiiiiiiiiieiiiieeiiie et 143

CONCIUSIONS ...ttt e ettt e e et e e e et e e e et e e e esseeeennees 144

9 Systems of State MACRINES.....cccceeerceeeeerrrrereeeersereecsrseeeeessraneeeas 145

Mastering COMPIEXITYoevuveeriiieiieiiit ettt ettt eiee ettt et e et et e et et eeneeeeenes 145

The Partitioning Criteriacc.coiviiiiiriiiiiiiieeie e ettt eetee et e eaee et e aee v eseeeenas 146

The Communication Interface among State Machinesccoocciiieennnn. 148

The Handshaking RULE ... 150

The (Hierarchical) Structure of the Control SYStemccceveieeeiniiiiiiieieeennnnns 151

DESIGN PLOCEAUIEuuuiiiiiiiiiiiiiiiiieiaiittaettteeeeeeeaaeeaeeaeeaaseseaeeeeesesesesesseaseseeeseserereeees 152
Locality of the Control Problems............cccooiiiiiiiiiiiiiiiiiiiiiieeeiiiceee e 152
Up-Down or Bottom-Up DESIZNuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeieeeeaes 153
DEAALOCKS ...ttt 154
LLOOPS ettt ettt ettt ettt et e e e e 154
10 OO P O PR PUUPPUPPPPPPPPPPPPR 155
DESIGN RUIES ...ttt ettt eiae e ebeeeane e 156

Example — Pumps SUpErvision SYSTEM........cceuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieneeeeeen. 156
TaSK DE@ANIIONeviiiieiiieeic ettt 156
The FirSt APPIrOACHoeiiiiiiiiiiiiiie e 157
The Second Tridlooiiiiiiiiiiiiiii e 159
The Ultimate SOIUTION.c.eeiiiiiieiieii ettt 164

© 2006 by Taylor & Francis Group, LLC

Table of Contents W xv

Example — Traffic LIight CONTIOL.........cceiiiiiiiiiieiie ettt 168
TASK DEAINITIONeeiiiiiiieiieiiie ettt ettt e e beeeaeeebeeennee e 168
“ODVIOUS” SOIULION......cuvieiiiieeiiieeiiieeiee ettt et te ettt e saaeesee e ennee s 169
The Ultimate CONEIOL........cooiiiiiiiiiiiiiiiiiiie e 171
LAIIE .ttt 172
TEASAICLIGIE ..o 174
FIash ... 175
System for Two-Track Railwaycccccoiiiiiiiiii 176
SUIMMIIATY ..ttt et e e e eeeeeeee 177

COMNCIUSIONIS ...ttt e e e et et e eeeeeeeee 178
IMPIEMENTATION ..o 179
Designing a State€ MaChineccooeeeiiiiiiiiiieeeeeeaaeeees 179
Designing a System of State Machines..............ccccoeeviiiiiiiiiiiiniiiie e, 180

Part 11l StateWORKS: Principles and Practice

TO StAtEWORKS.......cueeeereeeerereeraeeessaeeessseesssesessassessasasssssesssssssssasssns 183
Virtual Environment and VESML.........c.ccccoiiiiiiiiiiiiiiiiecec e 183
The StateWORKS Development ENVirOnment..............oeeeeriiiiiiieieeenniiiiiieeeeennns 184
Positive LOZIC AIGEDIA........c...ooiiiiiiiiiiic e 184
The Vfsm Execution Modelcoooiiiiiiiiiiiiiiiiiiicccec e 185
ODJECES ..t 187
State Machine Defines Object Control Values.................ccocoiiiiiiiiiiniinn. 190
Signal LIfEtimEooooeiiiiiii i 190
Behavior SPecifiCationoiiiiiiiiiiiiii e 191
SyStem SPECHICATION ... 197
The StateWORKS Execution ENVIFONMENtcocueeeriiiiieriiiienniieeeniieeenineeennes 197
RTDB-Based RUNIME SYSLEIMcceeiiiiiiiiiiiiaiiiiiiiiiee e 198
OULPUL FUNCHON ... 199
I/O HaNAIETooiiiiiiiiiiiiiiiiicce e 200
User INEIfaACEoc.uviiiiiiiiiiiiici e 201
Recommended REAdINGccoovoiiiiiiiiiiiiiiiiii e 202
11 Digital Input and OULPULcceceeeeeereeeereeecreeersaeessseeessseescsneasnns 203
A Digital Input Has Three Control VAlUES...........ccoooiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeee 203
EXAMPLE ..ottt ettt ettt et e st e e et eenaeeenbeeenaee e 204
Setting and Clearing the Boolean Output Are Two Different Actions.................. 204
DI and DO PrOPEerti€sccooiiiiiiiiiiiiiiiiiiiiii e 207
Recommended REAAINGuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeee et eeeeeeeees 207
T2 Other INPULS...ccecceeeeerereererecseeecseecssasessssnessassessasssssasessssssssssssses

Input Data (DAT)coooviiiiiiiiiiiies
Control Values............ccoeeeeeeiiiiiiinnnnn...
Example

Properties

Getting the Control Value (SWIP)
ACHONS ..

CONLLOL VAIUEScoeieieieeeie e eneeneen

© 2006 by Taylor & Francis Group, LLC

xvi B Modeling Software with Finite State Machines

EXAMPIE .. 213
PLOPEITICS. ..o eeetieeeeiie ettt ettt e e ettt e et e e et e e e entteeeeneaeeeennaeeeas 214
NI Object as an Extension of DAT TYPE......ccceevvuiiiiniiiieniiiieiiieeeieee e 214
CONLLOL VAIUES ...ttt et e s es 214
PLOPEITICS. ..ot etie ettt ettt ettt ettt e et e st et esabeeenaeesnbeennnee e 214
PAR Object as a Specific Variant of DAT TYPE......cccuvviiiiiimiiiiiiiiceiiiniiiiicce e 215
CONTOL VAIUES ...ttt ettt etae e 216
Properties. ... 217
String (STR) as a Specific Variant of SWIP...........oiiie 218
ACTIONS ..ottt e 218
CONLLOL VAIUES ...ttt e e e e e 218
EXAMPLE .o 219
PrOPEITICS. ..cooiiiiiiiiiiiiiii e 220
Recommended REAAINGuvviiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeee e eeeeeeeeeeeeeeereeeeeeeeees 220
T3 Other OULPULSueeeceeeeereeeeeeeerreeeerseeesseseesaseessasesssseessssesssssassns 221
OUEPUL DALA (NOD ..o, 221
ACHONS it 221
EXAMPLE ..o 223
PrOPErti€s...cccooiiiiiiiiiiiiiii i 223
Output Demultiplexer (TAB)cooiiiiiiiiiieiiie ettt 224
ACTIONS ..ttt 225
EXAMPIE ..o 225
ALATMIS (AL oooniiie e 225
B e 5 10 s KOO R PP PO PPPPPPPPPPPPPPPPRt 225
PLOPEITICS.vveeuiiietie ettt ettt ettt et et e et e et eebeeeabeessbeeeaseessseesaseessbeennneaes 226
EXAMPIE ..o 227
Recommended REAAINGuvuvviiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeereeeeeseeeeereeeeeeereeeeees 228
T4 COUNLETS coneerenereereeneeneeesneeeesesasessesesnsossesssasessssssasssassssasesassssans 229
A Simple Counter (CNT) ..ooooiiiiiiiiiiiii e, 229
ACTIONS ... 229
CONLLOL VAIUES ...ttt e e 230
EXAMPLE ..o 231
PrOPEerti€s....ccooiiiiiiiiiiiiii e 232
An Event Counter (ECNT)coiiiiiiiiiiiii e 232
EXAMPIE ..o 233
Properties. ... 233
ATIMEL (TD oo 234
PrOPEITICS. ..o 235
An Up/Down Counter (UDQC)cooiiiiiiiiiiiiiiiiiiiiiiiii e, 235
ALCTIOIYS ...ttt ettt e et e e e eeeeeee 235
CONLLOL VAIUES ...t e e 235
PLOPEITICS. ...vteeeet ettt ettt ettt ettt e et e st esnbeeenaeesnbeeeneeesnbeennneees 236
EXAMPLE ..ottt ettt ettt ettt e e e 236
Recommended REAdINGcoovouiiiiiiiiiiiiiiiiii e 237

© 2006 by Taylor & Francis Group, LLC

Table of Contents ™ xvii

15 VFSM and Its INtErACESuueeeeeeeeereeeeerrrrsneeeeeeeeesssssnsssseeesesees

Virtual Finite State Machine INtErfaCes..............uuuuuuuivivuiiriiiiiiiiiiiirirevieirereeerererennns

A Virtual Finite State Machine (VESM)........ccoovuiiiiiiiiiiiieeee e
Hiding Specification Detailsccouueiiiiiiiiiiiiiiiieeeiie e

A Command (CMD)oooiiiiiiiiie ettt
PLOPEIti€s.oeniiiiiiiiii e

An Interface to I/O Handler (UNIT)

An Interface to a User-Written Function (OFUN)

Example

Properties. ..o
JUSE XA Lottt a e

Memory fOr OFUN........coiiiiiiiiiiiiiiii e

Internal Value as a Control Value...............uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiveiieeeeeees
Recommended REAAINGuvvviiviiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerereeeeaes
16 Debugging VESM.......ueeeeeereceeeeereeerserecssenecsneeessasesssasessssssssnsssses
Testing a VESM APPHCATIONceeiiiiiiiiiiiiiiiiiiii e
System CONSISTEINICYooooiiiiiiiiiiiiiiii
Trace.....ooooeiiiiiieiiii
Debugging Mode (VFSM)
Command Files..........cccoooeiiiiiiinnni.
SEIVICE MOME.......ceiiiiiiiiii ettt e ettt e e e e e e e e e e e
The Role Of DOCUMENTAION ...ceeeoiiiiiiiiiiiieiiiiiii e e et e e e e e
17 What Is StateWORKS?ccccceeerreeeerreeeererecsaeeessasesssssesssssesssasesns 261
Compared with Specification Methodsccooiiiiiiiiiiiiiiiiiee e 261
Compared with Agile MethodSc...couveiiiiiiiiiiieiiieeie e 262
APPHCATION ATCAS ..veeiviieeiiieeiieeiii et ettt et et e et e e tteeteeebaeenseesbeeenseessseessseees 262
Recommended REAINGc....oooviiiiiiiiiiiiiii e 263
AppPeNndiXx A Case STUAIEScccoweeeveerccrccccenccscscscscscscscssssasnes 265
Appendix B Microwave Oven Control — Use of StateWORKS

Development TOOIScceeeeerverecserecreeessaeresssesesanes 267
TTOPAC ¢ttt ettt ettt et 267
First SIMple SOIULIONc.ooiiiiiiiiiiiiii e 268
More REaliStiC CONLIOLiiiuiiiiuiiiiiiieeiieeiie et ettt ettt e eenas 269
RTDB ODJECES......eiiiiiiiiiiiiiiee e e e e 270
Yet ANOther CRANGEoooiiiiiiiiiii et e e e 272
CONCIUSIONS ...ttt et e e e e e e eeeeeeeeeeeee 272
DICITIO ..ttt e e eeeee 273
Appendix C Gas Control — Hierarchical System of State
MACKRHINES ..cuereiiiiiiennnnniiiiinniiecnnenissnnssssesssesssssssssssssses 275

TOPIC . 275
FLOW CONEIOL ..ttt ettt ettt ettt e et e et e e e eteeenseeennas 276

© 2006 by Taylor & Francis Group, LLC

xviii B Modeling Software with Finite State Machines

MONILOTiNG the PIESSUIEuuvvviiiiiiiiiiiiiiiiiiiiieiieeeieeeeeeereeeeereeeeerereeereeererererererreeeees 277
GAS COMLIOL ...ttt e e et 279
CONCIUSIONS ...ttt et e 280
DICMIO ..o e 281
Appendix D Dining Philosophers Problem............cccoeueueurueunee. 283
EXAMIPLE ...ttt e e eeeeeee 283
Running the EXAMPLEoooiiiiiiiiiiiiiiiiiii e e 285
Appendix E Going Beyond the Limitations of IEC 61131-3.....287
INELOAUCHION ...ttt e e 287
GRAVEL Example from IEC 61131 Document — Critical Analysis 287
A State Machine as a Replacement for Markers............cccoevviiiiiiiiiiiiiniiiiieeeens 292
GRAVEL Example as a State Machineccccoevviiiiiiiiiiiiiiiiceeee e 293
CONCIUSIONS ...ttt 297
Testing With SWLAD ... 298
Recommended REAAINGuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeee e eeeeeeeees 298
Appendix F Traffic Light Control — Design of the Hardware

5T0) L1 15 T3 s W 299
Appendix G Coding Finite State Machine — Vending

Machine Counter EXample.......cccceeereeeeeeeisoneennnnneee 301
Appendix H IOD File of the StandardUnit.........cececucucueuecrcncaane 305
Appendix | StateWORKS PrOJECLSccococemcmemcmcmcmcenrasarasasasanaes 307
A PLOJECT. ..ot 307
Specification of State Machinesccccccoiiiiiiiiiiiiiii 308
Specification Of UNITScccooiiiiiiiiiiiiiiiiii i 309
System SPECIfICATION.oiiiiiiiiiiiiiii e 309
DOCUMENTATION.uuiiiiiiiiiiiiiiiiiiiii it e e e eeeaeeeeeeeeeeeeees 310
Testing with SWLab and MONILOTS.cccuutiiiiiiiiiiiieeiiiieeeiet e 310
Documentation Of EXAMPIESoooiiiiiiiiiiiiiiiiiiiiiiiiic e 311
Appendix] Vending Machine Counter Projectcceeeeeee.. 313
Appendix K Pedestrian Traffic Light Project.........cccceeeeeeeueunee. 315
TRE SYSLEIMI...ceiiiiiiiiiiiiit ettt e e e ee e 315
The State Machine of Type Pedestrianccccooviiiiiiiiiiiiiiiiiiiiceeiiieee e, 315
Testing With SWLADcceiiiiiiiii e 316
Appendix L Pumps Supervision Project........eeeceecerercescnene 319
TRE SYSLEIMI...ceiiiiiiiiiiiiiii et e e e e e e 319
The Main State MaChine ..ottt 320
The State Machine Of TYPe PreSSULE..........ccoiiiiiiiiiiiiiiiiiieeiiite et 320
The State Machine Of TYPE DEVICEcceiiiiiiiiiiiiiiiiiiiiii et 320
Testing With SWLADooiiiiiiiiiii e 323
Appendix M Output Function CalcLimits()....cccoeeeurerurerueereenecs 325

© 2006 by Taylor & Francis Group, LLC

Table of Contents ™ xix

Appendix N Traffic Light PLoject.......cocececvcrcccccccucncacacssasannnes 329
TRE SYSEEITLiiiiiiiii ettt ettt et e s e et e e 329
The Flash State MacChinecooiiiiiiiiiiiiiiiiii e 329
The TrafficLight State Machineccccooiiiiiiiiiiiiii e 330
The Light State€ MaCRhiNecccooeiiiiiiiiiiie i eeeeeeeeaeeeeeees 331
Testing With SWLADcooiiiiiieiieeeeeee e eeseeeeeenes 333
AppPeNdiX O DI DO ProJECt ...ccocecveccrcccccsescscscscscscsescscssssssnes 335
TRE PLOJECE.c...iiiiiiiiiii ettt 335
The State Machine Test._ DI DOiiiiiiiiiiiiiie e 335
The State Machine TANKcccoeoiiiiiiiiiiiieiiieeit et 336
Appendix P Other_INputs Projectcocvcececccscscscscscscacnens 339
TRE PLOJECE.c...iiiiiiiiii ettt ettt et e e 339
The State Machine TeSt_DAToooiiniiiie e 339
The State Machine TeSt_SWIPccooiiiiiiei e 340
The State Machine TeSt_STRc.eooiiiiiiiiiiieiiieiie et 341
Appendix Q Other_Outputs Project........ceircccscscscscscscassenens 345
THE PLOJECT ...ttt ettt et et ettt et et 345
The State Machine TeSt_INOooiiiiiiii e 345
TeStiNg TAB ODJECT.....eiuiiiiiiiiiiiieie ettt 347
The State Machine TEST_ALcccuviiiiieriieiiieiiieiieeeieeesteeieeeieeeeee e eaeeeeneee e 348
Appendix R Counters Project.....incrcrcccscrcscscscscscscscasacnns 351
TRE PLOJECE.c...iiiiiiiiii it et 351
The State Machine Test_CNTooouiiiiiiiiiiiiiiiee e 351
The State Machine TeSt_ECNTcccciiiiiiiiiiieiieiie ettt 354
The State Machine Test_UDC............uuiiiiiiiiiiiiiieieeiiee e 355
Appendix S Attributes of RTDB ODJECLScocueuemeremcucnracseacaenens 357
Appendix T StateWORKS Tools and Components 359
SAtEWORKS STUAIO....ceeiiiiiiiiiiiiiiiii 359

State Machine SPecCifiCation..............eeiiiiiiiiiiiiiiie e 359

UNIT SPECIICATION ...vvviiiiieiiiieeiie ettt ettt e e eereesaae e 360

String Resource SpecifiCation..............coooiiiiiiiiiiiiiiiiiice e 360

Definition of ODbJECt PrOPErti€s.......cuuvviiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeee e 360

Definition of System of State Machinescccceevviiiiiiiiiinniiiiiicee e 360

BUILAING ..t 360

TESTINIG ...ttt ettt ettt ettt e e et e et e et e e etaeete e e e e ereeens 361
State WORKS SIMUIATIONovviiiiiiiiiiiiiieeiee ettt eaee e 361
StAtEWORKS MOMILOLSvviieiviieiiieeiiie et eeiee et e et esiteeetteesateesaaeeeteeetaeeaeeesaeenseeas 361
State WORKS RUNTIME SYSTEIMScvvieivieiiieieiieeiieeiiieeeieeeiieeeieeeneeeveeeneeeseeesneens 362
Recommended REAINGoooouiiiiiiiiii e 362

© 2006 by Taylor & Francis Group, LLC

Part | .

THE PROBLEMS
OF SOFTWARE

Chapter 1

Evolution of Software
Development

Introduction

The book is about state machines as they should be understood and used
in software. So, why have we written a few chapters about general software
issues? The reason is quite simple: we introduce a new specification
method based on a state machine concept. We do this in an environment
more flooded with ideas, concepts, and methods than any other branch
of technology or science. We do not wish to present something that is
just another new idea about software development methods; what we
describe is a coherent and well-tested framework for generating reliable
software for even the most complex and difficult situations. We propose
to show that the established practice of using a specification as a basis
for coding is wrong. We also propose to show why software needs the
Vfsm concept and give reasons for sponsoring the idea of specifying
behavior, and execute results of the specification. Summarizing, we pro-
pose to present arguments for reading the immediately following parts of
the book, which contain the material closely relevant to the topic.

The first title of this Part I was to have been “The Software Crisis.”
Thinking longer about it, we decided to defuse the heading. As far as we
can go into the past we have always heard about the software crisis. A
flourishing branch of industry cannot be in a crisis for 30 years. Obviously,
it is an inherently normal state for that activity and we just have to live
with it. “To live with it” does not mean to accept and to consider it as

w

© 2006 by Taylor & Francis Group, LLC

4 m Modeling Software with Finite State Machines

something “given by God” that cannot be changed. Especially, we know
that it is a result of human activity, and as such it can obviously be
changed by us. Furthermore, there are commercial reasons for change,
primarily the exorbitant cost of software development.

It is much easier to formulate the goal than to implement it. We have
chosen for this section a very personal, but we think a fair way. Instead
of trying to formulate a very deep analysis supported by scientific methods
and evaluations we simply present here our knowledge and opinions
about the topic. A more thorough analysis would have required a larger
team and resources, and eventually it would exceed the true goal and
topic of the book.

The view of software as presented in the few chapters of the book is
a view of persons who have spent many years developing software and
observing it from several positions: programmer, software project leader,
software manager, and last but not least academic teacher. Even if some
thoughts appear not well founded, they represent a point of view that is
not rare or unusual — it is simply the view of many people inside the
software industry. The public official facade presented by many companies
is completely false — the true face of software development, the methods
really used, and the various management styles can only be seen from
inside the company, when taking part in the projects.

In Part T we avoid in most cases formal definitions or very detailed
explanations of issues discussed as we assume that a reader is familiar
with the topics. This is in contrast to the later parts, which either present
new approaches or carefully define things as we come to see that we
need them. Therefore, even such an old and well-known idea as a finite
state machine will be given its adequate definition in Part II. In other
words, the first part is informal and avoids pedantry; the following parts
are formal where we try to be as precise and clear as possible. In the
first part we do not try to teach a reader anything; we just express our
opinions. In the following parts we present a formal method and its
implementation.

Programming Languages

Software is inherently linked with programming languages. For people
outside the software industry the two are the same.

A programming language is a formal language defined by its syntax
and semantics. The programming language is used to write programs that
are carried out by computers. There are hundreds, perhaps thousands of
programming languages, most of them irrelevant. The overwhelmingly
majority of programs are written in a few dominant programming languages.

© 2006 by Taylor & Francis Group, LLC

Evolution of Software Development ®m 5

A Little History

Programming began with writing programs into a computer memory in a
form of octal or hexadecimal numbers, which represented the binary-
coded program instructions (machine code). For example, 0272 12601 is
an indexed indirect jump for one old computer, and some programmers
were happy to work with such coding. Soon the numbers were replaced
by instruction names — the assembler was born. Assembler notations,
just like the underlying binary code, are closely linked with the processors.
So, each processor has its own assembler language. There were some
efforts made to introduce a common assembler notation discussed, for
example, by Baldwin.! One of the implementations, CALM (Common
Assembly Language Notation), was presented by Nicoud et al.? If success-
ful, it would have broken the bindings between the processor and the
assembler. Those efforts failed and resulted only in some short-lived and
locally limited implementations.

This direct fiddling with bits and bytes while programming was very
time-consuming although the programs themselves were effective. In the
sixties, the first general programming languages appeared that were appli-
cation oriented — the direct link between a processor and a program has
been removed. A given program could have been carried out on any
computer. To realize it, translation programs (essentially a compiler and
a linker), which converted the program into processor specific instructions,
were used. The most important early programming languages were Fortran
and COBOL, which were not grounded on any solid design philosophy
because the theoretical basis of the emerging software practice was rather
thin in those days (we should not forget that only 40 years ago relatively
obvious but important observations were being published; e.g., that over-
use of the goto statement leads to disastrous code as shown by Dijkstra?).
Attempts to introduce languages based on some theoretical presumptions
like Algol or later Ada failed to have wide impact, perhaps on account
of the design-by-committee problem, although a certain number of valu-
able concepts were established.

The lessons of the use of the early and intuitively defined languages
led quickly to the idea of structured analysis and design. The best
realization of that idea was Pascal, which was the programming language
in the 1970s to 1980s. For reasons that, from a technical point of view,
are hard to understand Pascal was replaced by C, and Modula 2 was
ignored. The effect of the C language could be described by a remark:
“hearing about a major software catastrophe I can be sure that it has been
written in C.” Anyway, that language, with its descendant C++, seems at
the time of writing to have won the battle for supremacy.

© 2006 by Taylor & Francis Group, LLC

6 ® Modeling Software with Finite State Machines

BASIC Catastrophe

Speaking about software catastrophes, we should mention BASIC. There
are no known large software catastrophes linked with BASIC as nobody
has tried to write large programs with it, but in a way it is a disaster,
when considering its bad influence on programming style. BASIC was
introduced as a teaching language for students of programming, or perhaps
we should say coding, with an apparent advantage of interactivity, as
when first introduced in the sixties it was interpreted rather than compiled.
This encouraged users to just start coding, and to fight their way through
a mass of errors and misunderstandings until they seemed to have a
successful program. BASIC was never a favorite language for experienced
programmers. Dijkstra pointed out once that a person who was taught
programming using BASIC would never be a good programmer. The
statement should not be interpreted directly (we are taught many stupid-
ities in our youth but as adults most of us manage to overcome the ballast)
but it describes well the serious programmers’ opinion of BASIC. That
language encountered an astonishing evolution, taking over several proven
ideas from object-oriented languages, and a modern version, Microsoft
Visual Basic, stays popular. In fact, many millions of useful small-scale
projects have been implemented with Visual Basic, which provides superb
facilities for a certain class of software running in the limited environment
of the Windows desktop. In spite of that, C++ programmers cannot
understand why they should ever use BASIC when they can do the same
things in C++ better and more elegantly. Visual Basic has some serious
limitations that arise if we want to do something serious. We are enthu-
siastic if creating nice pictures on the screen, but leaving the graphics
behind we fall flat on our face very soon.

C++

We have already mentioned C++, which is the language of the last decade.
It is the flagship of the idea of object-oriented programming, which evolved
in the late eighties. That paradigm was the last great step in the direction
of better programming languages. The success of C++ is also difficult to
explain; probably its evolution from the very popular C played the decisive
role. There are languages that better implement the idea of the object-
oriented paradigm, especially Smalltalk, where a programmer lives truly
in an object world. This is in contrast to C++, where a programmer is still
confronted with the plagues of the C language, like pointers, global
variables and functions, garbage collection, exception handling, etc. There
are of course several other object-oriented languages, the most interesting
being Java or C#. The variety of languages fulfills the goal of having some

© 2006 by Taylor & Francis Group, LLC

Evolution of Software Development ®m 7

advantages over other languages from a certain point of view, in a certain
environment, but we cannot say that any of the languages is in principle
better than others. As we pointed out above, the dominance of C++ does
not mean that it is the “best” programming language from a theoretical
viewpoint. Languages defined on a sound theoretical basis have never
gained wide acceptance (see the already mentioned Algol or Ada).

PLC

Speaking about programming languages we should not forget PLC (Pro-
grammable Logic Controller) programming methods. The way PLCs are
programmed has never excited programmers, especially the true PLC
programming in the form of ladder diagrams or function plans. In any
case, PLC programming is successful and often used. The tight links
between the PLC hardware and programming have not allowed any other
way of doing it, which explains the success story.

The PLC world is a very separate world. It is so isolated from the
mainstream of software development that some programmers do not
consider it as true programming. The separation has stemmed from the
close linkage to the hardware, i.e., to the Programmable Logic Controllers
and the relay logic that preceded them. The application domain for the
PLC is well defined and limited to industrial control, where the hardware
is first needed as a data acquisition system, which is the interface between
the controlled production system and the computer. For several years PLC
hardware used its own execution units and for that proprietary hardware
each company developed its own software development environment.
After the proprietary computing systems had been replaced by open
hardware solutions symbolized by PC, the PLC world delayed any changes
favored by the marketing situation in that field: a few big companies
shared and controlled the market. Eventually they were forced to open
the PLC to nonproprietary solutions — standards for programming lan-
guages having been introduced (e.g., IEC 61131-3). Those standards are
taken seriously in Europe, although the U.S. companies are delaying
acceptance, still stuck on ladder diagrams, which differ slightly from one
manufacturer to another one. Standards in turn have allowed the use of
the PC as a control unit.

From a technical point of view, PLC programming methods (ladder
diagram, structured text, function block diagram, instruction list, and
sequential function chart) do not have any advantages over other pro-
gramming languages, but the nature of a PLC language is such that
developers are able to concentrate on the application, rather than having
to spend half their time struggling to avoid or to correct programming-
syntax problems. The main sense of this approach is the large potential

© 2006 by Taylor & Francis Group, LLC

8 ® Modeling Software with Finite State Machines

represented by people who know the industrial control problems and can
program in PLC languages and the good development tools provided by
PLC manufacturers. The power of PLC manufacturers plays a decisive role
here, as well. It is rather difficult to convince, e.g., a C, C++, or Java
programmer to change voluntarily to PLC, but many firms have, never-
theless, chosen to adopt them after having suffered with conventional
programming in the days of the mini-computer, in the same way that
some firms chose Visual Basic rather than C or C++, so as to concentrate
better on the application and have fewer obscure bugs in the final product.
We present detailed criticisms of the IEC 61131-3 methods in Appendix E:
Going Beyond the Limitations of IEC 61131-3.

Script or Macro Notations

A very special type of programming language is script languages, also
called command or macro languages. In principle, for any job we may
invent a special language. If we can, we do it. So, of course, any operating
system has its script language: the IBM mainframe JCL, DOS “bat” (very
poor), UNIX shell programming (quite good but unfortunately every UNIX
variant has a slightly different one). Many application programs have one —
called a macro language: editors (WordPerfect, Word, OpenOffice,...),
databases (Access, MySQL,...), Spreadsheets (Excel, QuatroPro,...), Inter-
net applications (Browsers,...). We had better stop the list — effectively
it could contain all application programs. There were attempts to introduce
BASIC as a common macro language at least for MS Windows applications,
with little success.

There is a hope that eventually XML notation will become a lingua
franca of the computer world. Interestingly, XML is not a programming
language but just a data description language and it can be used only
with an execution environment that gives the data the true interpretation.
In any case, it seems that it could solve the “Tower of Babel” mess existing
in script, command, and macro languages.

There Are Many Languages

In such a way we reach the end of this short history of programming
languages. Readers who program at the moment in Prolog or Lisp, for
example, could ask why their programming language has been omitted.
There are several languages whose only reason for existence is that they
have been developed for a very specific application domain and outside
that domain they are just useless. The list of such specific applications
and corresponding languages is long. For instance, many years ago I tried

© 2006 by Taylor & Francis Group, LLC

Evolution of Software Development ®m 9

to program in APL and I was enthusiastic about the compactness of the
language — for some mathematical exercises it was a perfect tool. But it
was also obvious that that language is just a toy that will never achieve
any importance.

As a final comment, we suggest that most programming languages do
not “scale” very well. They are easy to use for writing small and self-
contained programs, but for real-life and very complex projects the control
structures are such as to make the final code almost impossible to
comprehend in its entirety.

Methods

In terms of methods, we must distinguish between software methods and
application methods. Software methods define the rules on “how to
develop a program.” Application methods are required for implementing
the application.

Let’s begin with the more obvious topic — the application methods.
They have very little in common with software. For instance, programming
a Math library we have to use mathematical formulae — so, it is obvious
that we have to know about these mathematical methods instead of trying
to reinvent the wheel. In addition, programming any calculation we have
to know the idiosyncrasies of discrete mathematics — a belief that common
sense may replace the knowledge contained in books written, e.g., by
Knuth*® or Graham et al.” is just stupidity (there are many books today
that may present those topics even better than the cited classic books,
but we honor the books that we have on our shelves). When programming
a software package for a bank we must have knowledge about the financial
world and apply existing methods or processes that are already in use in
that environment. When programming industrial control systems, we have
to know about the industrial hardware, various physical laws, and control
engineering principles. Those requirements are so evident that often
companies prefer to employ persons who specialize in the application
domain instead of brilliant but innocent programmers for development of
their application software.

Software methods should help a programmer to design the architecture
of the program, to define the classes or data structures used, and to
express the application requirements in terms useful in the coding process.
Unfortunately, there is no common understanding or agreement consid-
ering software methods. If there were, programmers would be given some
education in them, and a person without any knowledge of software
methods would be forbidden to code. The reality today is that people
who have learned the syntax of a given programming language can call

© 2006 by Taylor & Francis Group, LLC

10 ®m Modeling Software with Finite State Machines

themselves programmers. In reality it is not so easy to solve the split: is
it better to take a specialist in the application domain and let the specialist
learn programming by doing or to take a true programmer and try to
teach the programmer the application problem while programming? The
obvious answer — to create a team consisting of both application spe-
cialists and true programmers — is in many circumstances difficult to
achieve.

The difficulties in defining the skills required of a programmer lead to
an extremely large range of programmer efficiency and also of quality of
the produced code. It is obvious that complex software developed by
persons with a rather vague understanding of software methods is likely
to be less reliable than software founded on some established fundamental
principles. It is also obvious that developing software without such a
foundation often results in projects that are unmanageable and not so
rarely end in catastrophe.

Basic Knowledge

What methods does “software engineering” offer? Independently of the
programming language used, there is basic knowledge that can be found
in any textbook on informatics. Normally, the textbook uses a specific
existing programming language for teaching the basics of programming.
Of course, we get some mixture of a concrete syntax with general rules,
but probably it is better to take this way instead of using some hypothetical
language to demonstrate some general concept without having a chance
to play with it. Programming cannot be taught as a pure theoretical
discipline; programming must include a “learning by doing” component.
Dijkstra’s thoughts®® about how to solve programming problems without
actually programming them is a very nice and idealistic idea, but it will
not work with human beings as we are. It makes sense only in relation
to (mathematical?) algorithmic problems. Several years ago, Pascal was a
very good language for teaching purposes. As structured design and
analysis lost its dominant position in programming, C++ replaced Pascal
even though something like Smalltalk would be better for teaching pur-
poses. Of course, other languages are also used for teaching the basics
of informatics, although using for this purpose, e.g., C or BASIC should
be interpreted rather as a misunderstanding.

Informatics courses taught students syntax definition, variables, data
structures (records, arrays, lists, classes, pointers, trees), functions, splitting
a program into a set of functions, recursive and iterative functions, algo-
rithms (search, sort, hashing), parallel processes, threads, and so on —
to list some examples taken from a rather pragmatic book. If we take a
more theoretical book we can cite such topics as finite state automata,

© 2006 by Taylor & Francis Group, LLC

Evolution of Software Development ® 11

regular expressions, sets, several sorts of automata (push-down, Turing
machines, deterministic, nondeterministic), and so on. There is enough
material for teaching quite a few useful concepts, even though some of
them may not be very useful in practice. If we realize that there are many
persons who program without ever having taken informatics courses, we
may express doubts whether education really helps the software industry.

Specifying or Not?

In addition to the basic knowledge, there is another very interesting and
important aspect of software methods, which theoretically should be the
most important topic of software engineering, namely, the software spec-
ification level. The way people develop software oscillates between two
extreme positions:

B First specify the programming task and then code it
B Start coding and learn by doing to reach what we really want.

Those two approaches are of course totally incompatible. As those two
approaches have survived the entire history of software from its beginning
to the present time, both of them must have some rights to be applied.

The specification route seems to be at least theoretically the better
way. Comparing software development with other scientific or technical
activities, we may argue that basically any construction or production is
preceded by a project study. For instance, before we start building a
house, an architect prepares the plan of the house and a building engineer
does some calculations. But maybe this example is too far away from
software specifics, and in any case we have no idea about house building.
So, let’s take a topic that we know better and compare the development
of computer hardware and software. Those are two completely different
worlds although they refer to the same product; they are two faces of the
same product. Manufacturing of electronic hardware is a well-organized
and planned process. Hardware comes into being on paper (effectively
in CAD programs): the electrical schemes, the layouts, simulation,
checking — several steps that produce the entire project of the hardware.
Only when the hardware is entirely designed (in other words, completely
specified) may the manufacturing start. Considering that manufacturing is
a highly automated process, the only way to do it successfully is to have
a complete project for the production line. Contrary to that, software
development does not require any design or specification phase — we may
start manufacturing (coding) while having a very vague understanding of
the application. If we may do something it does not mean that we should
do it but the problem lies in the possibility:

© 2006 by Taylor & Francis Group, LLC

12 ®m Modeling Software with Finite State Machines

We may do it that way, hence we do it that way.

The protagonists of “learning by doing” software development argue
that customers do not know exactly what they want, or at least they
cannot express it in a complete fashion. But the reason for the customers’
attitude to their requirement is exactly the same as for the programmers:
the customers know that they are not forced to supply a precise specifi-
cation so they economize. We are here again in the situation: we may do
it, hence we do it. We could formulate a law that applies to both the
software development team and the customer:

We choose always the way of apparent convenience.

Let us have a look at the most prominent representatives of those two
different software development methods: first CASE tools, especially UML,
and then Agile methods.

CASE Tools

CASE (Computer-Aided Software Engineering) tools are nearly as old as
the software industry. From the beginning there was an awareness of the
need to support programming by automated tools. Hence, under this very
broad topic, thousands of methods and tools have been developed for
any imaginable software activity. The list of supporting tools is very large
and contains program simulation and verification, application analysis and
modeling, software architecture modeling, machine code analysis, code
review, data and database modeling, design documentation, specification
and executable specification, executable model, object-oriented analysis
and design, project management, reverse engineering, structured analysis
and design, to cite some rather randomly chosen examples.

We exclude from that topic the programs needed to generate the
machine code, such as assemblers, compilers, linkers, loaders. We also
exclude editors, debuggers, or code analyzers, which we consider as
development tools.

Usually, CASE tools have powerful graphic editors, which makes it
easy to draw nice diagrams. The formal methods that we need for a design
are missing. The result is then a document that contains diagrams and
text; in other words, the requirements in a better presentation. Many
programmers struggle against that. They agree that on the way they come
to better understand the requirements, but they consider the time invest-
ment too high. Partly we can understand that attitude, although in many
cases it is just an excuse. The true reason for refusing the specification

© 2006 by Taylor & Francis Group, LLC

Evolution of Software Development ®m 13

phase is often that programmers like coding. Specification work is obvi-
ously not fun. The other reasons for the negative attitude against CASE
tools is that the awaited advantages of the (formal) specification, like
verification against logical errors and consistency of the entire specification,
cannot be fulfilled.

To improve the usefulness of the specification, the CASE tools try to
generate code. This direction seems to be the greatest misunderstanding:
code generation makes sense only if it is complete, but then we do not
speak any longer about a specification; rather, we will have a new
programming language. More comments about this issue can be found
below in relation to UML.

UML

For the purpose of the book we limit our discussion to CASE tools that
started in parallel to the introduction of object-oriented design, the gov-
erning software paradigm. For several years, several groups have tried to
convince programmers about their notations but failed. Eventually, they
agreed to a common notation under the name UML, which stands for
Unified Modeling Language. Unfortunately, instead of creating a synthesis
of their many years experience, they merged several not-quite-compatible
concepts and notations, producing a monster whose usefulness should
be at least critically discussed. Especially, we can note that UML has been
in use for some years, and there is no hard evidence that the use of UML
makes an object-oriented design successful.

But what kind of method is behind the notation? This is probably the
weakest point of UML. It is just a notation of the object-oriented design
but it does not imply any method. Is a definition of some symbols for
graphical representation a method? Some parts of UML can be described
as a method; a good example is Harel’s Statecharts!® method for presenting
sequential processes. But as a whole, UML presents a rather ill-defined
concept.

UML has several weak points that result from its overloading with
elements that overlap and confuse the user. To be more specific, let us
take presentations of sequential activities. There are three different diagram
types to show more or less the same aspect: state diagram (another name
for Statecharts), sequence diagram (a kind of time diagram), and activity
diagram (actually a flowchart). The point here is that although they relate
to the same topic, they are not equivalent and not convertible to other
presentations. Hence, we have to draw all those diagrams by hand if we
need a complete presentation of the “dynamic” part of the specification.
So, do the diagrams present the same thing or not? Rather not: they present

© 2006 by Taylor & Francis Group, LLC

14 m Modeling Software with Finite State Machines

different aspects of software behavior. Wouldn’t it be better to have one
diagram for sequential activities? This is an effect of producing a universal
notation by merging several notations.

The other topic that should be addressed is the alleged universality of
the notation. Theoretically, an object-oriented design method should be
independent of the application domain. To some extent it is true but it
has one drawback. Business applications that are at the origin of the
notation do not know control problems, as understood, e.g., in industrial
control or telecommunications. Therefore, the notation is relatively good
considering data presentation and weak considering control.

As we do not want to make any serious analysis of UML we limit
ourselves to citation of some excerpts from an opinion that I wrote some
time ago about one of the UML tools:

The principal problem of any CASE-tool is that they are not a
full programming language. Hence, they allow realizing only a
part of the development work (specification, modeling). This
means that the result of a specification which is done with a
CASE-tool must be completed with other means (programming
languages). There are possibilities (Reverse Engineering) to
synchronize the further development with the original incom-
plete specification but in practice it does not function and is
used only to demonstrate the tool features. This does not work
not only due to shortcomings of the tools that are not able to
do it reliable and fully. If a programmer takes over the speci-
fication results and starts to program it becomes very difficult
for him to “waste” time on things which are negligible for him.
This typical psychological effect is well shown by notoriously
bad software documentation.

The usage of the tool should lead to better software documen-
tation. To analyze whether it is true, let us take an ideal case
of software development where the project has been success-
fully terminated and the modeling documents have been actu-
alized with help of Reverse Engineering. Let us ask two
questions.

The first question is what kind of documents will be read to
understand a program. UML documents are understood by
persons who know the modeling language, just like a C++
program can be read, to some extent, by a C++ programmer.
We should not be deceived by statements that graphical pre-
sentations are more expressive than a code, especially if stated

© 2006 by Taylor & Francis Group, LLC

Evolution of Software Development ®m 15

by people who know neither UML notation nor C++. If we see
some Japanese writing or Egyptian hieroglyphs we are
impressed by their graphical beauty but we do not understand
them. Considering UML and similar notations: how can a person
understand a UML diagram without knowing the true meaning
of, e.g., 10 different arrow types that are used on the drawing?
Only informal drawings where we use not precisely defined
squares, circles, lines and arrows are “understandable.” A pre-
cise diagram where each element has an exact meaning can
be as difficult to read as any other code and can be read only
by qualified persons.

The second question is, what kind of documents are we going
to use in software debugging or changes? The answer is rather
obvious: we use C++ code for these activities.

What do we really need modeling documents for? They are
useful in the beginning of software development to discuss
ideas and concepts. They make it easy to introduce new pro-
grammers into a project.

UML and programming languages are not the same tools. When
the software model is ready, the UML tool generates for a C++
implementation h- and cpp-files; the cpp-files are only dummies
with tool-specific headings. As it is a general tool there is no
one-to-one correspondence between the modeling language
and the C++ structures. This means that the h-files generated
by tools are not good (e.g., sometimes they do not know
references). To allow for reverse engineering the h-files are
overloaded with tool specific comments which make them
unreadable (we know the problem for any wizard-generated
files).

Since software is developed with two different tools (modeling
and programming) it requires two different development envi-
ronments. If the two tasks (modeling and programming) are
performed by two different persons they will be effective as
each of them works in a well known environment. This solution
requires good cooperation between these two persons because
modeling and programming are not completely independent
tasks and require interaction and fine tuning. If both tasks are
performed by the same person the load and quality of the
person must be higher as this person must use two different tools.

© 2006 by Taylor & Francis Group, LLC

16 ® Modeling Software with Finite State Machines

Are there any alternatives to modeling with UML or similar
tools? Should we continue in the old manner even though we
know well the shortcomings of the software development pro-
cess? 1 think if we invest time into software specification and
documentation instead into modeling with UML we get similar
results without creating the impression that we get a new quality
using UML tool. If we invest time in software documentation
we produce software which is easy to maintain and change.
Do we have any other aim?

CASE-tools will bring a new quality into software development
if they are truly programming languages which allow the appli-
cation to be completely specified and generate an executable
code. To realize it requires also creating a debug environment.
All this is very complicated and therefore we have still to wait
a while before we get useful CASE-tools for software develop-
ment.

That comment was written some years ago. The tools are getting better
but the improvements do not change the general situation. The prospects
shown by Edwards!! do not seem very promising. To clear any doubts
after these rather critical words: we are convinced that software cannot
be developed without well-defined requirements, specification, analysis,
and design. Translating of the specification into code should be done at
the moment when we are pretty sure that we really know the application
and nearly all doubts and details are cleared; ideally the code should be
produced automatically. But we do not see in UML the realization of such
defined goals.

Agile Methods

Let us now have a look at the opposite approach, categorized as Agile
methods. In its essence, an Agile method is based on a set of well-meant
recommendations related to coding or programmers’ cooperation in the
belief that as a side effect it renders specification and design largely
unnecessary. In fact, reading the Manifesto of the Agile movement we
agree with much of its content, but we know also that it will not work.
To be accepted and successful any method or tool must be made for
people (the communist ideal was also fine but it had one weak point —
it had been formulated without taking into consideration the nature of
human beings). To assume that we have a team of perfect programmers
willing and working smoothly to get software ready in time is a very nice
proclamation, which will be signed by any manager but is too naive and

© 2006 by Taylor & Francis Group, LLC

Evolution of Software Development ® 17

has little to do with real life. Software development cannot be based solely
on good will and cooperation of engaged persons. It also requires meth-
ods, planning, schedules, and organization. The basic Agile recommen-
dations are very vague and in fact of such general nature that they do
not fit well into a technical book. They could have been produced by
any manager who wants to motivate his or her employees. To be more
specific let us cite the most important rules of eXtreme Programming (see
Table 1.1), which is a well-known implementation of the Agile idea (in
the right column we put our comments).

Perhaps some of our comments are not quite fair, but should we really
accept and even discuss any proposal which is so foreign to real life?
There is an explanation for this kind of “method.” The explanation stems
from the definition of software that we discuss later. We mention here
only that there are no known large software projects that successfully use
the eXtreme Programming idea — the explanation is linked to the size
of the developed software. We found the following characterization of
Agile methods by Whittaker!?:

If taken “to the extreme,” agile development is a completely
unstructured, chaotic process that employs unrepeatable pro-
cesses and bypasses much of the testing and design phases.

Whether these kinds of methods can really contribute to software devel-
opment can be at least questioned.

We have presented here the two extreme ways of developing software
and expressed our critical opinion about them. Of course, the reality is
never as extreme as the used methods suggest. Programmers must deliver
software. They are bound to deadlines and requirements that should be
fulfilled. To develop software in time and in the budget frame they choose
what they consider the best solution for them. Good management may
help them but eventually the programmers take the full responsibility for
success or failure. And good management will never try to enforce any
method that is not accepted by programmers. Bad management does it
sometimes and programmers behave in such a case as if they use the
method, producing, e.g., some useless documents that fulfill the formal
requirements of the enforced methodology. But the true programming
work is done in parallel to that fictive work.

Behavior Modeling

Software always articulates itself by behavior. There is software whose
behavior is simple but there is also software whose essence is the behavior.
For instance, applications that control something are defined by the

© 2006 by Taylor & Francis Group, LLC

18 ®m Modeling Software with Finite State Machines

Table 1.1

eXtreme Programming Rule

eXtreme Programming Rule

Our Comment

Two programmers work on each
task using a common keyboard and
a monitor: one writes the code, the
other one thinks and helps.

How many programmers exist who
will voluntary accept this kind of
work?

Any ready software component is
immediately integrated into the
built software.

Integration of a major software
product is a complicated task
normally requiring many hours,
sometimes days. Therefore, it
cannot and must not be done on a
daily basis.

Test units will be written for any
piece of software before the actual
pieces of software are coded.

How can one write a test of software
pieces without having a perfect
specification of each of those
pieces?

The client determines the goals of

software test and does it in person.

One of the reasons for use of
eXtreme Programming is the fact
that clients as a rule do not know
exactly what they want. Hence, how
can they test the intermediate
results and accept them without
knowing what they really intend to
have?

How many clients are known who

want to take part in the
development process?

The software architecture and
software documentation are
continuously improved.

The main reasons for confusion in
software development are changes
of the existing parts. Therefore, all
changes in a software project must
be well controlled and coordinated.
As a rule: the fewer changes, the
better.

The working time is limited to
40 hours.

It might be a good law for a labor
union.

behavior description of the controlled process. Therefore, methods allow-
ing modeling of behavior are used in software specification and design.
There are several methods used for that purpose; the best-known are
finite state machines, Petri nets, and Statecharts. All those methods use

© 2006 by Taylor & Francis Group, LLC

Evolution of Software Development ®m 19

the concept of a state* to describe a present situation, which is defined
not only by the current inputs but also by the history of input changes.

Behavior modeling methods are to a large extent underestimated in
software, as they are considered too theoretical and inefficient, especially
in software design. Misunderstandings surrounding that topic result in
poor design where the history of input events is “stored” by flags, markers,
and similar variables, which cannot be well managed and are responsible
for most software disasters.

Development Tools

Development tools are means used in programming — writing the source
code and creating the executable machine code. In previous decades
widely different development worlds have been established, with some-
times contrary design philosophies. Any discussion about development
tools must also contain the different ideas about software ownership and
marketing. It cannot be limited to a purely technical review of editors and
compilers. Otherwise, it would be difficult to understand why in the 21st
century we have programmers who still write code using the editor vi
coexisting with programmers using a powerful IDE (standing for Integrated
Development Environment).

To effectively produce reliable code requires several programs. We
may leave the use and coordination of these programs to a programmer
or we may create a development environment (IDE) where the chain of
activities is automated. The activities contain, among others:

Writing a source code
Creating GUI

Compiling

Debugging: step, trace, spy
Optimizing code

Performance analysis

Linking

Producing loadable modules
Producing installation package
Managing source code (versions)
Generating documentation

* A place in a Petri net is not like a state of an fsm but a Petri net may be transformed
to an equivalent system of fsms.

© 2006 by Taylor & Francis Group, LLC

20 ®m Modeling Software with Finite State Machines

Programs that perform the above tasks must cooperate with specification
tools if they are used (e.g., UML) and must be supported by Help and
Knowledge Databases (Iocal and Internet). The list can be longer depend-
ing on the manufacturer.

Looking at the list of tasks required for producing a program we
understand that a good IDE can contribute to programmers’ effectiveness.
The desktop software development platform is dominated by a few big
companies, on top Microsoft Visual Studio (for several languages like C,
C++, C#, J#, Visual Basic, but only for Windows) followed by Borland’s
Delphi (only Pascal but for Windows and Linux). There are also some
platform-independent IDEs, e.g., Eclipse.

Creation of a useful and reliable set of programs required by an IDE
demands huge resources, which explains why only big teams (companies)
can manage it. The development of an IDE is a process that takes several
years, but these days IDEs are very powerful platforms, which fulfill nearly
all programmers’ wishes — they are really good, contributing a lot to
software development.

The other extreme is to control the entire development process by the
programmer. For instance, a programmer who works in the Open Source
environment is confronted with less-user-friendly tools. The necessity of
using relatively primitive editors, debuggers, and working on the command
line is considered by some over-enthusiastic GNU fans as the proof of
being a “true” programmer. To some extent it is true that programming
in the GNU environment requires more engagement for project manage-
ment, writing Makefiles, doing a lot by hand or in general being deeply
involved in all details of the software creation process. It could be also
considered as a waste of time. But the situation improves and such
emerging tools as, e.g., Kdevelop or Eclipse, are becoming the IDE for
GNU. This is very much required to relieve programmers from dealing
with all the development details, which delays the programming work.

Recommended Reading

1. Baldwin, G., “Toward an Assembly Language Standard,” IEEE Micro (August
1984): 82-85.

2. Nicoud, J. D., Wagner F., Major Microprocessors: A Unified Approach Using
CALM. Amsterdam: North-Holland, 1987.

3. Dijkstra, E. W., “GOTO considered harmful,” letter, 1966.

4. Knuth, D. E., The Art of Computer Programming, Vol. 1, Fundamental
Algoritbms. Reading, MA: Addison-Wesley, 1908.

5. Knuth, D. E., The Art of Computer Programming, Vol. 2, Seminumerical
Algorithms. Reading, MA: Addison-Wesley, 1969.

© 2006 by Taylor & Francis Group, LLC

Evolution of Software Development ® 21

6. Knuth, D. E., The Art of Computer Programming, Vol. 3, Sorting and
Searching. Reading, MA: Addison-Wesley, 1973.

7. Graham, R. L., Knuth, D. E., Patashnik, O., Concrete Mathematics: A
Foundation for Computer Science. Reading, MA: Addison-Wesley, 1988.

8. Dijkstra, E. W., “On the cruelty of really teaching computer science,”
Communication of the ACM (November 1989).

9. Dijkstra, E. W., A Discipline of Programming. Englewood Cliffs, NJ: Pren-
tice-Hall, 1976.

10. Harel, D., “Statecharts: A Visual Formalism for Complex Systems,” Science
of Computer Programming 8 (June 1987): 231-274.

11. Edwards, C., “Modeling standard gets ready for second round,” IEE Elec-
tronics Systems and Software (October/November 2003): 36-39.

12. Whittaker, J. A., Voas, J. M., “50 years of software: Key principle for quality,”
IT Pro (November/December 2002): 28-35.

© 2006 by Taylor & Francis Group, LLC

Chapter 2

The Price of Weakness

Software Development Costs

Software development costs are high and are continuously growing. The
costs increase over-proportionally to increasing requirements. Unreason-
ably high costs are accepted as a native feature of software; the reasons
are manifold:

The development of programming languages stagnates.

There are no convincing methods that truly accelerate software
development.

The software part is getting “harder.”

The alleged freedom in software development leads often to an
unnecessary proprietary solution.

The management of software development is very often completely
uncoupled from the real programmers’ world.

Trial and error methods replace designing.

Lack of exact specifications makes software maintenance and
enhancement very time-consuming.

A mixture of several programming languages and (proprietary)
style standards makes it difficult to introduce a newcomer into the
project.

Too many surprises due to lack of clear requirements and specifi-
cation.

© 2006 by Taylor & Francis Group, LLC

24 m Modeling Software with Finite State Machines

The present variety of programming languages used reflects first of all the
situation that there are no universal programming languages: different
application domains require specific languages. But do we really have
hundreds of application domains?

Before we look more closely at the reasons for constantly increasing
software development costs we should like to define what we really mean
when speaking about software. Many misunderstandings start with the
lack of agreement: where the topic “software development” actually
begins. To expose better the problem we define three groups of software:
hobby, small, and large projects.

Once I read a nice book written by a famous physicist. A group of
physicists had tried to understand some physical phenomena and they
needed software to calculate some formulas. One of their friends (also a
physicist) had been considered a software specialist, but unfortunately he
did not like to work on weekends. Eventually, they convinced him to
come on a Saturday afternoon and he managed to develop in a few hours
a fantastic software package which helped them very much in their work.
The book is full of ironic comments and presentation but just this fragment
is serious — the author was convinced that he had experienced here
how software is written by talented men who do it just “like this.” The
story demonstrates the ideas non-programmers have about software — to
write a useful program in a few hours.

Programming as a Hobby

In any textbook we find some sample programs. Students write programs
as seminar or diploma work. Some people have as a hobby writing
programs to do some useful job (see, e.g., freeware and most of shareware
software). Persons making some measurements create script programs
automating the measurement processes. Several scripts or macros, which
require thousands of willing persons considering their variety, belong to
that category — students do those tasks willingly to earn their living. All
of those activities can be characterized as “any programming language
and development tool used will do.”

In all those software projects the responsibility is negligible and they
are not determined by any marketing considerations. The main goals of
such programming are of personal character, e.g., the “joy of coding.”
That sort of programming is done by one person. There is no necessity
or pressure for any organization, methodology, documentation, testing
procedures, etc. The result reflects the abilities and personality of the
persons who have done the job — often very well. It is not software
development in its true meaning — it is just coding (we should not

© 2006 by Taylor & Francis Group, LLC

The Price of Weakness m 25

understand here “coding” in a pejorative sense: to produce a good code
requires skilD).

Small Software Projects

Today, nearly all products (kitchen accessories, toys, DVD recorders, or
industrial equipment such as motor drives, measurement instruments, etc.:
the list is endless) require and contain software. Those software projects
have a manageable size; to be more specific, they can be realized by one
or two persons during a period of a few months. The basic difference
between those small software projects and hobby projects is that marketing
is involved, i.e., the product must be defined by requirements, program-
ming should be done in a certain time and budget frame, the version and
maintenance management cannot be ignored. If such a project is done
by one person it is still a “one man show,” being very effective but of
course with full dependency on one person. The addition of the second
programmer changes rapidly the situation — it is just a completely different
environment. Human factors play a very important role — it would be
an illusion to believe that two programmers mean double efficiency (see
also Figure 2.1). It may be true in some rare cases but as a rule management
has to foresee overhead costs resulting from work organization and
communication between two persons. It is a very serious problem, which
means that companies try as much as possible to keep the “one man
shows” as long as possible. It is more effective to have two different small
projects done separately by two programmers instead of arranging that
both programmers would work on both projects. The bad side of such
practice is that there are different programming styles in the same com-
pany, which makes maintenance even more expensive.

Effectiveness A

>

Max Number of programmers

Figure 2.1 Effectiveness of programmers’ group.

© 2006 by Taylor & Francis Group, LLC

26 ®m Modeling Software with Finite State Machines

Large Software Projects

The next step means that the software projects are large, involving tens
and sometimes hundreds of persons. We write here intentionally “persons”
and not “programmers”: large software projects require not only program-
mers but also people designing the graphical user interface (GUD), writing
help manuals, testing, building the application, last but not least managers
who organize the project because the work of all the participants requires
coordination. In those projects all components of software development play
a role: a specification method, a programming language, and a develop-
ment environment. The organization of the project can be a very complex
task, and often this is just the factor that determines failure or success.

Programming done in large teams exceeds by far any experience of
persons who were never involved in such a software adventure. The
continued conflicts between requirements or specification and code, the
synchronization of several parts written in parallel, the management’s
(justified) desire to keep control over the process (plans, schedules,
milestones, code reviews, and never-ending meetings); all this creates an
atmosphere of continuously growing tensions which unloads itself around
milestones and eventually explodes by the deadline where the truth (is
it done or not?) cannot be denied anymore. Of course, we may say that
those symptoms are typical of any large project (buildings, factories,
bridges, etc.) but software development has two characteristic features
that are not known in other industries.

First, progress is actually invisible. While building a bridge we may
assess every day the progress, even with the naked eye. While developing
software, even closely involved persons have difficulty making any reliable
estimation or prediction. For the outside world, including management,
the progress is hidden. Numbers of written code lines, passed tests, done
code reviews are elements of the fictive world, which is there to convince
management of the progress. For instance, spending a day adding com-
ments to the code greatly improves certain software statistics. Hence, it
is not rare that the fiasco of the project is only disclosed at the last moment
when it is too late to react. It explains also why tools that fake the reality
are so popular. For instance, a “good” tool or project leader should first
produce the GUI. This makes a very good impression as it is at least
visible. That there is nothing substantial behind that facade is not important
— obviously to live with an illusion is easier than to try to understand
the truth.

The second software specific is that software development never turns
into software manufacturing. Most software has a prototype character.
Developing a car terminates with a product that is then sold “as is” in
many thousands, sometimes millions of examples. The car type goes into

© 2006 by Taylor & Francis Group, LLC

The Price of Weakness m 27

production when very intensive tests prove that it is reliable, without such
failures that would make it impossible to function. In most cases it works:
recall actions are rare and can cost car manufacturers a fortune. Software
is sold if it reaches certain acceptance tests, even though we know that
it still contains errors that make it impossible to function properly in
certain situations. But selling thousands of CDs with a program is not
comparable with selling cars. The CDs will never be recalled even though
they contain several bugs. With continuous patches and updates compa-
nies try to improve the software, but several examples show that after a
while the number of errors stays constant — obviously removing errors
produces the same amount of new errors, in other words developers are
not able to improve the software anymore. The patches and updates reach
only some of the customers — look at the state of the operating system
in most PCs.

In relation to points made in the preceding paragraph it is fascinating
to see that car manufacturers are beginning to have very serious problems
with the software they are installing. They are becoming responsible for
products that have a very significant software element, but these compa-
nies have no suitable “culture,” i.e., no appreciable background in devel-
oping software. As the difficulties of integrating poorly specified
components into the overall system increase, these companies are tempted
to take panic measures, such as recruitment of another 300 programmers,
mostly inexperienced. Unless significantly improved design methods are
adopted, we shall soon see some disasters dwarfing what we have seen
in the past few years.

We know of software that has been officially “improved” for many
years, but the only effects of those improvements are additional functions
that nobody needs: the essence of its problems stays untouched. As an
example we may mention Microsoft Word, which has basic problems in
handling large and complex documents — after a certain size or number
of graphics the document becomes unmanageable. Probably the program
lost completely its initial concept, reached its limits, and cannot be
improved. We may risk a forecast that Word will forever stay a program
to write letters and not complex documents — the only way to cure it
would be to write it from scratch defining a new concept adequate to the
goal and using appropriate methods. In the same state are several popular
user programs (money management, tax declaration, etc.); the situation
there is worse because of the limited resources available to the program-
ming teams.

The application programs we use in everyday life, e.g., text editors,
spreadsheets, or Internet browsers, are relatively well tested: we millions
of users serve as guinea pigs, supplying the software companies with bug
information. But such programs are rarely without faults, even after the

© 2006 by Taylor & Francis Group, LLC

28 m Modeling Software with Finite State Machines

sixth or seventh major revision. There are also programs that are written
just for a single customer or very few customers. Those programs are just
very poorly tested prototypes because they never see a sufficient variety
of test situations — compare them with the above-mentioned desktop
applications. Interestingly enough, customers seem not to realize the
situation and assume that it is possible to write reliable software without
corresponding testing effort and expect reliability exceeding that of the
desktop application they use in everyday life.

A quite large percentage of software projects end with a catastrophe:
either the development team must admit that it cannot achieve the goals
or the expenses and delays are beyond any acceptable and foreseen limits
and the investors stop the financing and terminate the project. If we put
aside at this moment human inabilities or criminal activities and take into
consideration only the technical components, such software disasters result
from underestimation of the problem (naivety) or because the tools used
have reached their limits. Unfortunately, the human resources — the size
of programming teams — cannot be increased endlessly (see Figure 2.1).
We cannot increase the size of software groups beyond certain limits.
Somewhere between five and ten is the absolute maximum size of a
programmers’ group. Any increase beyond that number produces more
harm than advantages. We speak about a group working together on the
same closely coupled software modules. Fortunately, very large software
problems can and must be partitioned into isolated software tasks, which
communicate via clean interfaces so that they do not influence and disturb
each other. The barriers that limit the possibilities of increasing the
manpower of software groups have been recognized very early and were
well expressed already in the sixties by the Brook’s law!:

Adding manpower to a late software project makes it later.

Taking the most important software features: functionality, user friendli-
ness, reliability, and maintainability, the requirements are increasing con-
tinuously. We can fulfill the requirements either by using better, more
effective development tools or by “brute force” (more manpower). The
very important factor in the development environment — the programming
languages stagnate, which is demonstrated by very curious phenomena,
like hardness of the “software” concept and ease of creating new macro
languages.

Hardness of Software

Presenting the short history of programming languages we mentioned that
the new languages had never truly replaced the old ones. Obviously, the

© 2006 by Taylor & Francis Group, LLC

The Price of Weakness m 29

cost of a change is considered higher than the expected revenues. There
are, of course, reasons not to do it because there is no universal language.
For instance, it might not make sense to use C++ for programming of
some tiny embedded system based on a PIC micro-controller. But even
if we take application domains that could be covered by certain language
types, there are no obvious technical reasons to change the programming
language because the expected revenues are rather illusory. So, a change,
e.g., from Pascal to C or from C++ to Java will be done in a company
due to some personal preferences and not as a result of any evaluation.

The power of the bounds to a certain programming language can be
well demonstrated on PLC. The PLC programming concept stems from a
hardware realization of control circuits in the fifties, which were done
using electromechanical relays. Those control circuits have been presented
as ladder diagrams where, e.g., two relay contacts connected in series
realized the AND Boolean function, two relay contacts connected in
parallel realized the OR Boolean function, and a flip-flop could have been
realized as a combination of series and parallel connections — all shown
in Figure 2.2. Those first realizations of digital circuits have been long
superseded in hardware design. Probably, today students do not even
hear about those prehistoric solutions of control circuits. Interestingly, it
stays as a basis of the PLC programming environment — there are, of
course, several presentations built on it but the concept has not been
changed. It is difficult to find any reasonable technical justification why
we should still be bound to some concept which made sense 50 years
ago but has completely lost its validity now. That example is an interesting
element showing the difference between hardware and software devel-
opment — the alleged “soft” programming methods once introduced are
very difficult to change; in contrast, hardware adjusts and uses possibilities
offered by technological progress.

./a ../b o— \/\ — P=a&b
OZ/C /\/\/— P=alb

s r P
e o mJ\/\/— P=(s|p)&T

e

Figure 2.2 Relay representation of Boolean expressions: AND, OR, R-S flip-flop.

© 2006 by Taylor & Francis Group, LLC

30 ® Modeling Software with Finite State Machines

The other examples that illustrate the hardness of software are old
programs, especially libraries used for decades. On the one hand, they
are very reliable components, having been tested for a long time. On the
other hand, they cannot be improved even if their errors are known —
as a side effect such a change could ruin too much software based on it.
Often they do not fit into the environment of more modern languages.
For instance, the use of the C standard library should be avoided if not
forbidden when programming in C++ (see, for example, the string-handling
problem mentioned elsewhere), but that is sometimes impossible. Hence,
we have to live with inconveniences that as a whole contribute to software
problems.

Ease of Creating New Macro Languages

The other factor that contributes to the inefficiency of programming is the
ease of producing one’s own macro or script language. These are created
either by ambitious programmers or they just arise naturally. We illustrate
it by a case from our experience. A StateWORKS tool that is discussed in
Part 1T of this book needed a command language for automating tests
and allow them to be repeated without manual work. As the communi-
cation with the StateWORKS runtime system is a typical server—client link
over TCP/IP the base of the command language has been easy to define:
the messages of the TCP/IP connection. Defining simple syntax rules has
led to a definition of several commands that are nothing other than the
TCP/IP messages in an appropriate cover, like: connect, disconnect, get,
set, etc. The next “obvious” step would be to introduce a few typical
conditional (if-then-else) and loop (for, while) statements, and a new
macro language would be born. This scheme has been repeated all the
time; why not do it again producing another macro language? Once starting
in this direction we could eventually end with a quite sophisticated
language containing all imaginable fireworks and we could use nice
marketing arguments praising the alleged superiority of our command
language over competitors’ solutions. We have not done it for reasons of
principle as we consider this to be a totally unproductive activity. Our
so-called command language is to be applied for creating command files
from log files that are produced during testing. Of course, we can write
the command files by hand in any text editor and if we want to go a
step farther we have enough programming languages with nice conditional
and loop statements to handle our strings. So, being sincere there is no
reason to expand our command language beyond the few statements
representing the TCP/IP messages. To be frank, we also must admit that
as programmers we would like to do it — coding is just fascinating.

© 2006 by Taylor & Francis Group, LLC

The Price of Weakness m 31

A similar situation exists in most proprietary script and macro languages
in use today. The reasons for their creation are vague and lost in the past.
Is it really disturbing? Does the pressure of the marketing division to
produce all the time proprietary solutions, differing from those of the
competitors, justify these kinds of achievements? The answer is to some
degree yes; eventually our products must be sold. But we should not
forget the price we pay for those activities, a price that, just in software,
is enormous. Any proprietary solution that isolates us from the world
means that any new employee has to be taught our tools, and our language
requires our testing and debugging tools, our maintenance, and documen-
tation. If the technology changes we may be forced to redesign our
programming language. Because of the exorbitant cost of such proprietary
solutions large companies try to sell them eventually as a product. Very
few of them succeed.

Do We Need So Many Programming Languages?

The answer would be the same as for the question: Do we really need
so many types of cars or any other gadgets that we see in our shops?
Starting from some idealistic but unrealistic assumptions we could probably
prove that we need neither so many car types nor so many programming
language types. We are living in a capitalist environment that encourages
both innovation and market dominance, even though these seem in
contradiction. This obvious and prosaic answer does not mean that we
should not comment — and still less accept the situation. We do not want
to discuss here the commercial wars between large companies, which
generate products from a marketing point of view — at the end they lose
if they exaggerate their marketing activities to the detriment of technical
progress. We have experienced enough examples of this sort in the past.

The serious question is: Do we see any progress in programming
languages? We have serious doubts about that or, frankly speaking, we
are convinced that there has been no progress in that field since the
invention of the object-oriented paradigm. We are confronted of course
every few years with a new language, but the principles do not change.
A programmer must still convert very complex requirements into a working
application using primitive instruction sets. The resulting code is extremely
hard to read, let alone analyze to study its behavior in all situations. The
development environments of programming languages offer large and
sophisticated libraries to support programmers’ work: MFC libraries in
Microsoft Visual Studio or STL library are good examples of them. Without
such libraries, today’s programming tasks would not be realizable. These
additional means do not change the rather pessimistic picture, which is

© 2006 by Taylor & Francis Group, LLC

32 ®m Modeling Software with Finite State Machines

characterized by a lack of genuine progress. Fascination with developing
new programming languages results in some occasional improvements
but effectively those do not change the situation.

We presented the way the programming languages evolved. Since
object-oriented languages, e.g., C++, are the programming languages of
the present time, it does not mean that the whole software world programs
in those languages. Nearly the entire palette of languages ever developed
is still in use: assemblers, BASIC, Pascal, COBOL, PLC, and so on. It seems
that a language, once introduced, only dies with the programmers or the
company — the change to a new language is very difficult and seldom
done voluntarily.

The Specifics of Programming Languages

Modern programming languages spread the impression that it is so easy
to write a program. We write the first line of code, followed by the second
line — we compile it and we see that it is correct. We are sure that we
can continue endlessly in this style although we learn from our own and
other programmers’ experience that with each line of code the probability
of error increases dramatically. Let us take a randomly chosen piece of
code:

if (m_Client.Request (m_Name, m_Attribute, m_Value))

{
if ('m_Value.empty ())
{
m_asObjects[i] = m_Value;
}
}

If we really have the time and are in a mood to do it we should check:

B Are the pointers valid?

Do parameters of the Request function have valid values or does
the function double-check it?

Is the index i valid?

Is the returned value m_Value valid?

What should be done if the outer if statement fails?

What should be done if the inner if statement fails?

Those questions are not answered in the code. In most cases it works
because the context assures that the values, pointers, etc. are valid and
that ignoring conditions that are not fulfilled is harmless, in most cases.

© 2006 by Taylor & Francis Group, LLC

The Price of Weakness m 33

But the entire code of a program is constructed in principle in such a
way — it contains thousands, sometimes millions of code lines for which
correctness is based on the principle that the context is trusted to be
correct. From time to time it is not correct and the software crashes.

The other specific of modern programming languages is that programs
are mixtures of very primitive and very sophisticated statements. For
instance, one of the “favorite” programmers’ occupations in C has been
(and continues to be in C++) processing of strings. The difficulty is
inherently bound to the different representations of strings as a pointer
to character, array of characters, and generic string. The generic string
also may have different definitions, e.g., defined as STL or MFC type. If
all those definitions are used in the same software (which is quite normal
considering the dependencies on established libraries) the code is full of
explicit and implicit conversions and type castings. The consequence is
that on the one hand we use, e.g., very powerful and elegant STL methods
and algorithms, but before we can call them we have to “prepare” a
character or string to be usable for them. From that point of view the
code has sometimes a rather sad form and what is more important — the
cost of developing such a code is very high, the proper solution being
found often after several trials and not as a result of careful planning. The
reliability of such code is also low as the side effects resulting from those
character and string manipulations are sometimes unpredictable and occur
when the code is already in use by a customer. Then, last but not least —
those “exercises” are repeated all over the world by thousands of pro-
grammers every day.

The Specifics of a Software Project

In Figure 2.3 we show a dependency that well illustrates what is perhaps
the basic reason for delays of software projects, their costs, and failures.

Subjective
Perception
Ready i\

-
Ready Reality

Figure 2.3 Estimation of software project progress.

© 2006 by Taylor & Francis Group, LLC

34 ®m Modeling Software with Finite State Machines

The essence of the diagram is the finding that the end of the software
project is not well defined. We exclude in these considerations the devia-
tions caused by human characters, which cause one person to have a more
optimistic and another person a more pessimistic view on the same subject.

Curve 2 shows an idealized course of a project where the subjective
perception of the participant corresponds to the real progress.

Curve 1 represents projects where a participant is convinced most of
the time that the project is delayed, being at the end surprised that
everything ended well. Writing a book is a good example of such an
undertaking. We can be overly optimistic only for a first book. We never
forget our first experience and we expect that the work will never end.
We do not believe in gauging progress by counting the number of written
pages as we know that on the next day we will decide to rewrite some
of them and this procedure will be repeated several times. We do not
forget the never-ending discussions with our friends and co-authors who
find new errors or have new concepts. We do not forget the auxiliary
activities that always cost us more time than planned: figures, diagrams,
tables, appendices, and the fight with the editing tools (which demonstrate
to us all the time the weakness of software products). Last but not the
least is the satisfaction with the written text — we are rarely really satisfied
with the work done and we have the impression that we should rewrite
it. And suddenly, when we have generated the index we discover that
the work is finished.

Curve 3 shows the typical feeling of a programmer who demonstrates
an over-optimistic view in the first phase of the project. The programmer
is convinced that the project is nearly ready around point 4. A more
optimistic person may even signal to the chief: “My program is in pretty
good shape; what else can I do?” The reality is, as a rule, much worse —
most of the (unpleasant) work: the details, debugging, testing, documen-
tation, performance, etc. still remains to be done and may cause a feedback
with disastrous effects. The difficultly increases because of the not well-
defined end of the project; e.g., does maintenance belong to the project?
In contrast to a book writer, a programmer never learns from the past.
The new project is always the beginning of a new software era: this time
it will be done well, according to the time schedules and in the financial
frame. As programmers we tend to underestimate the programming effort
required and overestimate our resources and skill.

Especially pronounced is the problem of software outsourcing. The
supplying company is in the convenient situation that officially its obli-
gation ends if the requirements are fulfilled. As the requirements are never
complete and do not cover most of the work that must be done over
point 4 the outsourcing company is able to deliver the product relatively
soon. The first tests on the customer site disclose the missing requirements

© 2006 by Taylor & Francis Group, LLC

The Price of Weakness ®m 35

and the result often threatens a financial disaster depending on the contract
and involving lawyers.

Software Is Expensive

In the beginning of the computer industry, hardware costs were very high
and in relation to them software expenses seemed to be moderate. The
relation between hardware and software costs has changed all the time
to software’s disadvantage. Hardware becomes more powerful and
cheaper. Software development tools fell behind the increasing require-
ments, which amplify the trend of increasing software development prices.
The ever-growing software development expenses can be compensated
for by the growing market. Therefore, mass-market software, such as
operating systems and most of the desktop application (text editors,
spreadsheets, and several utilities), is cheap as the amount of copies sold
covers the expenses. In contrast, the cost of custom tailored software
reaches exorbitant levels. Because this process has continued for many
years, the whole world gets accustomed to it and accepts it as a software
feature — we assume that it cannot be changed.

Maintenance Costs

Software does not wear out as mechanical or electrical devices do. In
spite of that nice feature software maintenance is an important and
expensive activity. Because maintenance expenses are in many cases the
main cost element of software we should take a closer look at it. There
are two reasons for maintenance: errors and changes.

Software Errors

Errors are called bugs in software. Errors cannot be totally eliminated from
programs. Any software contains some “known bugs” and a certain number
of unknown errors. The way software is designed and coded is very much
dependent on a programmer’s skill and it is in fact “hand made.” Hence,
it must contain errors. Automation of routine programming tasks, automation
of test procedures, usage of proven libraries supported by formal design
and specification methods may reduce the number of errors. At that moment
programmers concentrate mostly on debugging, that is, on searching for
errors in code. When software reaches customers, the search for errors
continues and is then called maintenance. During the maintenance the
customers play a very important role in supplying information about bugs.

© 2006 by Taylor & Francis Group, LLC

36 ® Modeling Software with Finite State Machines

There are two types of error. Let us call them: software bugs and
application errors. Software bugs are errors related to the programming
language and they are made by programmers while coding (misspelling
statements or variables, invalid values, logical errors, deadlocks, loops,
wrong constants, wrong addresses, etc.) or by translation programs (com-
piler, linker, loader: rather rarely today). Those bugs are the dominating
errors in some programs such as text editors or translation programs or
general programs, which are developed and updated over a period of
many years. For those programs the application specification is known
for many years and software companies have problems to justify pseudo-
improvements and extensions that may bring money — elimination of
bugs cannot be sold as an improvement.

Application errors are of a different nature. They result from erroneous
or contradictory requirements, misinterpretation of specifications, or just
application logical errors during coding. Application errors are a huge
problem in programs that are written for a specific application, often for
a single customer.

In case of software misbehavior it is often impossible to identify the
error type: software bug or application error. Software crashes indicate
clearly a software bug. A wrong robot movement may be caused by any
sort of error. Software bugs can be found only in code. Application errors
can be found in code or in a specification.

Software Changes

Maintenance also means changes. Even if software development is based
on well-defined requirements, it is just impossible to produce software
that fulfils 100% of a customer’s expectations. First, requirements are verbal
documents whose content is interpreted — programmers sometimes mis-
understand requirements. Second, it is only by using the software that
customers learn what was wrong in their specification and demand changes.

Maintenance is a difficult process as it means changes to running
software. Even if the changes themselves are not so complex the replace-
ment of the software at a customer’s premises may be a nightmare,
especially if it is left to the customers. In most cases, software must be
exchanged by a specialist.

Software can be changed and adapted to new requirements only to
some extent; its limits are defined by its design and by design corruptions
done during coding. While coding we always meet situations that were
not foreseen by the original software architect. We can either change the
design or bypass the rules and solve the problem by using some dirty
tricks. We tend to do that “just once” the first time, being convinced that
it is only an exception that will not spoil the nice architecture — and

© 2006 by Taylor & Francis Group, LLC

The Price of Weakness m 37

anyway we are in a hurry at that moment and maybe we will improve it
some time later. We do a few such dirty tricks several times, so corrupting
the software. Eventually the software does not have any coherent archi-
tecture and documents describing its design will have completely lost their
value. T once did a search for the word “friend” in some software whose
authors had been trying to get working for several months. I found a few
hundreds of “friend” declarations — any C++ programmer knows what it
means: a few hundreds of global functions accessing private items, which
really should not have been global. I doubted whether that software could
still merit the title “object oriented,” which might also explain the diffi-
culties. Interestingly, those programmers did not seem to be innocent
beginners; they were intelligent and they worked very hard.

The same problem relates to a specification. Many requirement details
that become apparent during the coding phase flow directly into the code.
In effect, at the end the code is the only “document” that contains the
full description of the software. I was once engaged to write a software
package that should have replaced the old one. Before I entered the
company I was, of course, told that the software would be written
according to well-defined requirements (the company external image must
be intact). Actually, the code of the old software was the “requirement.”
It has been an interesting experience for me as:

I learned the difficulty of enciphering “what the code does” from the
code — some passages were just impossible to understand, some were
just dead code, probably doing nothing useful.

I learned how bad the code of old software, changed by innumerable
people during several years, can be — a very interesting study of corrupted
code that cannot be maintained anymore.

In Code We Trust

As a rule, maintenance costs increase with time. A decisive factor is the
software quality in all its aspects: specification, design, and coding. There-
fore, documentation plays a decisive role. It is obvious that the only
document that corresponds fully to the running software is the source
code. If the specification and design are in a good shape, they may
contribute essentially to successful debugging or changes. Software devel-
oped without any (documented) method or concept reaches its limit earlier
than software that can be also understood without studying the code.
Unfortunately, that is seldom the case, which means that the basis of
maintenance is as a rule the code. When programmers who wrote the
code are no longer available, the maintenance costs become very high.

The other side of the maintenance problem is that we have to live
with very old software, which is practically un-maintainable. At the end

© 2006 by Taylor & Francis Group, LLC

38 ® Modeling Software with Finite State Machines

of the last century many experts expected on January 1, 2000 a collapse
of software dependent on date. Those predictions created a demand for
nearly forgotten languages like COBOL and enabled some already retired
people to earn some money. Nobody knows whether the old software
was really improved — probably in many cases no changes had been
required but nobody knows the truth.

The Costs of Software Errors

It is difficult to make precise estimations of costs caused by software
errors. In a NIST Planning Report 02-3 we have found the following data
for 2002: the estimated costs of software errors equal $59.4 billions
annually. The study says that although not all errors could be removed
it is estimated that a third of them could be removed by improved testing
infrastructure. The interesting but sad conclusion from reading that study
is that the authors believe that only better testing can improve software
quality. Obviously, they gave up the idea that better software development
methods might produce better software.

The Programmers’ World

People play a decisive role in software development. In spite of all
development methods and tools, a team of programmers decides about
the success or failure of the software projects. The dependency on human
skill and motivation seems in the software industry to be more pronounced
than in other industries.

The quality of any worker is determined by three factors: education,
experience, and individual, personal ability. In contrast to other occupa-
tions, a programmer’s individual abilities seem to play a more important
role than education — at least it is a widespread opinion. Programming
is a purely mental activity interrupted by coffee breaks, so it is difficult
to compensate for missing abilities by extra devotion to routine tasks. A
programmer cannot compensate for a bad concept by increasing the
number of typed characters per second — the quality of code cannot be
measured by the number of source code lines.

Sometimes we tend to believe that programming is a kind of artistic
occupation. The problem with this view is that most artists have some
sort of art education, generally working with their masters. Some people
study nothing or anything and believe that it is a good basis to be an
artist, or a programmer. Software development requires today so many
people that for sure we do not have so many artists or specifically talented
people who can develop good software without any formal education.

© 2006 by Taylor & Francis Group, LLC

The Price of Weakness ®m 39

Therefore, more attention to useful education is a must if we want to
improve software quality. Effectiveness of people differs but in software
development the diversity exceeds any acceptable value — it is not
uncommon to have programmers who are 20 or more times less productive
than their colleagues. Considering such differences the question of “who
is a programmer” seems to be legitimate.

The programmer’s occupation is a difficult one. Eventually, they are
responsible for the end product. Programming is a very stressful job,
especially because software development comes at the end of a develop-
ment chain. Only if the plant, machine, equipment, or devices are ready
can software be installed and tested. Only when the software operates
can the weak points of a technological (mechanical, electrical, chemical,
etc.) design be seen. Unfortunately, programmers must very often first
prove that the malfunctions of the controlled process result from the
technological failures and are not software application errors. They are
also forced to try to correct bad technological design decisions with
software means, which is often impossible.

A paucity of good programmers and misunderstandings about program-
mers’ qualifications are very important factors in the high price of software
development, expensive maintenance, and poor software reliability.

A Programmer in a Project

For most programmers, the beginning of a new software project is a good
and exciting time. The challenge is presented by the requirements, dis-
cussions about possible solutions, specification and design, the first lines
of code. It seems that this time we get a chance to create truly good
software. Unfortunately, in this beginning phase we lay the foundations
for the problems we shall soon have — and sometimes for a disaster. We
overlook too many things that seem to be negligible details, we do not
care about proper documentation of the decisions, we leave too many
questions without answers believing that they will be solved later in the
implementation phase. We often start the implementation too early.
Once starting programming we are forced to mix solutions of coding
details with application problems. While the programming continues, we
are more and more often confronted with situations that were not foreseen,
situations that require (impossible?) changes to software design, situations
that force us to do dirty tricks that we “normally” would not do. Slowly,
we get the feeling that we are losing control over the project. The worst
thing is that we are as usual delayed although we were convinced in the
beginning that “this time” our schedule is correct. In general, our mood
is getting worse and worse, especially that the testing seems to be never
ending and the pressure from managers and customers ever growing.

© 2006 by Taylor & Francis Group, LLC

40 ® Modeling Software with Finite State Machines

Discovered and removed errors produce nearly the same number of new
problems. At the end of the project we are totally frustrated and, inde-
pendently of the result, we want only one thing — to get away. We have
asked ourselves for the reasons and do not know the answer.

That scenario is valid even for software projects that are relatively well
planned with reasonable schedules and financing. Badly planned software
projects and especially their maintenance are just nightmares that require
programmers with exceptionally good mental strength.

The Software Project Leader

At the end we would like to comment on the role of managers in software
development, but we limit our remarks to the lowest level: software project
leaders, the upper management levels being outside the scope of our
considerations. Because of software specifics it seems that those leaders
must have a strong programmer’s background. Good programmers do not
like to be managers but some programmers must do the job. Leading a
software project cannot be a purely administrative job. Therefore, even
people with a good organizational talent will fail because of the ignorance
barrier between them and their team. Unfortunately, there are too many
innocent, ignorant project leaders who make their contribution to software
disasters. They do it by accepting unrealistic wishes on the one side and
not understanding the true problems of software development on the
other side.

Examples of Disasters

The history of software provides enough examples of projects that were
interrupted because there was no chance to reach the goals — in the
software case the entire investment gets lost, there is usually no way to
reuse the partly done code in other projects. We do not directly discuss
here examples of the better-known software catastrophes but for the
reader’s convenience we provide a few comments about unfortunate
software. A search for “software disasters” on the Web results in thousands
of publications that disclose details of software projects that failed and
led to financial losses or even killed people.

The consequences of software failure are especially “unpleasant” in
space flights because they result in a damage to the rather expensive
shuttle and instruments and all that under the critical public interest. Ariane
5 explosion, Mars Climate Orbiter loss, Voyage II, Marine I, Phobos 1 and
2 are better known examples of catastrophes in space due to software

© 2006 by Taylor & Francis Group, LLC

The Price of Weakness m 41

errors. Nobody knows precisely how many research projects in space
have been canceled or not done as planned due to software errors.

The automated baggage system for the international airport in Denver
could not be realized on time on account of software design difficulties.
Because of the huge financial losses it was a favorite topic in newspapers
and on TV.

There is probably no domain of human life that has not suffered from
software failures. Telecommunication (service fails for several hours),
airplane and railway disasters, ticket reservation software, banking soft-
ware, nuclear reactors, election machines, ATM machines, power supply
(blackout), construction disasters (bridges, buildings), all have experienced
software that does not work properly.

Military software is probably a very special domain where many people
have lost their lives (friendly fire as an example) due to software errors —
secrecy of military issues covers many such disasters with silence.

As we have learned not to trust software solutions, we do not transfer
to it vital safety supervision which may cause injuries. This explains why
software failures are rarely responsible for killing people. A better-known
example can be found in Baber’s paper,? which describes a case where
patients were killed by a cancer treatment machine, the Therac-25, whose
faulty software on rare occasions delivered massive overdoses of radiation.
That paper contains a good analysis and critical arguments about software
engineering. It also describes several other cases of software disasters.

A number of software projects are eventually successful, leading to
working products, but financially a disaster (e.g., the truck toll collection
project in Germany described by Borchers® but a government can pour
any amount of money into the sand).

Recently, I bought a DVD recorder, which is an interesting and sad
example of the “disasters” in the Hi-Fi industry. That industry has been
resistant for a long time to software solutions, but eventually it has been
forced to digitize all its equipment, effectively doing most tasks, especially
relating to the user interface, by software. The device I have bought is
incredibly bad: the user interface is terrible and I can crash it at any time.
Are we so used to bad software that we should accept it even in devices
that are intended for people who are not software freaks and are not
really interested in investigating which key sequences will lead to success?
The situation will not change soon, as the Hi-Fi industry does not have
any software culture and it will take some time before the industry realizes
that it is possible to write better and more reliable user interfaces.

There are some little-known software projects that are done according
to a timetable and that do not exceed the planned expenses. Many
companies start software projects assuming that the plans are unrealistic
but the reality very often exceeds the managers’ worst nightmares. Statistics

© 2006 by Taylor & Francis Group, LLC

42 m Modeling Software with Finite State Machines

show well the extent of the problem. For instance, in a Paulson* publi-
cation,* we found the following numbers:

The report stated that there were 78,000 software development
projects judged as having been successful during the year
compared to 137,000 that were late and/or that exceeded their
budget. Another 65,000 projects failed.... Cost overruns they
incurred were at 45 percent in 2000; time overruns at 63 percent.

Recommended Reading

1. Brooks, F. P., The Mythical Man Month: Essays on Software Engineering.
Reading, MA: Addison-Wesley, 1995.

2. Baber, R. L., “Comparison of electrical ‘engineering’ of Heaviside’s times
and software ‘engineering’ of our times,” IEEE Annals of the History of
Computing 19, no. 4 (1997): 5-17.

3. Borchers, D., “Verursacherbedingt verspitet,” ¢’t, no. 22 (2003): 92-94.

4. Paulson, L. D., “Adapting methodologies for doing software right,” IT Pro
(July/August 2001): 13-15.

* By the way, that paper contains a very convincing plea for more methodology in
software development.

© 2006 by Taylor & Francis Group, LLC

Chapter 3

Software as Engineering?

Methods

There are some difficulties in discussing the term “software engineering.”
If we understand under that term the body of knowledge about creating
programs, software engineering should cover:

B Specification methods
B Designing methods
B Programming techniques

To round it up, software engineering should also contain:
B Organizational topics

The reality differs from those expectations. As observed in several publi-
cations, software engineering does not contain knowledge about engineer-
ing software, understood as knowledge about how to write a good code.
Actually, Agile methods would have completely lost their justification
if coding had not contained a design element. Therefore, it is possible to
write code without a formal design. Whether it is a practice to be
recommended is another issue. Whether it is possible to code without
any design work (i.e., to serve as a pure translator converting a design
into a code) is also doubtful — if it were possible, coding could be
automated and the programmer would be replaced by translation pro-
grams. Interestingly, the concentration on management and organizational

43

© 2006 by Taylor & Francis Group, LLC

44 ®m Modeling Software with Finite State Machines

topics while neglecting technical aspects has been criticized for several
years without visible reaction. For example, we find a very constructive
criticism of software engineering done by Baber,! and similar arguments
can be found a few years later in Whittaker et al.? The common
(mis)understanding of software engineering is at best formulated in the
abstract of the Whittaker et al. paper? mentioned above*:

Books on the subject favor the “light” side of the discipline:
project management, software process improvement, schedule
and cost estimation and so forth. The real technology necessary
to actually build software is often described abstractly, given
as obvious or ignored altogether.

The reason that books on software engineering bypass the technical
problems of programming is that the problems are very difficult. For
instance, where can a programmer find indications about definition of
base classes or in general data structures applicable to a given application?
There are many questions: How to get a proper balance in validation of
variables? How to solve the client—server relationship or more specifically
how to choose between inheritance and composition? How to handle
errors? When and how to use exception handling? How to use effectively
runtime libraries? How to find a proper way in the jungle of system calls?
How to program parallel processes? Those kinds of questions are not
about the syntax of the programming language: the successful use of any
programming language requires a specific software engineering approach.
To answer them we also have to be good programmers. Maybe good
programmers do not have time or cannot write books. The programming
world knows two answers for missing software engineering topics: very
good programmers and trial-and-error methods.

Very good programmers are very rare and some of them believe that
they do not need software engineering. Therefore, if a very good pro-
grammer leaves a company the remaining persons may discover a desert
in place of the wonderful software and they have to start from scratch.
Most programmers are not brilliant — they are just normal human beings
who have to compensate for missing knowledge by just hard work: they
try, they “search the Internet for tips,” they try again, they discover the
wheel anew, and after a while they find a solution for a tiny piece of
their problems. The solution might not be the best one but they are happy
that it works — the outside world cannot in any way judge what is going
on in their code.

* In general, we can recommend the paper to anybody as it contains a very good
characterization of software practice and actual software problems.

© 2006 by Taylor & Francis Group, LLC

Software as Engineering? ®m 45

Agile methods are just a set of rules on how to organize a software
project. We understand that it is a problem that should be properly solved,
but we know also that programmers’ skill plays a decisive role in any
software project. A few excellent programmers will beat any well organized
but essentially larger team containing average or weak programmers.
Organization can compensate only partly for missing skill in true software
engineering.

As the essence of the topic “how to write a good program” is so
difficult, the experts bypass the difficulty in their books, producing pseudo-
scientific methods or concepts that do not contribute to a better software
world.

Fascination with Graphics

The favorite method of dazzling innocent observers is to define some
fine-looking graphical symbols, add fine sounding names, and declare it
a method. In this way, standards obviously produced by some adminis-
trative craftsmen fake a quasi-scientific approach.

What is actually a method? We would expect that it is a technique
based on possibly algorithmic steps that can be proved or at least verified,
and preferably based on some mathematical principles. A method is
defined by a set of rules.

PLC programming recently obtained a standard (IEC 61131-3), which
is a good thing in principle as it forces manufacturers to leave their
proprietary niches and open their products. On the other hand the
components of that standard demonstrate how “methods” or “concepts”
are understood in parts of the modern world. We use symbols, e.g.,
rectangles, to explain something. For example, we draw two rectangles,
link them with a line with an arrow and say that the output of the first
rectangle is passed to the input of the second rectangle. It is a common
way to explain something to another person, as it is much more compre-
hensible than a purely verbal description. But we would not then claim
that we defined a method or concept. That is exactly what happens in
several standards. The same rectangle named as a Functional Block used
on a drawing named Functional Block Diagram defines suddenly “a
powerful concept which encourages the development of well structured
software, ... it can be reused ... and it has many properties found in
object-oriented design.” It is just incredible, reading that we could really
have doubts whether we understand the concept of the object-oriented
approach. We are used to such flowery language in marketing prospects
but if it is seen in (pseudo-) scientific papers and even in IEC Specifications
it is not amusing; it is frightening. (See Appendix E Going beyond the
limitations of IEC 61131-3 for further remarks on this topic.)

© 2006 by Taylor & Francis Group, LLC

46 ®m Modeling Software with Finite State Machines

Visual Basic Chaos

Speaking today about BASIC we mean in most cases Visual
Basic. In Visual Basic it is very easy to create a graphical
interface using the typical GUI symbols such as buttons, text
boxes, check boxes, combo boxes, tree views, list views, etc.
This makes Visual Basic attractive especially for a nonprogram-
mer who wants for some reason to program. Usually, a set of
graphic symbols does not make a program. Therefore, each
graphic symbol possesses a number of procedures linked to
events generated by the symbols, such as click (button), change
(text), select (list), etc. All this is well organized, clicking on a
symbol opened a source code editor with predefined procedure
name, parameters — all very nice and convenient. What is truly
missing is a method of how to write the code or, better, how
to design or to at least organize the software.

We know of course what to do when we click on a button or select
an element in a list. But in any nontrivial software those activities are not
totally separated and time independent: they are coupled together and
activities triggered by events are dependent on “states” of other graphical
symbols, in general on the present situation. As people are intelligent,
they find a solution, but the results are terrible: all based on global variables
manipulated by any procedure in a way that nobody can understand,
after a while even the author of the code.

Those ways of creating software can be found in several software
packages, which are proudly described as “tools which allow building
complex control systems” by creating a diagram of the application using
predefined graphical symbols. Those descriptions imply that the true
problem — the control — is just a secondary problem: it will be arranged
in some way behind the nice graphical facade. That assumption is just
nonsense: behind the graphics we find an uncontrolled chaos created in
hours and hours of laborious work where the main activity is to find out
why the flags or markers, whatever their name, are behaving in such a
way and not as we expected. The reason is obvious: the software has no
design; the required behavior of the application has been transformed
from a verbal description into a set of intuitively linked procedures. We
have to accept that common sense has limits, beyond which it produces
only chaos. The argument that it often works is not convincing: working
chaos is still chaos.

© 2006 by Taylor & Francis Group, LLC

Software as Engineering? ®m 47

Object-Oriented Design Illusion

A missing design concept or at least a lack of coherent structure of software
also can be seen in other approaches even if they take proud names of,
e.g., object-oriented design. Object-oriented design is a good method but
it has its limits — it is not a solution to all software problems. Encapsulation
of data and their affiliated methods is a truly powerful way of creating
software. But object-oriented design does not provide the answer to the
question: how to organize a set of objects. Each object is able to perform
a well-defined function on stored data and any other object can claim
that functionality. But we do not know even how to use inheritance and
association effectively as the basic “links” among objects. Advice like:
“after many years of experience we know that we should not overdo the
use of inheritance” is good but still it is hardly a method. Defining classes
graphically does not change the situation either: it is only a different way
of definition.

UML Illusion

UML is another example of a notation that is hugely overestimated. If we
define a class in code we consider it a declaration of a software type.
The same class defined in UML and appearing as a graphical symbol on
some diagram is also just a definition of a type. Or is it more? To convince
us that we have to do the design in UML (although we know that we
will need to repeat it anyway in the code) we must have convincing
arguments that we can do more on the UML diagram than in the code.
Unless we have the arguments we may express at least critical doubts
about usefulness of such notations. So, several authors express their doubts
about the alleged advantages of using UML. A fairly representative picture
emerges, putting together, e.g., the remarks summarized below.

Glass expressed his doubts® about “theoreticians’ view of software
modeling” citing among others that such a view:

. is clear that generating code from the evolving problem
model is unlikely to work.

Mellor, a proponent of UML, finds only the following answer to that
reproach, an answer that states that UML is just a text that a programmer
translates into a code:

How comfortable are you with the idea that you could build
a textual representation of a state machine and use it to choose
which function to execute next in response to some signal?

© 2006 by Taylor & Francis Group, LLC

48 ® Modeling Software with Finite State Machines

In that context, in another paper, Douglas* from iLogic (a company that
sells Statecharts) admits:

You cannot translate Statecharts directly into a design-object
model.

In spite of those comments and statements, various UML marketing spe-
cialists “sell” it as a method for creating executable specifications that are
nearly automatically translated into code.

We do not want to condemn UML; as a common modeling language
it is an interesting idea, but UML contains so many “nice” points that are
representative of pseudo-concepts and methods that we take another
example: the belief in the power of words that are becoming sacred cows
as if they defined something excitingly new that revolutionizes the software
world. Let’s take the term “Use Cases,” which is another name for “sunny-
day-scenarios” (sunny-day-scenarios describe expected situations and
therefore is a clear term). Of course, Use Cases are a skeleton of any
application and in some applications (business software) they may be the
dominating situations. But even in a case of selling or buying something,
which are the favorite examples in teaching UML, we should have a
chance to express situations when things go wrong. Sunny-day-scenarios
normally do not present any challenge, the true complexity of any software
results from the erroneous, unexpected situations. Taking a non-business
example — a motor control, which should be switched on and off via a
motor controller. The expected actions (Use Cases): switch motor on and
switch motor off are just peanuts; to express them we do not need any
methods or design. The true difficulties are represented by some easily
imagined problems:

B The movement command parameters are not accepted by the motor
controller.

B After sending the start command the motor does not start. Possible
reasons: perhaps the device is already in the required position, the
interface does not work, the controller is down, the power supply
is down, the cable is broken, etc.

B The motor stops before reaching the required position; perhaps
the motor is overloaded, the motor is too hot, a limit switch has
been encountered, the break switch has been pressed (which
bypasses software), etc.

B The motor stops and signals erroneously “movement done”
although it stays in an incorrect position.

B The motor controller never signals completion of the movement.

© 2006 by Taylor & Francis Group, LLC

Software as Engineering? ®m 49

B The supervisory software demands to stop the movement (the user
pressed a stop button, a cooperating device requires to break the
movement, etc.).

B The motor does not react to the Stop command.

Obviously, a UML designer must, from the beginning, assume that the
true problems will be solved in the code and his specification handles
only a “higher level” of behavior. He uses UML as a way of formalizing
the requirements document for use in the programming phase, but the

usefulness of specifications that ignore the genuine application problems
is doubtful.

Formal Methods

In parallel to pseudo-methods there are serious approaches based on
sound theoretical grounds. Unfortunately, they are done only at universities
and totally ignored by industry. Reading scientific journals we get the
impression that nearly all software topics are discussed and solutions are
proposed for several problems. But there is no link between universities
with their scientific papers and industry. Universities and industry are two
separate worlds trying to solve the same problems but in their essence
following different goals.

As state machines are the essential topic of the book, it is interesting
to compare their use and presentation in the two worlds. In the scientific
world the parser definition of the state machine dominates in software
application. Discussing hardware design, scientific papers concentrate on
model definitions, optimization of state number, verification methods. All
those theoretical topics are of little practical usefulness and do not make
too much sense in the design of an industrial control system. Hence, the
knowledge and the use of state machines in industry are half-hearted,
and accompanied by several misunderstandings due to lack of a sound
theoretical basis.

CASE Tools — Value for Money?

The central problem for any true progress in software develop-
ment is the replacement of programming as understood today:
translating complex requirements using the relatively primitive
means offered by even the best programming language.

Replacement does not mean elimination. Our present understanding
of software leaves large fields that still require the old, proved, and

© 2006 by Taylor & Francis Group, LLC

50 ® Modeling Software with Finite State Machines

successful methods independently of our feeling of discomfort with them.
By replacement we mean that the dominance of the established method
must be weakened. The way to go is to strengthen specification not as
an intermediate development step but by conceiving of a specification
that is executable; this will eliminate coding in wide areas of software
development.

The problems encountered in introduction of specification methods
and tools in programmers’ real life have been discussed in the previous
chapters. In fact, the case is rather simple:

Specification tools will start to play a role in software practice
if the benefits exceed the time and money invested.

The investment is greater than the pure costs of the CASE software. The
true expenses result from training and required adjustments in software
projects. Training cannot be neglected; especially in case of specification
methods, the topics must cover not only the use of a development tool
but also the teaching of methods. For instance, persons without any
knowledge about automata theory or control engineering will have basic
problems in understanding finite state machines or Petri nets if those
concepts form the basis of a specification method.

Programming or Specification Languages?

Controversy between the followers of specification and the supporters of
coding has some more philosophical aspects. Usually, a programming
language is well defined as a set of instructions for a computer, which if
properly arranged forces the computer to do something useful (or at least
does not crash it). A definition of a specification (as a language) is hazier.
A specification is more than a verbal description; it is a formal description.
“Formal” suggests here that the specification may be verified and clearly
transformed into some other presentation (code). If the specification is
executable — does the specification “language” become a programming
language? If the answer is positive — any programming language can be
considered a specification language. In fact, this is the true background
of the Agile approach: apostles of that claim that they “specify” the
requirements directly in the programming language. Thus, even some
fundamental issues may be questionable and depend on just definition.
Jokes aside, software engineering technology is really difficult, which
explains why there is so little done in the principal topics: how to write
good code, which might be translated into how to make an executable
specification.

© 2006 by Taylor & Francis Group, LLC

Software as Engineering? ®m 51

Development Cycle

Actually, such topics as project management, software planning, schedules,
and costs estimation are quite well investigated and presented in publi-
cations. Those topics are outside our allotted scope but we would like to
look briefly at one specific issue: the software development life cycle.
That topic covers the understanding and definition of software project
phases and their influence on software reliability and costs.

Software “life” is limited: software is developed, used, and after some
time “dies” as no longer usable. There are several reasons for software
death: it is old-fashioned, demand disappears, it is impossible to adjust
to new requirements. The software life-cycle consists of several phases. In
the course of time several models of the software development life-cycle
have been studied: waterfall, spiral, code and fix, rapid prototyping, etc.

The software development life-cycle models can be quite complex.
The reasons are obvious if we look at the factors that could be taken into
consideration. From the pure software development point of view there
are such topics as Proposal, Feasibility study, Requirements, Specification,
Design, Coding. Testing cannot be forgotten — here we have Modules
testing, Testing while programming, System test, Acceptance test. The result
of the software development suggests topics like Prototype, Pilot system,
Final system. The software quality could be represented as Code quality,
Software security, Software reliability, Documentation. Considering the user,
we should take into account: Deployment, Installation, Manuals, Training,
Maintenance. The list is certainly not exhaustive, but at least those topics
play some role in discussing a model of software development life-cycle.

There are several models of software development life-cycle analyzing
or defining each step in a software project. There are no universal models.
Further, not all software projects require all imaginable steps. For instance,
let us discuss two activities that are contradictory: Prototyping and
Specification.

Prototyping

Prototyping means to build relatively early in the software development
the first version of the application. Prototyping assumes that the application
cannot be well specified. Hence, the proper way is to develop something
quickly and start testing, including in that process as many participants
as possible. In addition to the programmer, anybody involved in some
way in the project can and should be present to assess and to influence
the software: colleagues, managers, marketing people, customers. Proto-
typing is an iterative process where the application emerges as a result

© 2006 by Taylor & Francis Group, LLC

52 ®m Modeling Software with Finite State Machines

of several trials. That idea (close to Agile methods) makes sense in certain
applications where experience shows that it is impossible for the end user
to specify the software. Classical examples of that software are applications
where a GUI is just the application or plays a dominant role. For instance,
for a web design it is impossible to specify a good layout without seeing
and trying it. Only the cooperation of several persons who criticize the
GUI can produce a good application, which is not only nice looking but
also ergonomic.

A good prototyping process assumes that this is not the final software.
Unfortunately, that is only the theory. In practice, it is very difficult to
consider a prototype an exercise that is then a basis for the true software
development. Therefore, applications that start with a prototype very
probably end with terrible code. Managers, especially marketing people,
like prototyping because the first results are quickly seen and they hope
to sell the prototype as soon as possible.

Specification

There are applications that must be specified — they do not need a
prototype in the sense of the word as discussed above. We recall that a
prototype is needed if there is no common agreement about how an
application should look or behave and that agreement cannot be achieved
by some theoretical or artistic considerations. Applications in telecommu-
nications are precisely defined by standards. Similarly, applications in
industrial control are completely defined by various control and safety
requirements. Even if we suspect that it is impossible to make a perfect
specification, we specify the software as well as we can, based on available
documents, standards, requirements. Those are examples of applications
that are well defined and there is no need to “discover” or define their
required behavior by tests and trials. The specification errors resulting
from overlooking or misinterpreting documents will be corrected by test
of the created software. In such a case we start detailed design and coding
as late as possible when we are convinced that the specification is ready
and we can develop the final software.

Software Development Steps

Figure 3.1 shows the most important steps in software development. It is
reminiscent of the waterfall model — but only the changes arising during
Coding and later by Testing and by Maintenance are shown. The theoretical
model in Figure 3.1a assumes that those changes influence Requirements,
Specification, and Design and that the corresponding documents will be
updated. Usual practice (Figure 3.1b) differs from the theory — as a rule

© 2006 by Taylor & Francis Group, LLC

Software as Engineering? W™ 53

a) * b)

—{ Requirements Requirements

- Specification Specification

1 Design Design

-1 Coding — Coding -’
Testing & Testing &
Debugging Debugging

Maintenance & Maintenance &
Support Support

Figure 3.1 Software development steps: (a) in theory; (b) in practice.

the changes flow directly into the code, which is the center of all activities
once programming starts.

Software Documentation

In each development step some documents are created — documents
that are the entry point of the next step:

B Requirements: a verbal description containing at least a summary
of required features should be prepared by a customer and agreed
by the software company.

B Specification: a formal description of the application; as a rule
prepared by a software team or specialized “specification” group.

B Design: a document describing the software project (the basic
“layout” of the program and development tools used), sometimes
also design reviews; prepared by the software team.

B Coding: source code and protocols of code reviews; done by the
software team.

B Testing and Debugging: protocols of found and corrected errors;
done by the software team or specialized testers.

B Maintenance and Support: protocols of changes, found and cor-
rected errors; done by the software team.

© 2006 by Taylor & Francis Group, LLC

54 ® Modeling Software with Finite State Machines

Sometime during the development process the software documentation is
created. We do not provide on the diagram a special step for documen-
tation as it is created all the time. In fact, the results of all steps in the
life-cycle could be the documentation. Unfortunately, reality is as usual
cruel, and it is very difficult if not impossible to create a development
environment in which one document passes smoothly to another one. It
is less a problem of formal layout of the document. The core of the
problem is the inconsistency of documents resulting from a sequence of
development steps as shown in Figure 3.1b, and explains why a part of
the software functionality is not present in any formal document and stays
buried somewhere in the code. In my programmer’s career I saw plenty
of (pseudo-) documents that were supposed to be software documentation
but in reality only the layout and title were appropriate. There is little
motivation to update documents that were written earlier in the software
development life-cycle; actually, the only “document” that corresponds
exactly to the working software and is as such always up-to-date is the
source code. Even this statement must be treated with some reservation:
the code is of course up-to-date but some comments may be wrong as
they are ignored by the compiler.

Testing and Debugging

Testing and debugging are similar but actually they should be done by
different persons. Programmers who have done the programming work,
who have been also involved in the design and maybe in the specification
have difficulty leaving the “known” paths. Programmers test software
during coding — it is an inherent part of coding and they develop habits
to always repeat the same tests, which means that only a certain part of
software is quite well tested. Only an outsider may find errors that are
outside that programmer’s routine. Definition of test scenarios is dependent
on testers — there are some persons who have a “good hand” to crash
any software. In spite of all efforts some bugs stay hidden because it is
impossible to test all paths through the software.

Results of tests are diagnosed errors. To diagnose the causes and to
remove them is again a job for programmers who develop the software.
Hence, testing and debugging require a good cooperation between two
different groups of persons.

Diagnosing errors is in many cases a very difficult job. There are several
tools that are supposed to help programmers in testing. Especially, IDEs
offer here very powerful means. In spite of all tools, testing is done very
often on a very basic, primitive level. A search for “printf” statements,
including those commented out, in a program may deliver an interesting

© 2006 by Taylor & Francis Group, LLC

Software as Engineering? M 55

result, giving insight into a programmer’s mentality or dispelling illusions
of powerful development tools.

Maintenance and Support

The last phase in software development lifetime may last a very long time.
We gave it a double name to underline two different activities during that
period: Maintenance means removing code errors complained of by cus-
tomers, while Support covers software functionality changes demanded
by customers. As software is going to be changed during that period that
possibility should be taken into consideration during requirements, spec-
ification, design, and coding phases. A lack of attention to software
maintainability leads to excessive software maintenance costs.

It is rather difficult to define any specific technical rules for software
design that should make software maintainable. Software maintainability
is assured by its clear structure, complete documentation, and well-defined
automated testing procedures. Those factors are especially important in
situations where the maintenance will be done by persons who have not
done the development. The probability of that increases with time.

Human Factors

People cannot be neglected either. I had an interesting experience in that
field. Several years ago as a consultant I introduced the Vfsm idea into
AT&T. The full implementation of the idea took several years and Flora-
Holmquist et al., who had participated, wrote a paper’ that exposes the
chilly reception of the potential users in that company. They defined five
schools of philosophical thinking for maintenance of the status quo:

B But our [feature/application/process/state machine/code ...] is dif-
ferent.

Is it just the paradigm of the month?

Everybody already knows C, so why change?

Show me the data.

An FSM modeling environment; a novel idea ?... NOT novel at all.

We do not want to go into the details of those pseudo-arguments — they
can be found in the cited publication. Several variants of that kind of
resistance can be found in any environment — it is just life.

Summary
In this chapter we have touched on a few topics in the software devel-

opment life-cycle. Although those topics are rather loosely coupled with

© 2006 by Taylor & Francis Group, LLC

56 B Modeling Software with Finite State Machines

the mainstream of this book, they deliver additional arguments for the
complexity of software development. The complexity is not only of
technical nature, but it refers to organization of software projects, required
development steps, and indicates the role of all persons involved in the
development process: managers, people who specify the requirements,
designers, programmers, testers, and last but not least the customers. The
role played by people in software development, especially their contra-
dictory characters represented in extreme cases by “free artists” on the
one side and pedantic bureaucrats on the other side, reflects the important
role played by nontechnical topics in software engineering. But this does
not justify the relatively modest representation of “programming” matters
in software engineering.

Education Requirements

Although the non-programmers’ topics are relatively well represented in
publications and education of software engineering they obviously have
little impact on software development. We need a more technically ori-
ented software engineering curriculum. In addition to very useful disci-
plines like: project management, schedule, cost estimations, and the like,
we need topics that discuss how to construct (design and code) a good
program. The entire body of software engineering cannot be a purely
theoretical matter: creating a program is a complex task, which cannot
be solved by theoretical considerations only.

Who Is a Programmer?

Software development requires several types of skill. It begins with the
capability of coding through basics of informatics and ends with specifi-
cation methods. It is true that the one thing that a programmer must
definitely know is the syntax and semantics of the programming language
used. But it is too primitive to think that such knowledge of “how to
code” makes a programmer. The more advanced topics are as important
as the elementary programming language information. Therefore, we
formulate a thesis that a programmer is a person who acquired the
educational chain:

syntax — basic of informatics — specification
that is, the programmer is a person who is able to specify the software,

design it, and code according to the present state of the art in information
technology.

© 2006 by Taylor & Francis Group, LLC

Software as Engineering? ®m 57

Education as the Basis of Skill

The rapid changes in software and the expansion of the software industry
created a huge demand for programmers. Therefore, this occupation is
practiced by any willing persons who can experience a “joy of coding”
feeling. In the early years of software development their quality did not
play a very important role — the desire to contribute compensated for
missing skills. As the software industry matures and its products become
more and more complex, the education of programmers is becoming an
essential factor that will decide the success or failure of a software project.
Examples of individuals who are remarkably good programmers, with or
without any formal education, are misleading. They must be complemented
by millions of average programmers whose best weapon is a good education
covering specification and design methods combined with effective coding.

Missing Skill — Examples

Speaking about methods, we have already hinted at the broad bend the
authors of software engineering books do around technical topics. Their
favorite subjects are just detailed discussions of language syntax, in other
words explanations of the heavy language of standards using more infor-
mal concepts supported by examples. This is necessary and useful, but
it is far from adequate. Especially for those who are not completely
greenhorns most books are useless because they are looking for answers
to more advanced questions. Those advanced questions are just mentioned
or compressed in a short chapter at the end of the book or lectures as if
they were to be learned by doing or were obvious extensions to the basic
knowledge. Unfortunately, it is not the case — advanced topics are the
essence of software design and determine the success of a software project.

To the general topic: as a design of a program is very difficult we limit
our comments to a few examples of specific topics, which can be seen in
most software projects, to demonstrating the missing understanding of
some basic software concepts. This applies to all concepts that are not as
a rule part of the programming language, e.g., exceptions, events, threads.

Events and threads are among the most misunderstood and overused
concepts in software. The reason is that programmers are not taught the
sense of using them. Concepts that are essential for some software such
as operating systems or input/output drivers may be totally useless for
application software. We have made in this book some spiteful remarks
about PLC but they also have a very important feature, which explains
their long and successful history — their guaranteed response time due
to the polling, which is the basic mode of PLC operation (to be fair we
should also mention that there are customers who justify the use of PLC

© 2006 by Taylor & Francis Group, LLC

58 ® Modeling Software with Finite State Machines

by the guaranteed response time, although they do not need it). So, when
speaking about threads and events we have to know what their disad-
vantages in comparison with polling are, where we need threads and
where they are just wrong. A programmer must also understand what it
means to have hundreds of threads waiting for events and sending
messages — such a system can function only when very carefully designed.

Exceptions are a controversial topic. The original concept was to catch
software errors, i.e., errors resulting from failures made while program-
ming. Opponents argue that we should explicitly catch those kinds of
errors in code. We do not want to try to solve the dispute, pointing out
only to situations like inputs from outside that may cause problems due
to their random character and are not classical programming errors (it is
difficult to foresee all imaginable behavior of the outside world). But we
encounter software that uses exceptions to solve all application errors and
we would classify it as a total overuse of that concept. In other words in
such a software only the sunny-day-scenarios are programmed. Any appli-
cations errors are left to be handled by exception (if the temperature is
too high the exception is thrown). It seems that authors of such software
are missing some basic understanding of software engineering (or that
we have a wrong definition of it).

We should also mention the overuse of pointers practiced by some
programmers (a specific problem of C programming). Perhaps the reason
is just that pointers are well presented in the basic programmers’ education,
and therefore for some programmers they must be used in any situation
(e.g., as function parameters). It has not only consequences for heap and
stack but is a general problem of programming culture.

With those few examples, we wanted once more to support our
disappointment about the overweight of management topics in comparison
with technical ones. A superior project management will never compensate
for unskilled programmers but the contrary statement is true: that bad
management will not prevent good programmers from writing a reasonably
good program.

Programming skill understood as joggling with basic structures of the
programming language is not enough. Programmers require a better
education, which goes far beyond that and covers advanced topics that
allow them to design a program with care, responsibility, and deep
understanding of the power offered by programming languages, libraries,
and other development means.

Conclusions

Here we summarize Part I, presenting first different aspects of the discussed
software problems. At the beginning of this part we made clear that we

© 2006 by Taylor & Francis Group, LLC

Software as Engineering? ®m 59

present here our views and not the results of some formal study. The
view is based on our experience and knowledge collected during several
years work in the software industry. We are not alone in our assessment
of software development methods. We have seen hundreds of publications
about software development and read many of them. We have made a
few references to them but they do not represent any carefully investigated
and representative choice of publications in the software domain — they
are just examples of publications to which we have access and which we
like. Those examples prove that we are not alone or exotic in our opinions
about the poor state of the software industry, as characterized by increasing
requirements that are not matched by true progress in development
methods.

If we understand under the name software engineering all topics related
to “how to create a program,” we diagnose that software engineering is
in an unbalanced state: the difficult technical questions are not answered.
We know some quite good solutions for management of software projects
but we miss convincing methods for designing and writing good code.

We round out our consideration with a suggestion of a new way to
go. But before we formulate our proposal we summarize first the reasons
for software problems. Let us begin with some trivial truths, which prob-
ably should be the entry point of any discussion about software

B Programs are complex.

B Code is impenetrable, especially when written by somebody else.

B Unless we are producing something that can be executed and/or
analyzed — we are not doing anything useful.*

Those contradictory statements show the entire extent of the problem.
Having those things in mind we understand why the controversy between
the extreme positions in software development methods: specify first or
start with coding (see the section Specifying or Not? in Chapter 1) is very
difficult to resolve.

We have criticized some trends in software development that are
pseudo-activities, expressing helplessness rather than a true ability to offer
solutions. There are many pseudo-solutions that may have some value in
certain circumstances but in general provide little help. To that category
belongs not only the overemphasized role of UML but also several “com-
mon wisdom” based opinions as for instance:

* We have adapted that sentence from a reader’s letter (J. Chludzinski in a discussion
initiated in Embedded.com by a paper Coders vs. Programmers by J. Ganssle). The
letter relates to a specific topic but we believe that it is at the core of software
problems.

© 2006 by Taylor & Francis Group, LLC

60 ® Modeling Software with Finite State Machines

B A belief that human intelligence can compensate for a missing skill.

B Fascination with programming languages, which leads to overpro-
duction of similar languages, effectively deepening the difficulty,
at least from the educational point of view.

B Fascination with graphics and considering any graphical represen-
tation a method.

B Creating reliability by testing.

Those reflections suggest that there is no clear answer for software
dilemmas, in other words:

There are no general methods or solutions for all software.

We are convinced that the software industry must leave the established
ways determined by marketing and try another way. That other way is
the topic of the following parts of the book. That way assumes that
software can be based on a ready-made execution environment, which
is written once and then used to build many applications. The adaptation
to a given application is achieved by establishing a specification of the
application’s behavior and its configuration, with the results of that spec-
ification carried out by the standard execution environment. This approach
means a greatly reduced coding effort, replaced by specification. That
approach works only if the specification methods and development tools
allow a totally complete specification (to the last details) to be generated.
That approach reduces the dependencies on program complexity. That
approach operates with a specification that is executable and that is not
in an intermediate form but is the final application implementation.

Recommended Reading

1. Baber, R.L., “Comparison of electrical ‘engineering’ of Heaviside’s times
and software ‘engineering’ of our times,” IEEE Annals of the History of
Computing 19, no. 4 (1997): 5-17.

2. Whittaker, J.A., Atkin, S., “Software engineering is not enough,” IEEE
Software (July/August 2002).

3. Glass, R.L.,, “On modeling and discomfort,” [EEE Sofiware (March/April
2004): 102-104.

4. Douglas, B.P., “UML for executable specification,” EDN (August 2001).

Flora-Holmquist, A., Staskauskas, M., “Moving formal methods into practice:

The VFSM experience,” Proc. of FSMP’96, 1st Workshop on Formal Methods

in Software Practice (1990).

N

© 2006 by Taylor & Francis Group, LLC

Part 1l .

FINITE STATE
MACHINES

Chapter 4

Introduction, Definitions,
and Notation

Finite State Machine

Consider a system as shown in Figure 4.1 where a Control System controls
an Application.

The Control System receives a number of stimuli (Inputs) from the
Application and produces actions (Outputs) to affect the application. The
control system realizes the control using simple logical conditions of the form:

If (Input Conditions) Then Outputs

The input conditions are logical expressions formulated according to
Boolean algebra. Some examples of Input conditions:

valve_open
valve_open OR timer_ expired
valve_closed AND temperature_ok

where OR and AND are logical operators. All arguments in these expres-
sions are Boolean values (false, true). In the approach presented in
the book we will expand the range of values in input conditions beyond
the Boolean values and therefore the NOT operator will not be used.

This simple model is sufficient for rather trivial systems. Any more
realistic applications require a much more sophisticated control model.
One of the most powerful models is a finite state machine (fsm), which
is used to describe behavior: what to do in all imaginable situations.

© 2006 by Taylor & Francis Group, LLC

64 ®m Modeling Software with Finite State Machines

Application

_

Inputs Control System | Outputs

Figure 4.1 A control system and the application.

The finite state machine introduces a concept of a state as information
about its past history. All states represent all possible situations in which
the state machine may ever be. Hence, it contains a kind of memory:
how the state machine can have reached the present situation. As the
application runs the state changes from time to time, and outputs may
depend on the current state as well as on the inputs.

As the number of distinguishable situations for a given state machine
is finite, the number of states is finite. This explains the word “finite” in
the name. Because we discuss only “finite” state machines in this book,
we abbreviate it to “state machine.” The term “finite automaton” is also
widely used as a name for this concept. The fsm concept is defined and
discussed in innumerable books and papers. We cite only two good
publications in the references: the Gomez paper! and the information
presented on the Web.2

A control system determines its outputs depending on its inputs. If the
present input values are sufficient to determine the outputs, the system
is a combinational system, and does not need the concept of state. If
the control system needs some additional information about the sequence
of input changes to determine the outputs, the system is a sequential
system. The logical part of the system responsible for the system behavior
is called a state machine. Sometimes combinational systems are treated
separately, and sometimes they are considered a kind of degenerated state
machine, with only one possible state, to which we could give the name
“Always.” To keep things simple, we call any logic that determines system
behavior a state machine. According to this definition, a state machine
can be represented by the diagram in Figure 4.2. The history of input

© 2006 by Taylor & Francis Group, LLC

Introduction, Definitions, and Notation ®m 65

Inputs

State transition
conditions

Y

State

\A]

Output conditions

L]

Outputs

Figure 4.2 The state machine definition.

changes required for clear determination of the state machine behavior
is stored in an internal variable State. Both the State transition conditions
and the Output conditions are functions of Inputs and a State.

A control system realized as a single state machine is of limited use-
fulness. To stay comprehensible a state machine cannot be too complex —
the numbers of inputs, outputs, and states have limits. These limits are
not fixed constants but result from common sense and depend on the
application, the designer, and other factors. For instance, from the docu-
mentation point of view a state machine transition diagram should fit on
a single A4 or A3 (or corresponding U.S. sizes: letter or tabloid) sheet of
paper. Therefore, serious applications can be realized only by using several
state machines, which should be organized in a system according to some
predefined rules. Otherwise, one could end up with a state transition
diagram covering entire walls. This is a vitally important point, which is
further discussed in Chapter 9 Systems of state machines and elsewhere.

State Machine Models and Presentations

Transition Matrix

A state machine may have different forms that define its ability to describe
behavior.

The simplest state machine model is a Parser. The function of the
Parser is to reflect input changes. The Parser does not produce any specific
Outputs — its state is the output. A well-known example of a Parser is

© 2006 by Taylor & Francis Group, LLC

66 ® Modeling Software with Finite State Machines

a state machine that recognizes certain strings. The functioning of a Parser
may be shown using a transition matrix or a state transition diagram.

Example

A control system has to count the amount of money dropped
into a vending machine. To keep the example simple let’s
restrict the inputs: only 5 and 10 cent coins are accepted. The
correct, recognized sum is 25 cents.

A transition matrix is a table where rows (From) represent present states
and columns (70) — next states. The content of the table are conditions
that must be fulfilled to make the transition from a present state to the
next state true. The transition matrix for the example is shown in Table 4.1.

The input conditions are numbers 5 and 10, which correspond to the
recognizable coins. A missing condition (-) means an irrelevant or inap-
plicable situation (cannot happen). The state Start is the initial start: there
are no coins. The state Stop means: there are 25 cents dropped. In all
states but Twenty both coins are accepted. In the state Twenty, the 10 cent
coin is ignored and rejected, although different strategies could be con-
sidered in practice.

A Parser is a state machine that has a beginning state Start and a last
state Stop. When a Parser reaches the state Stop its task is successfully
terminated and it must be reset to carry out the next recognition process.
This sort of machine produces a definite result by means of a single run
through a procedure.

The alternative presentation of the transition matrix is shown in Table
4.2. In this table the columns represent inputs and the rows — states or
vice versa. The content of the table are next states. We use the form that
is more convenient for a given application.

Table 4.1 Transition Matrix for the Vending Machine Counter

To | Start Five Ten Fifteen Twenty Stop
from

Start — 5 10 — — —
Five — — 5 10 — —
Ten — — — 5 10 —
Fifteen — — — — 5 10

Twenty — — — — — 5

Stop — — — — — _

© 2006 by Taylor & Francis Group, LLC

Introduction, Definitions, and Notation ®m 67

Table 4.2 Alternative Form
of the Transition Matrix

Input 5 10
State
Start Five Ten
Five Ten Fifteen
Ten Fifteen | Twenty
Fifteen Twenty | Stop
Twenty Stop Twenty
Stop Stop Stop

State Transition Diagram

A state transition diagram is a graphical representation equivalent to
the transition matrix. The state transition graph uses two elements: a circle
to denote the state and an arc for the transition. (Technically, for mathe-
maticians, the circles represent vertices and the lines represent edges of
a directed graph.) In a very simple diagram the arcs might be straight
lines. The transition condition is written over the arc. The state transition
diagram for the vending machine counter is shown in Figure 4.3.

A transition matrix is a table and therefore in some situations it is
easier to draw than a graph. On the other hand, a state transition diagram
is more readily comprehensible than a transition matrix. In case of a Parser
both presentations show the same information and are 100% equivalent.
The main task of the state machine as discussed in this book is to generate
actions. Later we will see that unfortunately neither a transition matrix
nor a state transition diagram can show all design details of a state machine
with actions. In such a case we need another presentation means.

Note that we have bypassed a full discussion about the state Twenty,
just mentioning that the coin 10 is ignored there. A complete design
requires some actions to be done (reject the coin or give change) in this
case. For simplicity we ignore these details.

Actually, the solution for the Vending machine counter example does
not have too much practical value. It would be a typical specification for
a coded solution where we assume that during the coding we find a proper
implementation. The transitions are defined assuming that the information
about each coin (5, 10) is a true event; i.e., it triggers the state machine
execution environment and then disappears. Otherwise, a single value 5
applied in the state Start would cause the transition to the state Five where
the transition condition would be immediately fulfilled and the state machine

© 2006 by Taylor & Francis Group, LLC

68 ® Modeling Software with Finite State Machines

% 70

Figure 4.3 The state machine diagram for the vending machine counter.

would go to the state 7en, from there it will go to the state Fifieen, and so
on until it reaches the state Stop. A specification must therefore be matched
to the state machine execution model that will be used (see also the
discussion in the section State machine execution models in Chapter 0).

Outputs (Actions)

Applications that can be served by a Parser model are not many. First, the
idea of an initial state Start and a terminating state Stop is very limiting —
a state machine has to work continuously, all the time, in the general case.
The other important aspect: most applications require some actions to be
performed (outputs); actions required by the controlled system. Note that
in hardware design the term “output” is commonly used, while for software
design the term “action” is more popular. Several types of actions can be
defined depending on the conditions and moment they are performed:

Entry Action
Exit Action
Input Action
Transition Action

The Entry Action is an action done when the state machine enters a
state. The Exit Action is an action done when the state machine leaves
the state. The Input Action is an action done when an input (condition)
is true. Each state has its own set of Input Actions. Input Actions that are
done in any state (effectively state independent) are also used. The

© 2006 by Taylor & Francis Group, LLC

Introduction, Definitions, and Notation ® 69

Transition Action is an action performed during the state change. Note
that although similar to them it is neither an Entry Action nor an Exit
Action, which are both state dependent; the Transition Action is transition
dependent.

We use various Actions to make a state machine design understandable,
and we apply certain rules. If a state machine changes state, all actions:
Input, Exit, Transition, and Entry Actions are carried out in this sequence
but practically in the same moment. Without a state change only an Input
Action may be performed.

Moore and Mealy Model

In practical situations not all these actions are used. Depending on the
actions which are used some typical models have been defined; the best
known are the Moore and Mealy models.

A state machine that generates only Entry Actions is called a Moore
model. A state machine that generates only Input Actions is called a Mealy
model. The models selected will influence a design, but there are no
general indications regarding which model is better. Choice of a model
depends on the application, execution means (e.g., hardware systems are
usually best realized as Moore models), and personal preferences of a
designer or programmer. In practice, mixed models are often used with
several action types.

State Transition Table

The existence of Actions complicates the presentation problem. Using a
transition matrix or state transition diagram it is difficult to express the
functionality of a state machine with several actions. Therefore, we intro-
duce a state transition table as the most versatile tool for expressing
the complete specification of a state machine.

We use the state transition table shown in Figure 4.4. The table contains
fields to specify Entry, Exit, and Input Actions. To keep the table as simple
as possible there is no explicit field for Transition Actions — an Input
Action with its condition equal to a transition condition could be treated
as a Transition Action. A more detailed discussion would show that this
arrangement does not correspond fully to a Transition Action definition.
We return to this later.

Each State has its state transition table. The table consists of several
fields used to specify actions and transitions. Each Action field may contain
several Actions. A table may contain several Input Action expressions

© 2006 by Taylor & Francis Group, LLC

70 m Modeling Software with Finite State Machines

State Entry action Entry_Action1
Entry_Action2
eXit action Exit_Action1
Exit_Action2
Input_Action_Condition1 Input_Action1
Input_Action2
Input_Action_Condition2 Input_Action3
Next_State1 Transition_Condition1
Next_State2 Transition_Condition2

Figure 4.4 The state transition table for one state.

consisting of related Input_Action_Condition and Input_Action fields. Sim-
ilarly, a table may contain several Transition expressions consisting of
several Next_State and Transition_Condition fields. In the condition fields
we will use two Boolean operators: AND (represented by &) and OR
(represented by |) to define more complex logical expressions. The usage
is as intuitively understood:

this_control_value & that_control wvalue or
this_control_value | that_control_value.

If the state transition table is to express completely the behavior it should
also have well defined priority rules for Transitions and Input Actions.

The rule for transitions is obvious* as it is impossible to make
more than one transition at the same time we agree that the
sequence in the table determines the priority.

For instance, if both: Transition_Conditionsl and
Transition_Conditions2 are true the transition to Next_Statel will
be performed.

The priority rule for the Input Actions is not so obvious and depends
on the execution environment.

If we assume that all Input actions that are due will be per-
formed, then their sequence in the table must not play any role.

* We are not interested in a nondeterministic model mentioned later in the Models
of a finite state machine in Chapter 6.

© 2006 by Taylor & Francis Group, LLC

Introduction, Definitions, and Notation m 71

Table 4.3 Transition Matrix with Input and Transition Actions

To | ... | Statel State2
From

Statel condition1/Input Action1 | condition2/Input Action2

Otherwise we would try to realize a control sequence by prioritizing Input
Actions: it must be done by adding a state or two. This is the rule we
follow in this book (the priority would be important if the execution
environment performs only one Input Action at any one time).

For comparison let’s draw a transition matrix and a state transition
diagram with Actions. Considering a transition matrix there is no agreed
convention to show all actions, so only Input and Transition Actions can
be specified there as shown in Table 4.3.

The content of a transition matrix specifies both the condition and the
action. If the cell coordinates are the same (e.g., Statel in the example)
the cell specifies the Input Actions (the state does not change). If the cell
coordinates are different (e.g., from Statel to State2 in the example) the
cell specifies the transition and the Transition Action.

It would be theoretically possible to show all Actions in a state transition
diagram, but due to practical sheet size it would not make much sense.
Occasionally an expression like

Transition Condition/Transition Action

is used to display Transition Actions.

We may now return to the equivalence of Transition Action and Input
Action. Let us assume that we have a State where the Condition2 for
an Input Action equals a transition Condition2 and there are two
transitions possible as in Figure 4.5. If only the Condition2 is true the
Action will be carried out and the state machine also changes to State2.
In that case we could call the Action a Transition Action bound to the
transition from State to State2. 1f both conditions: Conditionl and
Condition2 are true, the Action will be performed of course but the
transition to Statel will be done. In that case we have to regard Action
as a Transition Action bound to the transition from State to Statel. Of
course, it does not make sense. This example shows that the equivalence
between Input Action and Transition Action is rather superficial.

The diagrams in Figures 4.5 and 4.6 show states and transition condi-
tions for which the state transition table of the state State would correspond

© 2006 by Taylor & Francis Group, LLC

72 m Modeling Software with Finite State Machines

State Entry action

eXit action

Condition2 Action
State1 Condition1
State2 Condition2

Figure 4.5 An Input Action is not a Transition Action.

Next_Statel Next_State2

Figure 4.6 The state transition diagram.

to that in Figure 4.4. The existence of any actions are indicated by the
letters E: for Entry, X: for Exit, and I: for Input Actions. A missing letter
means that there are no actions of that type.

It is obvious that a state transition diagram gives an overall impression
about the state machine, displaying the states and transitions quite well
but the details are hidden, especially those of the Actions. Thus, a state
transition diagram needs to be supported by state transition tables that
contain the full specification of states.

Usage of a transition matrix is limited to Mealy models. It would be
possible to introduce a convention of writing Entry and Exit Actions in
the transition matrix in the column (7o) labels but it has never been done.
The reason is obvious: the complexity and the size of the matrix will
become too large as it effectively would imply the transition matrix
contains the content of all state transition tables. It would work for some
textbook examples but it will be no use for any practical design.

© 2006 by Taylor & Francis Group, LLC

Introduction, Definitions, and Notation ®m 73

This review of three presentation tools shows that a combination of a
state transition diagram and state transition tables is a reasonable com-
promise between the desire to have a comprehensible picture of state
machine functioning and the requirements to have a complete specification.

Example

We show in Figures 4.7 through 4.13 an example without trying to explain
the requirements. We just want to show the presentation means used in
this book. The presentation starts with a state transition diagram that gives
an overall idea about the state machine: its states and transitions. The
specification details are contained in the following state transition tables;
there is a separate table for each state. The first table Always specifies
the state-independent Input Actions performed at any time if due. State
tables begin with (optional) comment fields.

Pump_TooHot

4

Regulating

always

E: Xz

L

Pump_TooHigt(| Press_TooLow

Figure 4.7 Example of a state transition diagram.

Specification of state independent actions. If the Required Pressure value changes:
- the Error Counter is reset,

- the Pressure Limits are recalculated,

- the Pressure value is set.

Always RequiredPress_ CHANGED Counter_ResetStart
Ofun_CalcLimit
SetPressure_Set

Figure 4.8 Example: the state transition table of the state Always.

© 2006 by Taylor & Francis Group, LLC

74 m Modeling Software with Finite State Machines

Init state is the initial state. Once left it will never be reached again.

Init Entry action
eXit action Swip_On
Idle always

Figure 4.9 Example: the state transition table of the state Init.

All activities are ceased. Waiting for a Start command.

Idle Entry action SetPressure_Off
eXit action
Starting Cmd_Start

Figure 4.10 Example: the state transition table of the state Idle.

Several activities are initiated. Waiting for Pressure acknowledgements. Due to a Timer missing
acknowledgement leads to return to the Idle state.

Starting Entry action MyCmd_Clear
SetPressure_Set
Counter_ResetStart
Timer_ResetStart
Ofun_CalcLimit
eXit action Timer_Stop
RequiredPress_ CHANGED Timer_ResetStart
Pump_TooHot Al_PumpTooHot
Timer_OVER Al_PressureError
Regulating Press_OK
Idle Pump_TooHot | Timer_OVER
Figure 4.11 Example: the state transition table of the state Starting.

© 2006 by Taylor & Francis Group, LLC

Introduction, Definitions, and Notation ®m 75

The Pressure value is ok.

Regulating Entry action LED_On
eXit action LED_Off
Pump_TooHot Al_PumpTooHot
Error Press_TooHigh | Press_ToolLow
Idle Pump_TooHot

Figure 4.12 Example: the state transition table of the state Regulating.

The Pressure value is outside limits. A return to the state Regulating is possible if the Pressure
improves in a certain time. A Counter forces a return to the Idle state if the number of errors
exceeds a predefined value (see project settings). A Timer ensures that a missing
acknowledgement will cause a transition to the Idle state.

Error Entry action Timer_ResetStart
eXit action Timer_Stop
RequiredPress_ CHANGED Timer_ResetStart
Counter_OVER | Timer_OVER Al_PressureError

Regulating Press_OK

Idle Counter_OVER | Timer_OVER

Figure 4.13 Example: the state transition table of the state Error.

Recommended Reading
1. Gomez, M., “Embedded systems programming feature,” Embedded Systems

13, no. 13 (December 2000).
2. http://en.wikipedia.org/wiki/state_machine.

© 2006 by Taylor & Francis Group, LLC

http://en.wikipedia.org

Chapter 5

Hardware Applications

Introduction

The book is about state machines in software. But state machines were
known and used before software emerged. Especially, designers of digital
hardware systems used, from the beginning, Automata Theory methods
in their work; among others, they used state machines for constructing
sequential circuits. Considering the closeness of hardware and software
we have decided to insert a few pages that should give a reader at least
an impression of hardware design based on state machines. The complete
knowledge about the use of state machines in designing digital systems
can be found in several publications; the books of Commer!' and Sunggu?
are examples of useful references.

Limited to Boolean Signals

Hardware systems are built using gates and flip-flops, i.e., digital compo-
nents that operate on two-valued signals: true and false. The func-
tioning of digital systems is described by rules of the Boolean algebra.
Typical examples of digital components are shown in Figure 5.1.

The gates and flip-flops are mostly packed into larger digital compo-
nents: EPROM, FPLA, etc.

The design of digital hardware systems is based on Automata Theory
methods which, if properly applied, result in optimal systems. The defini-
tion of optimal systems depends on the requirements, where the important

© 2006 by Taylor & Francis Group, LLC

78 m Modeling Software with Finite State Machines

a) d) SET
A — : — -
A&B D Q
B — —]
b) o _|]
A&B=AB
B —
e) SET
c) |
A — A —
> — K CLR Q—

Figure 5.1 Digital components: (a) AND gate; (b) NAND gate; (c) NOT gate;
(d) D flip-flop; (e) J-K flip-flop.

factors are speed and number of used components. Although the require-
ment to build minimal systems decreases with the enormous increase of
the hardware features, it still makes sense to build optimal hardware systems.

We are interested in state machines in software. So, we do not discuss
the methods used in detail. We limit ourselves to showing an example of
a hardware system design to get some feeling for differences between the
software and hardware approaches.

A digital system can be asynchronous or synchronous. Asynchronous
systems are fast and can be realized with a minimal number of components
but they are difficult to design, test, and suffer from timing problems
(hazards), which are a true challenge for designers and difficult to get
under control.

Synchronous systems have a clock that dictates the speed. They are
slower than asynchronous ones but essentially easier to design, and
therefore they dominate the world of digital circuits. The example will be
designed as a synchronous system.

Design Example — Traffic Light Control

We want to design a traffic light control at a level crossing of a railway
and a road. As the details of the requirements may differ slightly we define
them as follows: There is one rail only but the trains may come from
both directions. The trains are detected by 3 sensors L (left), M (middle),
and R (right) positioned as in Figure 5.2. We assume also that the distance
between two sensors is larger than the longest train, in other words a
train can never activate 2 sensors at the same time. The output Y of the
system is a red lamp that should be switched on if the train approaches
the sensor L if coming from left and should be switched off if the train

© 2006 by Taylor & Francis Group, LLC

Hardware Applications ®m 79

Figure 5.2 The traffic light control at a level-crossing of a railway and a road.

leaves the sensor M. Similar actions should be performed if the train comes
from the right.

After some trials, we found the state transition diagram shown in Figure
5.3, which describes adequately the control of the traffic lamp. The design
is simplified and does not cover all possible error situations — it takes
into consideration the sunny-day-scenarios. Typically for the hardware
design we use the Moore model for the control where the state will
determine the output Y.

In the diagram the signal X in the transition conditions means: X =L | R.

X_LOW & M_LOW

Approaching

X_HIGH & M_LOW

Figure 5.3 The state transition diagram of the traffic light.

© 2006 by Taylor & Francis Group, LLC

80 ® Modeling Software with Finite State Machines

Table 5.1 Coding of States for the Traffic Light Control

D,D,D,
XM =
Description State Q,Q,Q, | 00 01 11 10 Y
No train NoTrain 000 000 | — — | 001 0
On X Coming 001 010 | — — | 001 1
Between X and M | Approaching 010 010 | 011 — — 1
OnM Present 011 100 | 011 — — 1
Between M and X | Leaving 100 100 | — — | 101 0
On X Going 101 000 | — — | 101 0

where: D, corresponds to Q,* which is the next state of Q,

Coding of the 6 states requires 3 flip-flops. If we choose, e.g., the
coding shown in Table 5.1, we get the following logical equations for
implementation with D flip-flops (the corresponding Karnaugh tables are
omitted — see Appendix F: Traffic Light Control— Design of the Hardware
Solution):

D, = Q&Q &M | Q, &X | Q, &Q,

D = Q&Q &Q &X | Q &Q, | M
X | M

S
Il

Y =Q | Q&Q

In the equations, as in the entire book, we use the symbol & for the
Boolean AND operator and the symbol | for the Boolean OR operator.

The system can be realized using NAND gates and D flip-flops as
shown in Figure 5.4. To keep the schematic simple we omitted from the
schematic the lines from the flip-flops to gates. Nowadays, we would
rather implement the above system using programmable read-only mem-
ories (EPROM), complex programmable logic devices (CPLD), or field
programmable logic arrays (FPLA).

EPROM-Based Implementations

EPROM-based implementations use a register of D-flip-flops; the transition
conditions and output function are coded into a read-only memory. Figure
5.5 presents an EPROM-based solution of the discussed example.

© 2006 by Taylor & Francis Group, LLC

Hardware Applications m 81

£

o

o ol Ke)
O
>
o
N
I
(3]
N

¥
Y
ol

x

w—>

clock

Figure 5.4 The traffic light control realized with D flip-flops and NAND gates.

Y
= Q DO D2 D2 D3
D Q u A,
—>
CLR Q
L A | D SET Q Q,] A,]
—>
Q
CLR
EPROM
L 1D SET Q Q? AZ
—>
CLR 6
L A,
clock
M A,
R A,

Figure 5.5 EPROM-based implementation of the traffic light example.

© 2006 by Taylor & Francis Group, LLC

82 m Modeling Software with Finite State Machines

The states of the state machine are stored in a 3-bit register, which
corresponds to the D flip-flops. The outputs of the register Q,, Q,, Q,
plus the sensor inputs: L, M, R create the address of the EPROM. The
EPROM data outputs represent the next state (D DD, -> Q,*Q,*Q,") and
the output Y.

Alternatively, we could do without coding of states and use 6 bit-
register where each address bit corresponds to one state according to the
state transition diagram in Figure 5.3. This so-called 1-hot design is simpler,
and for small state machines makes sense because EPROMs and register
are today very cheap. This approach can be applied to rather small state
machines — above a certain number of states (and inputs) coding of
states is required.

The content of the EPROM is shown in Table 5.2. The table shows
only the content for relevant addresses; other addresses are never used
and may contain default value 0 or 1.

Table 5.2 The Content of the EPROM in Figure 5.5

A | A, | A | A | A | A | D, | D, D, D,
(R | (M) | (L) | (Qy) | (Q) | (Qp | (V) | (Q*) | (Q) | (Qp)
0ol 0|0/ o0 0 0 |0 0 0 0
0ol 00| o0 0 1 |1 0 1 0
0ol oo/ o0 1 1] 1 1 1 0
0ol 0|0/ o0 1 0 | 1 0 1 0
0|0 |0 1 0 110 0 0 0
0|0 |0 1 0 0 |0 1 0 0
oo | 1] o0 1 1] 1 0 1 1
olo0o | 1] o0 1 0 | 1 0 1 1
ol 1|0/ o0 0 0 |0 0 0 1
ol 1|0 o0 0 1 |1 0 0 1
0| 1o 1 0 110 1 0 1
0| 1o 1 0 110 1 0 1
1100/ 0 0 0 |0 0 0 1
1100 0 0 1 |1 0 0 1
110 0| 1 0 110 1 0 1
110 0| 1 0 110 1 0 1

© 2006 by Taylor & Francis Group, LLC

Hardware Applications ® 83

FPLA- or CPLD-Based Implementations

CPLDs contain a number of “logic blocks,” which each have a few flip-
flops and input logic that has a number of AND—OR units, able to generate
quite complex expressions from 20 or more inputs. Thus, an implemen-
tation with programmable logic corresponds to the implementation with
flip-flops and gates. In such a case, we do not build the system using
discrete components but we use specialized programs to specify the system
and to program the array. Similar considerations apply to FPLAs, which
typically have a less structured basic design in silicon, although a similar
structure would be imposed by the design software tools.

Conclusions

A state machine concept stays the same, independently of the application
domain area. The differences are in the development culture resulting
from the implementation features. Errors in hardware design are expensive.
A hardware designer cannot “try” too often as the result of the designer’s
work is transformed into a physical device that can be effectively tested.
Only a limited number of design iterations make economic sense. Thus,
hardware designers must use methods that increase the probability of
correct design.

Contrary to this, software developers assume that they are allowed an
infinite number of iterations. Hence, the pressure to strive for a first-time
functioning solution is lower.

The comparison is probably not quite fair. Complex hardware systems
are also difficult to design on paper. Their functioning must be tested
using simulators before they go into production. Testing means nothing
else but trying to find a proper solution, which we could not find in a
more methodological way. In any case, the cut between design and
manufacturing in hardware is very clear: only a designed system goes into
production. In software the difference between design and manufacturing
is rather vague, which very often leads to chaotic development.

Hardware systems are essentially less complex than software applica-
tions. In spite of impressive hardware achievement, the systems are not
very sophisticated. They are large and very reliable but the functional
sophistication is made only by software. Therefore, we would not try to
make a system as in the TrafficLight example more complex covering all
imaginable (error, unexpected) situations. The transition from the speci-
fication to the implementation is just too difficult — it would blow up
any design method very soon. Using software solutions we are able to
cover much more complex situations. The example presented in this
chapter is really trivial for software. If we compare the example from this

© 2006 by Taylor & Francis Group, LLC

84 m Modeling Software with Finite State Machines

chapter with a similar example shown in Example — Traffic light control
in Chapter 9, we see that in software we may realize much more difficult
problems. The irony is that we believe sometimes that we may do it
without any method, just using our common sense.

In practice the above example would no doubt be implemented
nowadays in software, using a micro-controller, and hardware finite state
machines are more commonly found within integrated circuits.

Recommended Reading

1. Commer, D. J., Digital Logic and State Machine Design. New York: Oxford
University Press, 1995.

2. Sunggu, L., Advanced Digital Logic Design Using VHDI, State Machines,
and Synthesis for FPGA’s. Florence, KY: Thomson-Engineering, 2005.

© 2006 by Taylor & Francis Group, LLC

Chapter 6

Software Specific

Introduction

If we take two books that have in their title “Automata Theory,” but one
book is written for hardware designers and the other one for software
people, we get the impression that there are two different Automata
theories. The hardware book is about digital system design. The software
book is about mathematical description of computations, especially pro-
gramming languages. Both use the concept of finite automaton, also named
finite state machine (or the short form state machine we use in the book),
as the basis of their methods and theorems but the terminology and the
emphases are completely different:

B In hardware design a state machine is a vehicle for a design method.
B In software a finite automaton is a means to prove theorems.

To illustrate this point let us take the concept of deter ministic and
nondeterministic automata. From the hardware point of view that differ-
entiation is irrelevant because only deterministic automata are used in
design methods. For computer language discussions of a nondeterministic
nature automaton is a useful concept used for proving theorems.

Both hardware and software solutions for control problems require the
same scientific foundation. Specifying application behavior with the help
of state machines we should expect to use exactly the same means: there
is no reason to have two different specifications for hardware and software
implementation. In other words, both hardware and software can use the
same finite automaton concept.

© 2006 by Taylor & Francis Group, LLC

86 ®m Modeling Software with Finite State Machines

The book is about the use of state machines in software. We present
here a picture of a state machine that is needed for specification of
behavior. But we have not written another book about Automata Theory.
This statement explains the structure and content of that chapter. We
discuss here various aspects of state machine definitions and features
trying to show which of them are relevant for our aim: the use of state
machine for specification. The software specifics play a role in that
discussion, of course, and will be the starting point in the following
sections. But the software specifics refer to the specification environment
and not to a model of a state machine. Models of state machines in the
book are not hardware or software specific as there is only one concept
of a state machine independent of its use.

Data and Control Flow

Hardware logic systems operate in principle on purely digital inputs and
outputs. Software systems are more versatile — they process any sort of
data. Therefore, the application of the state machine concept to software
design is not so obvious and easy.

A state machine is a decision machine; it can react only to input stimuli
(expressions) that carry clear information: true or false.

A common approach in application design is to use the state
machine model as an auxiliary tool to specify a local, limited
task. This specification is done rather superficially knowing that
the implementation will be coded anyway where all details
needed for integration into the entire software will be handled.
In other words, taking an application as a whole, a designer
has to analyze simultaneously both application- and software
implementation-dependent details.

For example: analyzing how to switch a motor on or off and to guard it
against overheating a designer has to solve such problems as:

B How to realize and handle the time-out

B How to get the motor temperature information and to filter out
the “overheating” signal

B How to signal a problem to the operator, etc.

The result of this approach is a confusion that makes it difficult to

distinguish between logical (application control relevant) errors and soft-
ware coding errors.

© 2006 by Taylor & Francis Group, LLC

Software Specific m 87

i Input

Application
Data calculations
Data transformations
Control

Data transmissions

)

ML T L

Output

Figure 6.1 The data and control flow in application design.

The first step in more effective use of state machines in an application
design is to comprehend and accept the partition between the data flow
and control flow. Application software seen from this perspective would
present a picture as in Figure 06.1.

The Control represents the control flow. The data flow is created
by Data processing blocks, which are passive: they cannot do anything
on their own but are triggered by signals generated by the Control to
perform calculations, transformations, transmissions (these are just exam-
ples of operations that may be done on data). Results of data processing
are inputs used by the Control.

This picture may seem incorrect to an object-oriented programming
(OOP) purist but we do not speak about the software implementation at
this moment. The software implementation may indeed be the product
of a wonderful OOP design process. This presentation means that on the
application specification level we should think first of all about the appli-
cation and construct a behavioral model which separates the Control from

© 2006 by Taylor & Francis Group, LLC

88 ®m Modeling Software with Finite State Machines

Data processing. We may apply this approach to a pure software design
which will be discussed later.

Any Class of Signal May “Contain” the Control Value

Let's take some typical data (signals) and show their possible control
content — we shall filter out the control feature and call it a control
value. The control value “describes” a data property that can be used for
control purposes. A control value is not the same as a Boolean variable.
One item of data may be assigned several control values that are typically
mutually exclusive but not necessarily so — sometimes more than one
may exist at a given moment.

Digital Input

A digital input is a signal that has two values corresponding to Boolean
terms false and true. A digital input has two control values; let’s call
them Off and On, which correspond to false and true values.
The Off and On control values are similar to Boolean false and
true values but are not strict equivalents. The Boolean values are values
of a variable. The control values Off and On are features of data (in
that case digital input). It is true that the Of £ value excludes the existence
of the On value, and vice versa. On the other hand, it is imaginable that
neither value On nor Off is asserted — this situation arises if we have
no knowledge about the digital input.

The definition of a control value may seem a bit unusual, when
considering Boolean algebra. This approach has a significant advantage —
by adding another control value Unknown we get a fuller description of
a digital input, e.g.:

Di_Off, Di_On, Di_Unknown.

The conventional approach of considering a digital input as a simple
Boolean variable fails in undefined situations: if we do not know the
value of a digital input we have to assume the value, setting it arbitrarily
to true or false. For more complex data types the advantage of the
control value idea will become more obvious: it is the only definition
having no Boolean equivalents.

Command Input

A command input is a signal that has several values, e.g., names or integers
that mean “do this” or “do that.” It is obvious that it is difficult to speak

© 2006 by Taylor & Francis Group, LLC

Software Specific ®m 89

about the direct use of command values in Boolean expressions; we can
do it only indirectly, e.g. (using C syntax):

If (command == Cmd_Start) then

or we might prefer a switch statement.
Using the concept of a control value we say that a command has, e.g.,
the following control values:

Cmd_Start, Cmd_Stop, Cmd_Continue, Cmd_Unknown.

Instead of operating on a single command value we use in this example
four control values. In this case they are mutually exclusive as the existence
of two commands at the same time would be rather difficult to interpret.

Numerical Input

A numerical input is a signal that represents a physical quantity such as
temperature, voltage, pressure, or some other so-called analog quantity.
Typically, a numerical input is an integer or floating point number and
as such there is no way to treat it directly as a Boolean value, especially
as its range is essentially infinite. We overcome this difficulty when coding,
as for instance:

If (value > Limit_High) then

Using the concept of a control value we can say that a numerical value
might have, e.g., the following control values:

Temp_Low, Temp_High, Temp_Ok, Temp_Bad, Temp_Unknown.

Instead of operating on a single numerical value we use in this example
five control values. In this case they are not mutually exclusive. It is
imaginable that both values, Temp_Low and Temp_Bad, do exist at a
given time. The exact interpretation of the control values is outside the
discussed control scope: the meaning is defined by a definition of some
limits. It is a nice example showing what we understand as separation of
the control flow from the rest of the system. For the control flow, only
control-relevant issues (the temperature range: for instance Temp_Low)
make sense but not the absolute level of the temperature. The low limit
defining the control value Temp_Low might be 7.8V corresponding to
5°C in one case and a completely different value in another case but
those fine details, although obviously important, are completely irrelevant
for the control system design: they are just properties.

Parameter

A parameter is an item of auxiliary data specific to a control process or
system. It can be of any type: Boolean, integer, float, etc. Normally, the

© 2006 by Taylor & Francis Group, LLC

90 ® Modeling Software with Finite State Machines

value of a parameter has no control meaning. On the other hand, a change
of its value, its usage, or initialization may be relevant for control. In such
a case we can define, e.g., the following control values for a parameter:

Par_Init, Par_Changed, Par_Used.

In most cases the use of a Par_ Unknown control value would not be
justified — parameters are typically included in software; they are not
inputs. If parameters are delivered from the controlled environment and
are not accessible at a system start we could use the further control value
Par_Unknown.

Data Processing Result

A data processing result indicates whether a data calculation, transforma-
tion, or transmission has been a success or a failure. Typically, a data
processing result is an integer. We can define, e.g., the following control
values for a data processing result:

Result_Success, Result Failurel, Result_Failure2,
Result_Failure, Result_Unknown.

The control value Result_Unknown does make sense and is the initial
value before the Data processing is performed. A name like
Data_NotProcessed_yet might be an alternative choice.

Timer

A timer is an object counting time and signaling the expiration of a
predefined period (time-out). A timer belongs to a larger class of objects —
counters. Counters count events; a timer counts specific events: time
clocks.

When a timer expires it generates the Over (or overflow) signal.
It is the most obvious signal used in control. In general, other timer states
(i.e., control values) may be of interest. For instance, we can define the
following control values for a timer:

Timer_Over, Timer_Running, Timer_Stopped,

Timer NotAvailable.
Because a timer belongs to computer resources, its state must be always
known — therefore the Timer_Unknown control value is superfluous
here. If the software cannot find out the state of the timer it is corrupted
or has errors and must be debugged. Note the difference between the
Timer NotAvailable and Timer_ Unknown control values: the first
can be generated by a system start-up only and means that the computer
resources are exhausted; the second would be just a software bug.

© 2006 by Taylor & Francis Group, LLC

Software Specific ® 91

From the control point of view, the character of the signals (the Over
signal is typically an event, the Running or Stopped values must be
requested) does not play any role. It is another point in the discussion
about data and control flow separation. We want to filter out only the
control relevant feature for control specification. We want to “forget” all
factors that depend on software implementation, operating system, devel-
opment environment, etc. The control flow must be governed by pure
control information.

State Machine

In the book we use several signal types and discuss their control values.
Especially, in Part III we have a very complete overview of RTDB objects
and their control values. We end the examples in this chapter by men-
tioning state machines. The states of state machines are by definition
control values. For instance, we can define the following control values
for a state machine Main using states of its Slaves: Device, Pressurel, and
Pressure2 (see Example — Pumps supervision system in Chapter 9 or
Appendix L Pumps supervision project):

Pressurel Error, Pressurel Idle, Pressure2_ Error,
Pressure2_ TIdle, Device_Start.

Any state machine may use states of other state machines exactly as digital
inputs, timers, etc. to define its Transition or Input Action conditions.

External and Internal Signals

Control values represent features of input signals. The source of inputs
may be internal or external in relation to the control software. Digital
inputs or numerical inputs are by definition external signals. Timers are
good examples of generators of internal signals. Both categories of input
signals generate control values that differ in one aspect: the external signals
may be unknown. In contrast to external signals, the control value of
internal signals must always be known; otherwise we have a software
bug. This difference influences the design: the links to external signals
must be continuously supervised to see whether they stay intact and
supply the signal changes; in case of interruptions the value of external
signals must get the value Unknown.

What about Outputs?

Up to now, we have discussed Control inputs as they are used to define
the behavior. Their counterparts — outputs — are produced by the

© 2006 by Taylor & Francis Group, LLC

92 m Modeling Software with Finite State Machines

Control. Outputs in the control flow are descriptions (names) of activities.
In contrast to inputs, the outputs are not used for control but are results
of commands which we call actions.

Digital Output

A digital output is a signal transferring two values corresponding to the
Boolean false and true to the controlled application. The Control has
to generate two actions: Off and On. These actions set the two values
of the digital output. The digital output must have a defined value at a
system start — it must be set arbitrarily to false or true value. Once
set it keeps the value until reset, and vice versa. Thus, the actions of a
digital output can be considered triggers that change the output; if actions
are absent, the output keeps the last set value. Typically, the digital output
actions are as follows:

Do_Off, Do_On.

Command Output

A command output is a signal generated by the Control and used to pass

control information to other Controls (state machines). Note that a com-

mand output produced by one state machine is typically a command input

for another state machine. Examples of command outputs may be actions:
Cmd_Start, Cmd_Stop, Cmd_Continue.

Numerical Output

A numerical output is a signal (action) responsible for setting physical
quantities: temperature, voltage, pressure, etc. These quantities are typi-
cally integers or floating-point numbers and therefore they cannot be set
directly by the Control. The Control can decide only when to set a
numerical output, as the numerical details are arranged outside the scope
of the Control. Hence, numerical outputs are, e.g., actions (commands to set):

Pressure_Off, Pressure_Set.

At a system start a numerical output must be initialized to a defined value,
typically to the 0 value.

Data Processing Output

A data processing output means a call of a function that has to be triggered
by an action. The data processing output (action) may have different
flavors, as in the following example:

© 2006 by Taylor & Francis Group, LLC

Software Specific ®m 93

Calculate_with_parameterl, Calculate_with_parameter?2,
Calculate_Initialize.

Here, the actions are commands to do some calculations.

Timer

A timer has already been used as an example in the discussion of inputs.
The timer contains both inputs and outputs: it must be triggered by actions
(e.g., to make it run) and produces control values (e.g., the Over). The
timer may be triggered by the following actions (commands to do something):

Timer_Start, Timer_Stop, Timer_Reset.

At a system start a timer must be initialized to a certain state; typically a
timer is reset and ready for a Timer_Start command.

Summary

A state machine, as it is a decision system, can operate on Boolean values
only. Hence, only digital values are directly suitable for its control. The
concept of a control value allows us to treat any control relevant data in
a way similar to Boolean inputs. The above-discussed data types are just
examples. This approach can be applied to any data that may influence
the control and is to be used by a control specification.

Both involved terms, control inputs and actions, represent pure control
features. Inputs are represented by control values which contain only
control relevant information. Outputs are represented by actions, which
are orders of what to do without any implementation details. This arrange-
ment allows a software control system to be treated in a way similar to
a hardware control system. Hardware state machines can be designed
using Boolean algebra due to their pure Boolean input and output signals.
Analog values in such systems need to be processed, e.g., by a comparator,
to generate the digital value. Software control systems are more demanding
as their inputs and outputs are more varied. In any case,

with the introduction of control values for Inputs and actions
for Outputs we have created a basis for a similar (to hardware)
approach in the software world.

The strict partition between the data and the control flow is the basis
for a completely different approach to the design of software-based control
system applications. Without such partitioning, software designers consider
state machines and similar concepts a way to specify some pieces of
software, but they do not treat them as means to build the control flow

© 2006 by Taylor & Francis Group, LLC

94 ® Modeling Software with Finite State Machines

of the entire software. This is a severe underestimation of the power of
the state machine concept. In contradiction to commonly accepted ideas
on this topic, for large and complex projects a system of state machines
may be used to determine the behavior of the entire program, contributing
essentially to higher software quality.

Event-Driven Software

Software “interfaces” with the controlled application exchanging data:
supplying input data and receiving output data. There are two basic
interface mechanisms used: polling and event driven.

Polling means that inputs are cyclically checked and outputs are
cyclically set. This arrangement is predictable and guarantees the reaction
time, which is defined by the polling cycle.

Event driven means that the interface generates events if inputs change;
outputs are also set if their values change. Event-driven systems are favored
in software as a more effective (software does something if necessary)
and on average faster solution, although the event-driven system cannot
guarantee any response time. Events are also generated internally by
computer resources, e.g., an expiring timer generates an Over event.
From the control point of view there is no difference between external
and internal events.

An event is a trigger that says that something has changed — the
trigger should be used to get the control information from the changed
input. Sometimes the event itself carries the control information.

Event as a Control Signal

The programmers’ love of events produces some strange effects. Several
software implementations based on the state machine concept assume
that events are the only signals that can be used to control state machines,
and implicitly that events that are not consumed (i.e., do not immediately
provoke an action or transition) are discarded. That assumption means
that states of a state machine must “store” not only the history of input
changes (in a very compressed form) but the present value of inputs as
well. In other words, the state transition diagram must explicitly contain
all possible control paths. We discuss the problem in Chapter 7 Mis-
understandings about FSM in the context of the so-called “state explosion”
phenomenon; therefore, we limit the discussion at this moment to a simple
example of an outdoor security lamp.

This should light when movement is detected, and remain lit for, say,
10 seconds after movement ceases. But it should not light in daylight, so

© 2006 by Taylor & Francis Group, LLC

Software Specific

95

Movement_Detected & Dark

Figure 6.2 Security lamp: the state transition diagram.

Off

Entry action

Lamp_Off

eXit action

On

Movement_Detected & Dark

Figure 6.3 Security lamp: the state transition table

of the state Off.

Entry action Lamp_On
Timer_ResetStart
eXit action Timer_Stop

Movement_Detected

Timer_ResetStart

Off

Timer_OVER | Light

Figure 6.4 Security lamp: the state transition table

of the state On.

it incorporates a sensor of the ambient light level. Using a classical fsm
model, we need just two states, the initial state Off and the state On
(Figure 6.2 through Figure 6.4).

The lamp controller passes to On when movement is detected, but
only when the ambient light level is low. An Entry Action in the state On
switches on the lamp and starts a timer, and an Input Action re-starts the
timer whenever movement is detected. In the state On the transition to
the state Off occurs when the timer reaches the time-out delay, and perhaps
also when the ambient light level has increased. The Entry Action in the
state Off switches off the lamp.

© 2006 by Taylor & Francis Group, LLC

96 ® Modeling Software with Finite State Machines

Always

Movement_Detected

Figure 6.5 Security lamp as a pure event-driven state machine: the state transi-
tion diagram.

Now consider the equivalent state transition diagram for a purely event-
driven version (Figure 6.5). It requires an additional state Day to store
the information about the day. The state Night corresponds to the state
Off in the first solution. On entry to either the state Day or Night the
lamp is switched off. The state On is equal to the state On in the first
solution.

Overloading the state machine with the burden of storing the value
of present inputs cannot work except for some trivial examples like the
Security Lamp control. Read more about it in Chapter 7 Misunderstandings
about FSM.

State Machine or Combinational System?

We use the example of the Security lamp above to discuss the problem
of the size of a state machine. To be more specific — we should like to
find the answer to the question: how many states should a state machine
have?

The way we have started to specify the example is very typical — we
have just assumed that the behavior of the discussed control problem can
be described by a state machine and we “see” immediately the obvious
states, in that case: Off and On. Very seldom we ask ourselves the question
whether it could be realized as a combinational system. In a way, it is

© 2006 by Taylor & Francis Group, LLC

Software Specific m 97

understandable as only very trivial behavior has a combinational character
and, eventually, who cares about the number of states in software? The
other factor that influences the specification is the implementation — a
behavioral model must be consistent with the execution system. If we
intend to code the specification by hand, we tend to make a rather
superficial state machine design, as we know that the “hour of truth” will
come in the coding and we treat the specification as a useful introduction
and help, but not as the ultimate solution. If the specification is to be
executable using a ready execution environment, we cannot neglect its
features — the state machine must fulfill exactly all the requirements of
the runtime system.

We can now present another solution for the Security lamp, shown in
Figure 6.6. Two Input Action expressions are required to control the lamp.
The first expression says that if the movement is detected by night, the
lamp is switched on and a timer restarted. The second expression says
that if the timer expires or it is not dark, the lamp is switched off and
the timer stopped. This solution does not require any states to store input
changes — the present control values of daylight (dark or light), move-
ment, and timer contain full and clear information about the inputs. But
we have to admit that to “see” that it can be a combinational system is
not so obvious and that the solution is less clear than the previous ones.
As a rule, more compact solutions are a bit tricky and are found by a
more experienced designer.

To be quite correct we should also note that because of the timer the
system is still a sequential circuit — only the timer contains the sequential
part and in fact it is a state machine of some sort. Discussing the
StateWORKS implementation we will see later that using powerful objects
(that are themselves state machines) simplifies the specified system.

We presented three different solutions of the Security lamp control,
but with exactly the same behavior: with 1 state (combinational system —
Figure 6.6), with 2 (Figure 6.2), and with 3 (Figure 0.5) states. Those
solutions demonstrate the relativity of so-called optimal or minimal solu-
tions. As there are no methods that could estimate or prove those features,
any “minimal” solution is only minimal until a better one is found.

Always Movement_Detected & Dark Lamp_On
Timer_ResetStart

Always Timer_OVER | Light Lamp_Off
Timer_Stop

Figure 6.6 Security lamp as a combinational system: the table Always.

© 2006 by Taylor & Francis Group, LLC

98 ® Modeling Software with Finite State Machines

If there are so many solutions possible for a trivial example, we can
imagine how many solutions exist for more complex state machines with
tens of states. They are surely far away from any minimal number of
states. Fortunately, in software the number of states does not play a very
important role. We should rather concentrate on easy comprehension of
the state machine specification than on its number of states.

The solutions for the Security lamp control problem we have discussed,
especially the combinational system, do exist and make sense for a certain
execution environment (including that of StateWORKS) but may be unsuit-
able for other environments.

Models of a Finite State Machine

A finite state machine is also a standard model used in the mathematical
foundation of computer science, e.g., in the formal specification of pro-
gramming languages. Those concepts are, as we describe them in this
book, event-driven “Parser” problems. That fact explains at least partly
the popular understanding of a state machine in software.

From that perspective a finite state machine (see, e.g., Carroll et al.!)
a finite state machine is a quintuple (X, S, s0, 9, F), where:

Y is the input alphabet (a finite non-empty set of symbols).
S is a finite non-empty set of states.

s0 is an initial state, an element of S.

d is the state transition function: 8: S X X — S.

F is the set of final states, a (possibly empty) subset of S.

A parser state machine is also called a recognizer or acceptor. Such a
state machine has an initial and a final state and its path from the start
to the final state is deterministic; i.e., there is only one transition from
each state. We would rather say that all other inputs are ignored or by
definition they cannot occur. If the state machine, for a given input, accepts
several transitions from at least one state, it is called nondeterministic.
Those kinds of considerations are adequate for parsing of words but
do not make sense for a control application outside that environment. We
note also that that definition misses completely the output (actions). That
is understandable as the task of that state machine is to reach a final state,
which means that parsing has been successful; there is nothing to do on
the way to that state. Theoretically, we could adapt that concept for our
purpose — modeling applications implemented by software. It would be
required to treat a state machine as an automaton that changes its state,
and then by decoding states we decide which actions are to be performed.

© 2006 by Taylor & Francis Group, LLC

Software Specific ® 99

That solution would be much more complicated as it is difficult to think
separately about state changes and actions: state changes are in most cases
the results of some feedback from the controlled application. It is a much
simpler and more natural way to construct a state machine if we think at
the same time about state changes and about actions to be done.

Staying in the world of symbols, we can define a transducer finite
state machine as a sextuple (X, T, S, s0, 8,), where:

X is the input alphabet (a finite non-empty set of symbols).
I" is the output alphabet (a finite non-empty set of symbols).
S is a finite non-empty set of states.

sO is an initial state, an element of S.

0 is the state transition function: 8: S X X — S.

o is the output function.

If the output function is a function of a state and input alphabet (®: S x
Y — D), that definition corresponds to the Mealy model. If the output
function depends only on a state (®: S — I"), that definition corresponds
to the Moore model.

The parser state machine model is useful for compilers. In a design
of hardware digital circuits the transducer state machine is applicable.

Application-Based State Machine Models

Several criteria can be used for classification of state machines. The
acceptor and transducer (Moore and Mealy) models originated in the
educational/scientific world. Taking the application criteria into consider-
ation we would rather speak about parser and controller state machines.

The parser state machines match strings (symbols); i.e., they follow
a sequence of states with the purpose of detecting a certain string pattern.
In practice, they do nothing while changing the states and the outputs
(actions) are not used and do not exist for them. We discuss them later
in more detail (see “Parser” problem in Chapter 7).

A specific type of parser state machines transform changes of input
signals into a set of states, which can then be used by simple decoding
to determine outputs. Such situations occur relatively seldom and are
characterized by very homogeneous control requirements, which happen
only for rather simple control systems. We later discuss a state machine
TrafficLight (Example — Traffic light control in Chapter 9), which repre-
sents exactly that kind of model. For the TrafficLight control we use a
state machine whose sense is to reflect the position and the movement
direction of a train that is in the controlled zone. If we know that
information, we can decide about the traffic light: it must be on if at least

© 2006 by Taylor & Francis Group, LLC

100 ®m Modeling Software with Finite State Machines

one TrafficLight state machine signals that the train moves toward the
crossing (there is a separate state machine for any train in the controlled
zone). The solution is simple and the design of the “sequence” is obvious.
Those state machines are limited to Moore models.

Summarizing, parsers are special cases of state machines finding little
application in industrial control because there are not too many situations
where they may be used.

The controller state machines are actual state machines used in
practical applications. They consist of states that determine output
(actions). With controller state machines, we are able to specify behavior
of any complexity, especially using a system of state machines.

A strict classification and distinction between Moore and Mealy models
may have value for some theoretical discussions, but from the practical
point of view a useful model is a state machine that combines features
of both models. That is, we need a state machine where outputs are
functions of a state as well as a state and inputs. Such a controller model
will be used and discussed in the following chapters.

State Machine Execution Models

State machine definitions are fairly simple in an artificial world of math-
ematical symbols where the input is a character stream. In the real world
the problem becomes more complex. Especially the introduction of out-
puts, or as we call them actions, makes the problems quite sophisticated.

The state machine model depends on the implementation. We cannot
draw something on a piece of paper and claim that the drawing represents
the behavior of an application without having in mind the execution
model of the state machine. It may be a simple issue if inputs are symbols
like characters and we assume that the symbol is an event that, after
processing, is treated as consumed and the execution system waits for
another event (symbol). If we are in a less homogeneous world where
inputs are of varied nature and this simple event-driven model will not
work, the situation is not clear at all. Let us try to find an answer to the
two basic controversies:

B A state has several transitions governed by conditions that are
complex logical equations. Triggered by an event the execution
system finds out that at that moment several transition conditions
are due — which transition should be performed?

B A state has several Input Actions whose conditions are complex
logical equations. Triggered by an event the execution system finds
out that at that moment several Input Actions conditions are due —
which Input Action(s) should be performed? If our model allows
several Input Actions to be carried out, does the execution

© 2006 by Taylor & Francis Group, LLC

Software Specific ® 101

sequence play any role? Can an Input Action be carried out several
times (this situation happens if the event has triggered an Input
Action but not a state transition)?

The possible answer: “not to use complex logical conditions and limit
the model to single symbol dependencies for transition and action” has only
an academic value. As we discuss later, such (event driven) state machines
(Chapter 7 Misunderstandings about FSM) result in a state explosion
phenomenon and have no practical value for design of software applica-
tions. The answer to the first question could be: yes, allow several
transitions (nondeterministic fsm). Again, it may have some theoretical value
but it does not seem to have any practical value in industrial control. As
there is no clear answer to the above questions, especially to the second,
we have several execution models.

Behavior models must be based on well-established execution
models. Otherwise, they are just informal drawings, which may
help to explain our intentions to persons who will implement
it but the actual design work must be then done in code by
programmers.

We take another aspect of a state machine model to show the depen-
dencies of the behavior model on the execution model: let us imagine
that for some reason we would like to have a transition to the same state.
The reason for such requirement might be to have a chance to repeat the
Entry Action. It will work only in some execution systems that assume
consuming the condition (event) when it is once used. The usefulness of
such an execution environment may be justified, e.g., for a string analysis,
but in general it is rather suspicious. If the transition condition is, for
example, a value of a digital input, it would be rather strange to pretend
that the value can be only once used and then disappears.

In this book we describe various features of the execution model that
we assume should be used. This model is not the only one possible, but
it is the result of several years of studies, discussions, and experiments. It
permits the design of software that is secure and deterministic in its behavior.

Coding as a Universal Solution

The discussed data and control flow separation does not seem to fit well
into the concept of OOP, which is the governing paradigm in present-
day software development methods. In OOP, objects are the basic elements
used for programming. An object should contain both: data and behavior.
This view of software development makes it difficult to build software

© 2006 by Taylor & Francis Group, LLC

102 ®m Modeling Software with Finite State Machines

according to Figure 6.1. The misinterpretation of the idea of data and
control flow separation stems from the confusion between the application
requirements and program implementation. The application requirements
define behavior, which can be specified in terms of state machine(s). The
implementation of the application requirements is a program that may be
written according to OOP rules. We should not mix these two completely
different abstraction levels. Of course, if we believe that OOP is a remedy
for all problems, we are stuck with it. This book tries to show that an
application and its software implementation are two different things —
we may use different concepts for their specification.

There are several coding schemes for a state machine. Simple solutions
as used in the C language are based on two switches: one for state,
another for inputs. Hence, if we deal with a Mealy model (only Input
Actions) we could write something like:

switch (state)

{

case State_O0:
InputAction_0(input);

break;

case State_N:
InputAction_N(input);
break;

default:
Error_UnexpectedState () ;
break;

}

ChangeState(state, input);

where the InputAction_i () function contains a switch on input, e.g.:

switch (input)

{

case Input_0:
DoAction_0;

break;
case Input_M:
DoAction_M;

break;

© 2006 by Taylor & Francis Group, LLC

Software Specific ® 103

default:
Error_UnexpectedInput () ;
break;

}

The ChangeState () function changes the state checking the transition
conditions for a given state.
For a Moore model we could write something like:

next_state = ChangeState(state, input);
If (next_state != state)
Do_EntryAction(next_state);
where the Do_EntryAction () function contains a switch on state, e.g.:
switch (state)
{
case State_O0:
EntryAction_0;

break;

case State_M:
EntryAction_K;

break;

default:
Error_UnexpectedState () ;
break;

}

In this case, the state is changed first and then the (state dependent) Entry
Actions are performed.

Table-Driven Software to Reduce Coding Effort

If state changes can be expressed by a transition matrix, the ChangeS-
tateO function can be just a software table as described, e.g., by Wagner.?
This solution is used for “parsing” state machines, such as the vending
machine counter discussed in Chapter 4 (Figure 4.3) whose transitions
are described in Table 4.1.

Using C++ constructs the software transition table for the vending
machine counter would look like this (where coinAny means the situation
which should not happen: a coin other than 5 or 10 cents)

© 2006 by Taylor & Francis Group, LLC

104 ®m Modeling Software with Finite State Machines

enum eState

{

Start, Five, Ten, Fifteen, Twenty, Stop

}:

enum eInput

{

coinb5, coinl0O, coinAny

Y

eState transition[Stop+1][coinAny+1] =

{7/ coinb” “coinlOQ” “coinAny”
/*Start*/ {Five, Ten, Start},
/*Five*/ {Ten, Fifteen, Five},
/*Ten*/ {Fifteen, Twenty, Ten},
/*Fifteen*/ {Twenty, Stop, Fifteen},
/*Twenty*/ {Stop, Twenty, Twenty},
/*Stop*/ {Stop, Stop, Stop}

Y

Each row of the table transition contains “70” states for a given state and
the input. Thus, the assignment

nextState = transition[state] [coin];
delivers the next state. For instance,
transition[Ten] [coinlO0]

delivers the value Twenty.

This example shows that in simple cases at least the state transitions
can be shown explicitly in a table, which is more comprehensible than
a coded alternative.

The complete code of this example (VendingMachine) is in Appendix J
Vending Machine Counter project. There we show a solution for a State-
WORKS execution environment — it will deviate from the simplified view
presented in this chapter. The example in this chapter was presented to
introduce the presentation means and we have used a simplified specifi-
cation for that purpose.

Limits of the Coded Solutions

The example above also shows the weak points and limitations of a coded
solution. Let us take the state transition table, which if applicable makes

© 2006 by Taylor & Francis Group, LLC

Software Specific ® 105

the behavior of the state machine comprehensible and easy to modify.
The transition table can be used only if the inputs are in a form of ordinal
values, typically enumerations or integers. Transition expressions required
in practice are as a rule more complex, containing several input conditions
linked with Boolean operators. These operators cannot be included in the
table* effectively limiting table usage to a very narrow class of state
machines.

There are several other proposals for state machine implementation.
Using an OOP approach we may define a state machine as an object that
contains both data and the behavior. This theoretically obvious approach
is not effective and useful in practice. This approach is also supported by
corresponding patterns. To hide the behavior in the object as in a kind
of black box may sound interesting but in practice the opposite is
expected. We still have the problem of how to implement the behavior
in the object. The problem becomes more complicated if we think about
a system of many state machines. To have a bunch of objects communi-
cating chaotically among themselves cannot produce a reliably working
system, comprehensible and easy to maintain.

Recommended Reading

1. Carroll, J., Long, D., Theory of Finite Automata with an Introduction to
Formal Languages. Englewood Cliffs, NJ: Prentice-Hall, 1989.

2. Wagner, F., The Virtual Finite State Machine: Executable Control Flow
Specification. Giessen: Rosa Fischer-Low Verlag, 1994.

* Repeating the “70” state is a work-around for the OR operator, but there is no
known trick for the AND operator.

© 2006 by Taylor & Francis Group, LLC

Chapter 7

Misunderstandings
about FSM

Historical Background

The concept of the finite state machine, although born over 50 years ago,
is still not well understood or interpreted in the software domain, despite
its wide application in hardware design. Misunderstandings about state
machines have produced several stories and half-truths: e.g., the state
explosion phenomenon, which discourages the usage of this very useful
concept. The concept of the state machine has been several times (unin-
tentionally?) reinvented for software.

A state machine is the oldest-known formal model for sequential
behavior, i.e., behavior that cannot be defined by the knowledge of inputs
only, but depends on the history of the inputs. The ideas of automaton
and states can be found in publications that appeared 50 to 60 years ago.
Some examples are cited in the references — Huffman,' Mealy,?> Moore,3>
Gill,* Kohavi,’and Hopcroft et al.” In the years since, the name state
machine has evolved. In the beginning it was an automaton or a sequential
circuit (remember, it was used for hardware design). But the definition
stayed, of course, as we defined it already in the previous chapter. The
forms of the definition may differ from the graphical one as we use it in
this book to purely mathematical as we have shown in the previous
chapter.

We may use any form of the finite state machine definition that best
suits our purpose. Independently of the form used, the essence of the

107

© 2006 by Taylor & Francis Group, LLC

108 ®m Modeling Software with Finite State Machines

definition is always the same: it is a model that uses a state to store the
past history (changes of inputs).

A state machine is not a heuristic model, which could be interpreted
in many ways, at the whim of the user, but rather has a good theoretical
basis. This means that it is relatively easy to invent verification methods
to prove the correctness of a system built as a system of state machines.
Probably, the state machine is the only known model (of the many used
in software development) that really gives a designer a chance to verify
a control system, and thus, it is the only way to produce reliable control
software.

A state machine is intuitively understandable and therefore acceptable
to many designers. There are some application domains where the usage
of state machines seems natural; telecommunication and industrial control
systems are primary examples. Because control tasks are present in all
software, state machine models could be used in most software developed
nowadays. There are no reasons of principle to avoid the use of state
machines. On the other hand, there are no reasonable justifications for
believing that to code the behavior of the control system without any
formal model could produce better software than a system based on state
machines.

The state machine concept is not the only common model. There are
other models that have been invented, often inspired by the ideas of states
and flowcharts: e.g., the models used in PLC languages. The central idea
of all these control models is a state (sometimes renamed). Whether the
derived method really implies an improved state machine can be ques-
tioned: the reasons for invention of a new method are not always of a
technical nature. Anyway, it seems that the state machine remains the
preferred model for describing the behavior of control systems.

Software Systems

A state machine was introduced for hardware design and resulted in better
organized and understandable hardware projects (in the days when there
was no software).

Programming started some time later as a more or less ad hoc activity
based on human mental abilities to solve puzzles, rather than on any
methods. The problems in software (as programming came to be called)
were growing very fast. In addition, the limited number of brilliant pro-
grammers required software to be treated as a normal engineering activity
with some organization, methods, supervisions, budgets, etc. Among others,
the state machine concept started to be used in software design. The

© 2006 by Taylor & Francis Group, LLC

Misunderstandings about FSM ®m 109

integration of a state machine model into software resulted in some new
ideas or reinventions.

Some extensions and changes in the state machine terminology have
taken place. Especially, the outputs are in software state machines called
actions and several types of actions have been defined: entry, exit, input,
and transition actions. These changes are welcome and useful extensions,
reflecting additional possibilities offered by software implementation. They
do not have any relevant influence on the state machine model. They
have increased the difficulty of graphical representation of state machines.

Not all ideas have been justified and they may have been caused by
missing knowledge. Whatever the reasons were, we should not accept
things that do not make sense and often are indeed against common
sense. Two typical software issues had a strong influence on state machine
misinterpretations and implementations: the “Event-Driven” concept and
the “Parser” problem.

Event-Driven Model

Software systems are often event driven. This concept means that the
software, in principle, does nothing while waiting for an event. If the
event occurs, the software reacts to it and returns to the waiting state.
The concept is in opposition to polling systems that continuously check
inputs. Conceptually, from the state machine point of view the way of
delivering inputs (events or polling) is irrelevant. If the software control
system uses a state machine model to describe the system behavior, its
model should not be determined by the input acquisition system but rather
by the application requirements. Unfortunately, we find in some software
implementations of state machines a purely event-driven state machine
model, which implies that the state machine has to store not only the
history of state changes but also the actual present value of inputs.

Parser Problem

This extreme interpretation of a state machine is at least partly explained
by the background of some programmers who encountered state machines
as a model for Parser behavior. In its basic type a Parser* has one set of

* Modern parsers use more sophisticated tools and methods for string analyzing,
especially regular expressions allowing whole words to be filtered from strings. We
do not discuss here parsers, and the basic idea of character parsing is taken from
textbooks.

© 2006 by Taylor & Francis Group, LLC

110 ®m Modeling Software with Finite State Machines

Figure 7.1 The state machine model of a parsing process.

characters as input and detects words in the incoming string. If the Parser
has to detect, e.g., a word “while” its specification using a state machine
leads to a state machine with few states shown in the state transition
diagram (Figure 7.1).

Here, the state really represents the history of (including the present
value of) the (single) input. This is correct but such a concept is in practice
limited to the parser application. There is no concept of time in this
application, and the state machine does not need to know about inputs
other than the character stream it is processing. It is no use transferring
this idea to other applications as there is no reason to store the present
input values in the state because they are explicitly available anyway. The
only “reason” would be to make things more complex than they are. We
could also mention that a Parser model does not need a concept of
actions — it does not do anything; it shows with its state only whether
a certain sequence of events has occurred (see discussion in the previous
chapter). Although this form of state machine has undeniable usefulness,
for example, in lexical analysis for compilers, it has led to essential
misconceptions that have retarded progress in the wider software engi-
neering field.

State Explosion

Here we come to the next misunderstanding found in discussions about
state machines: the state explosion phenomenon. This phenomenon is
directly derived from the above-discussed problem of pure event-driven
models of state machines. Of course, if we start to store in the state the
present value of inputs, we get the state explosion problem. In this model
the number of states increases enormously as each truly required state
path must be repeated for all possible input values.

© 2006 by Taylor & Francis Group, LLC

Misunderstandings about FSM ®m 111

a_false

Figure 7.2 Example: the state transition diagram with 3 states.

For instance, let us compare two solutions of a rather trivial example
with the inputs: a, b, and ¢ shown in Figure 7.2. The state machine should
always set the output Y to true if all inputs are true and the input a
has been true before b. The first solution uses a state machine model
treating the inputs as they are: values known at any time. The state can
have values: Off, aFirst, and On. The transition conditions are indicated
directly in the state transition diagram. The combinational part of the state
machine that determines the output Y is a function of an input (¢) and
the state and reads:

Y = On & c

Now consider the equivalent state transition diagram for a purely event-
driven version (Figure 7.3). It would require 8 states and very many

Figure 7.3 Example: the state transition diagram with 8 states.

© 2006 by Taylor & Francis Group, LLC

112 m Modeling Software with Finite State Machines

a_false

a_false

b_false
o -

Figure 7.4 Example: the state transition diagram with 5 states.

transitions. The comprehensiveness of this state machine is of course
essentially lower than the first one.

The approach to the event-driven version as presented in Figure 7.3
is of course too dogmatic: it is only to illustrate the idea of storing each
event in a state. If we make a more pragmatic design ignoring events b
and c in the state Off, we still get a state diagram with 5 states shown in
Figure 7.4.

This solution could be acceptable as we do not consider 5 (or even
8) states as a state explosion yet (but why use a solution that is obviously
more complex than the 3-states automaton?). Imagine the consequences
for a more realistic state machine with 6 or more inputs. Any relatively
simple problem explodes immediately. And if we want to kill state machine
usage completely, make some calculation with 100 or more inputs “prov-
ing” that state machines are useless for any practical application.

In Event-driven software in Chapter 6 we have seen another example
where the event-driven idea requires additional states making the solution
more complex without any visible advantages.

The state explosion topic is an example of an artificially created
problem that works against usage of state machines.

Signal Lifetime

We round off the topic of event-driven and parser models with a discussion
about lifetime (or duration) of signals. As we have mentioned before,
when analyzing a string for proving some theorems the problem of time
does not exist (the string is present and it is to be parsed). In addition,
when parsing is done, the string is treated as “consumed.”

© 2006 by Taylor & Francis Group, LLC

Misunderstandings about FSM ®m 113

In other application domains we cannot consider the input signals in
the same manner. Some of them may be consumed after being processed
but most of them have a well-defined lifetime. In general, we can distin-
guish three categories of inputs:

B One-time signal
B Static signal
B Limited duration signal

A one-time signal is treated as a true event and is considered “consumed”
after being used. Except in the parser we find few examples of such signals.
A static signal always has a value. Most inputs are of that sort. For
instance, a digital input always has a value (true, false or HIGH, LOW).
In a more sophisticated implementation, a digital signal may be also
UNKNOWN, which might be treated as a third (control) value.

A limited duration signal has a defined lifetime; i.e.. after some time
its value loses its validity. A good example here is a command: its value,
e.g., Cmd_Start, may be replaced some time later with another com-
mand, e.g., Cmd_Stop. In such a case it is treated exactly as a static
signal. But in contrast to the value of, e.g., a digital signal the value
Cmd_Start may lose its validity before another value replaces it. For
instance, a state machine has started a device, and due to some malfunc-
tions in the system the state machine returns to the initial state. It is
obvious that the value Cmd_Start must be treated in such cases as
invalid; otherwise, the state machine will try to start the device again,
which may lead to a loop, which was not the designer’s intention. Control
software has to provide means for handling the duration of such signals.

State Machine Size

Let us now present the last difficulty: the size of a state machine. Sometimes
we read remarks like: a computer is a state machine but the specification
of the computer state machine would require millions (maybe billions) of
states. Therefore, it would be useless to try to realize a computer using
a state machine model. This argument has approximately the same value
as a statement like: to write an operating system requires millions of lines
of code. Because a programmer cannot see and conquer so many lines
it is impossible to program an operating system.

The method of solving complex problems is known: partitioning into
smaller units with a good interface among these units. Very often, there
is nobody who knows well all parts of a large software system, which
was written by several individuals, but the system is in some way com-
prehensible and conquerable.

© 2006 by Taylor & Francis Group, LLC

114 m Modeling Software with Finite State Machines

This principle applied to state machine specification means that a
complex control problem should be partitioned among several state
machines, with the entire system of state machines equivalent to a large,
single state machine. Note that a pure theoretical calculation shows that,
e.g., 10 state machines each having 100 states represents 100 x 100 x ... X
100 = 100! states. In addition, building of complex control systems does
not mean that we start with a complex state machine and then try to
partition it. Rather, we specify several state machines for specific tasks
and then link them together.

Interface between State Machines

Hence, we arrive at the second topic relating to systems of state machines —
the interface among the state machines. Very often we see systems of
state machines, which are built as separate units with some communica-
tions channel between them which allow any state machine to exchange
messages with any other state machine. This is a naive concept based on
a programmers’ favorite structure: to have a system where each part can
send a message to another part. The astonishing fact is that we have
known for at least 30 years that this kind of solution leads to deadlocks
and similar timing problems. We have even invented nice models like
Petri nets to illustrate these difficulties. Anyway, sometimes we forget the
basic rules.

To make another comparison — building a system of communicating
state machines without any restriction on the communication — is remi-
niscent of programming with “go to”. Sending unconstrained messages to
another state machine is like a jump to another program part (Dijkstra®
showed us 30 years ago the consequences of such “programming style”).
Exactly the same problem is generated by unconstrained systems of state
machines.

A Flowchart Is Not a State Machine

Flowchart

There are several methods, models, and tools used to describe control
systems. Some examples are state machines, Petri nets, Statecharts, flow-
charts. Although they describe the same problems, they are not the same
thing. Because the state machines are the oldest concept, all methods
describing sequential systems are sometimes categorized as equivalent to
state machines. This is an obvious misunderstanding, which we discuss
further, discussing a flowchart as a counterpart of a state machine.

© 2006 by Taylor & Francis Group, LLC

Misunderstandings about FSM m 115

b)

a)
(o)

Process

End l

Figure 7.5 Flowchart symbols: (a) Start and End; (b) activity; (c) decision;
(d) place marker (to show links between two places of a flowchart).

A flowchart is a visual means to show a sequence of some activities.
It shows the sequence depending on conditions. Because the wording:
sequence, activities, and dependencies remind one of similar terms in
state machines, flowcharts are sometimes confused with state machines.
In other words, some people do not see the true difference between the
two. The confusion starts with the missing understanding of a state, which
is not known in a flowchart. To make the matter clear let us first show
a simple example.

Flowcharts use a few basic symbols shown in Figure 7.5. Those symbols
will suffice for our example as they are enough for most applications.
Interestingly, the graphical tool most often used to produce a flowchart
offers 26 symbols plus 44 borders and title types (and probably also the
possibility to invent a user’s own specific symbols, which I have not
investigated). It is an interesting example of fascination with graphics. We
can understand a graphical representation if we understand the symbol
used. Who is able to know the meaning of 26 symbols supported by 44
borders and title types? Nobody, therefore we use only a part of them. If
a reader of our drawing knows another subset of the symbols, the reader
will not understand our drawing. More does not always mean better.

Example

Let us come to our example. We would like to make a flowchart describing
the Security lamp control as discussed earlier in Event-Driven Software in
Chapter 6, where the details are shown in Figure 6.2 through Figure 6.4.
For a reminder we have repeated the state transition diagram in Figure 7.0.

A flowchart that describes the lamp control is shown in Figure 7.7.
The flowchart shows step by step the control sequence: the tested con-
dition and the task to be done depending on the test result. We assume
that the sequence has to be repeated endlessly: that is, on reaching the

© 2006 by Taylor & Francis Group, LLC

116 ®m Modeling Software with Finite State Machines

Movement_Detected & Dark

Figure 7.6 Security lamp: the state transition diagram.

Begin)«
@ Yes
No
@ No—»,
Yes
v
Lamp On
Start timer
»<_ Light? Yes—»|
No
Start timer {«Yes @
No
< No imeout? Yes—»
A4
Lamp Off
Stop timer
End

Figure 7.7 The flowchart of the Security lamp control.

end we have to start it again from the Begin (therefore we do without
the End symbol). Although a flowchart is intended for sequences that
have clear beginnings and ends, nothing can stop us from using it as we

© 2006 by Taylor & Francis Group, LLC

Misunderstandings about FSM m 117

Begin

<
A

timRun=false

imeout? Yes

A4

<\4,
«

No

A 4

Light? Yes

No @ No»|
Yes

v Y

Lamp On Yes Lamp Off | |
Start timer Stop timer

®

No

¢

timRun=true

A

Figure 7.8 Flowchart of the Security lamp control: solution with a flag.

have done in our example. Imagine that we do not like the double
existence of “Light?” and “Move?” decision symbols. In other words, we
would like to have the flowchart more compact.

If we want to merge the checks, we have to distinguish between the
beginning (when the lamp is off) and the situation when the lamp is
already on. Then we could decide about time-out checks and actions to
be done; in other words we need a concept of a state. We could do it
introducing a variable that will represent a state, but then it is not a
flowchart anymore but an invention with the same (dubious) value as
markers and flags in coded control systems. But we do it and the result
is shown in Figure 7.8. We assumed in the second solution that switching
on an already lit lamp is not a problem and we use a flag timRun to
store the information that the lamp is on. If we could get the information
from the timer, it would be okay, but if it is not possible we use a flag,
and this is a problem. Now imagine that we want to describe not this
trivial security lamp problem but some more complex control task where
we need several flags (hidden states). Then we end with tens or hundreds
of flags and we lose our time (and company money) in endless investi-
gations of why certain flags do or do not have a given value. A flowchart

© 2006 by Taylor & Francis Group, LLC

118 ®m Modeling Software with Finite State Machines

reflects a common practice in coding where flags store information about
the past changes of inputs and used resources, such as timers.

In a state machine a state represents the information about the past;
if the state machine is, e.g., in a state On, we have complete knowledge
about the situation: the lamp is on and the timer runs. If we look at a
certain point in a flowchart the situation is not clearly defined — we have
to know the state of all flags to determine the situation; the flags corre-
spond effectively to a coded state concept.

What Is a Flowchart For?

Flowcharts were initially introduced to describe program flow. An assem-
bler program was really difficult to read, even if well commented. Hence,
a flowchart presentation was a help. Even for high-level programming
languages it may make sense to describe some program parts in certain
situations by means of flowcharts. But also in that case we have to note
that they are not a means to describe a program completely. They are a
way of getting started, or for documentation, or to explain some concept
to students. We cannot expect that a programmer draws a fully detailed
flowchart of a major program before coding it, or vice versa, that he
prepares a flowchart of a coded program. We are speaking, of course,
about software consisting of more than one or two pages of code. We
may do it for a procedure but can we imagine thousands of pages of
flowchart with cross-references between pages? A flowchart belongs to
innumerable means that fake the reality: as if we can really do something
serious with it. In fact, many things in software seem to be treated in that
way: to have some value for special occasions (presentations), but in the
end only code counts.

Obviously a flowchart is a convenient tool. Everybody understands it
without any training and it can be drawn without any formal restriction.
In other words it is a good tool for informal discussions. It is an illusion
to expect more. Of course, there are groups that exploit the concept over
any imaginable extent. The procedure is always the same: we intend to
use a flowchart for some relatively simple task and after a while we have
an uncontrollable monster and nobody knows how to escape from it.

We tend to overuse things that we have learned. We observe that
phenomenon when using a programming language. After some time, when
we have become highly skilled experts in the programming language we
can overuse it. On the one hand we can be proud of our intelligence but
on the other hand there can be drawbacks: the constructs of a language
are used in a way that was never intended. A good example is the C

© 2006 by Taylor & Francis Group, LLC

Misunderstandings about FSM ®m 119

programming language, which is held responsible for some of the worst
software catastrophes. The problem is that the inventors never imagined
that C would be used to write such large programs in the way we do.
The careless use of pointers that point “unexpectedly” somewhere strange
is a primary example.

The flowchart has experienced a similar effect: it is a good tool for
certain purposes but it does not mean that it is always ideal for describing
a complex control system. And if we use it for that purpose (because we
know it), it does not mean that a flowchart is suddenly equivalent to a
finite state machine. In fact, we know that flowcharts and state machines
are very different things, but we sometimes have difficulty explaining our
feeling.

The flowchart concept was a very fruitful idea and can be used in
several situations adjusted to specific needs. Although it has lost its
common use in code presentations, where it has been replaced by a
Program Structure Diagram (called also NS diagram from the authors’
names: Nassi—-Shneidermann), it obviously influences other methods. For
instance, the Specification and Design Language (SDL) is based on a state
machine concept but each state is actually described by a flowchart.
Another example is the Unified Modeling Language (UML) where the
flowchart is used under the name Activity Diagram.

Sometimes diagrams are drawn that are combinations of flowcharts,
Petri nets, and state transition diagrams — the IEC 61131-3 Sequential
Flow Chart is typical in this respect — and these can be very helpful in
documenting intentions, but such unholy combinations can be dangerous
to use as they discard any theoretical rigor of their various concepts. They
should only be employed for quite simple projects: never for a project
that might need to employ tens or more finite state machines in a system.

In summary, a flowchart can be used to describe a sequence of
conditional activities. For certain tasks it is a good tool, e.g., to present a
product line, an organization, an intention, in general something that we
want to do and want to explain to other persons. It is less well qualified
to show continuously running sequential activities. The missing concept
of state must then be replaced by explicit realization of all imaginable
control paths, which is no use except for simple examples in textbooks.
By introducing flags to store the past, a flowchart becomes more compact
but loses its simplicity and opens the door to dubious inventions, which
do more harm than good. Hence, descriptions of control problems with
flowcharts are possible but the results are much too complex. And, of
course, a flowchart describing a sequence of activities is still a flowchart
and not a state machine.

© 2006 by Taylor & Francis Group, LLC

120 ®m Modeling Software with Finite State Machines

Inventions

After the critical analysis of some incorrect ideas about the state machine
concept in software control systems, let us mention some positive devel-
opments. The most interesting, true invention has been the introduction
of the Statecharts concept. Statecharts have extended the state machine
model by elements that make it a completely different modeling tool. The
most important element is the view of sub-states through a state. This
means that, by definition, a design begins with a single state, which can
be expanded into several sub-states, with each of them again expanded
into further sub-states. Hence, instead of dealing with several state
machines for a complex system we always stay in one state machine
expanding the sub-states. To implement this idea Statecharts introduces
several additional concepts, some of them quite sophisticated: several state
entries (enter-by-history H, conditional C, selection S), several state exits
(split, merging by condition, independent), activities and actions, special
actions (clear history, internal actions), ORing states, ANDind states, and
others. Thus, Statecharts differ from state machines, not only by using
rounded rectangles for states instead of circles, but as a truly different
way of specifying the behavior of sequential systems.

The Statecharts concept originated in attempts to design a complex
avionics system and to define its behavior as a finite state machine. In
the course of this work, the state machine transition diagram became
remarkably complex, covering a complete room wall, and those involved
decided that they had “proved” that the classical transition diagram was
impossible to work with! Tragically, they took the wrong direction, having
missed the possibility of building systems out of subsystems, or compo-
nents, so that each was in itself small enough to be manageable. This
was perhaps the result of an attempt to extend top-down system design
practices, commendable in themselves, to the implementation phase. It
seems strange that the lessons of “structured programming” of the previous
two decades were forgotten in this instance.

We do not want to discuss Statecharts any further here. We mention
it only as an example of an interesting concept that introduces a new
model for specifying behavior of a control system. Unfortunately, State-
charts is sometimes considered as a replacement for the state machine
concept. These assumptions have either a commercial aspect (UML apos-
tles try to kill anything that does not fit into their world) or just ignorance.
There is no direct translation between a system of state machines and a
Statecharts representation of a control system. Statecharts is a new model
of control systems, which is used in UML for behavior specification and
is not too helpful for creating the software.

© 2006 by Taylor & Francis Group, LLC

Misunderstandings about FSM m 121

UML also fell into the “event trap” by assuming a model in which
input events that are not immediately useful are discarded, leading to state
explosion and partly remedied by the use of “guards,” which are inputs
governing transitions and actions: piling complexity on complexity and
reducing the chance of automatically generating software from totally
complete and soundly based models.

We should also like to mention some reinventions of state machines
that are true “wheel reinventions” caused probably by their author’s
ignorance. The authors of this book have seen at least three proposals of
this kind, the last where the state machine is called a “transition network.”
Other elements of a state machine — states and actions — have not been
renamed in that reinvention.

Conclusions

We discussed some misunderstandings and misinterpretations that have
come into being while applying the concept of a state machine to software
problems: the pure “event-driven” state machine model resulting from the
“parser” solution, the states explosion phenomenon, and unconstrained
systems of state machines. The problems have emerged while some people
are trying to “reinvent the wheel” defining anew but incorrectly and
unnecessarily the well-known concept of state machines. This chapter is
based on a paper written by Wagner and Wolstenholme.?

Continuing, we try to show that the well-known concept of a
state machine allows us to formulate a way of designing control
systems that do not have state explosion or other disastrous
timing and synchronization problems encountered in many
systems that use self-invented state machine models. We also
show how to eliminate large amounts of complex coding, by
use of formal, “Platform-Independent Models” directly in the
runtime systems, so as to avoid even automatic code generation.

In our view the ability to create large-scale systems of correctly man-
aged finite state machines working in a well-organized fashion will be of
major significance.

© 2006 by Taylor & Francis Group, LLC

122 ®m Modeling Software with Finite State Machines

Recommended Reading

1.

Huffman, D. A., “The synthesis of sequential switching circuits,” Journal
of the Franklin Institute, 257 (1954): 161-90; (April 1954): 275-303.
Reprinted in Moore.

Mealy, G. H., “A method of synthesizing sequential circuits,” Bell System
Technical Journal 34 (September, 1955): 1054—1079.

Moore, E. F.,, ed., “Gedanken-experiments on sequential circuits,” pp. 129-53,
in Automata Studies, Annals of Mathematical Studies, no. 34, Princeton:
Princeton University Press, 1956.

Gill, A., Introduction to the Theory of Finite-state Machines. New York:
McGraw-Hill, 1962.

Moore, E. F., ed., Sequential Machines: Selected Papers. Reading, MA:
Addison-Wesley, 1964.

Kohavi, Z., Switching and Finite Automata Theory. New York: McGraw-
Hill, 1970.

Hopcroft, J. E., Ullman, J. D., Introduction to Automata Theory, Languages
and Computation. Reading, MA: Addison-Wesley, 1979.

Dijkstra, E. W., “GOTO considered harmful,” letter, 1966.

Wagner, F., Wolstenholme, P., “Misunderstandings about state machines,”
IEE Comput. Control Eng. (August-September 2004).

© 2006 by Taylor & Francis Group, LLC

Chapter 8

Designing a State
Machine

A State Machine Models Behavior

A state machine is a model of behavior; in general it models a control
system that is to supervise an application. This definition means that a
state machine is a decision machine that generates signals representing
actions: do this or do that. A state machine is stimulated by inputs that
represent the accessible knowledge about the controlled application.

Any control problem may have several solutions. Exactly the same
control can be achieved by several models of a state machine. Except in
trivial cases it is difficult or impossible to prove that one state machine
is better than another (what criteria might we use?). Therefore, the dom-
inating factors in discussions about state machine solutions are such things
as simplicity, comprehension, maintainability, modularity. A proper design
philosophy is the basis for a good solution and allows achieving of these
features. Under the title “design philosophy” we understand some rules
that a state machine has to fulfill, e.g., interfacing with the outside world
(acknowledgment principle), complexity (straightforward or tricky func-
tioning), actions used, completeness of the design. Human factors play,
of course, an important role: a given state machine reflects the ability of
the designer to translate an informal control specification into a formal
logical model in a form of a state machine.

123

© 2006 by Taylor & Francis Group, LLC

124 m Modeling Software with Finite State Machines

Mealy or Moore Models

Limiting at first the considerations to Entry and Input Actions we are
confronted with a decision of which state machine model to use: Mealy
or Moore? This is not an academic question because the choice determines
our way of thinking while designing the control.

If we prefer to use the Moore model, we tend to orient our thinking
strongly on the state. In other words the states dominate our consider-
ations. We think first of all:

If the state machine goes to the state X it does something (Entry
Action) and waits in this state for a reaction to this action.

In this way of designing, a state change is a prerequisite of doing
something (of course, the state change is caused by an input change). As
a consequence state machines designed according to the Moore model
require, in general, more states than others.

If we prefer to use the Mealy model we tend to orient our thinking
on the inputs. In other words the inputs dominate our considerations. We
think first of all:

If the input changes the state machine does something (Input
Action) and maybe changes a state.

In this way of designing an input change is a prerequisite for doing
something, but not necessarily changing a state. The functioning of the
state machine is hazier: a link between an input and a state change is
not so clear.

At a first glance, the Mealy model seems to be more attractive: the
state machine changes a state only if absolutely necessary, handling
situations that do not require state changes in the present state. This is
not always correct; consider the following example. Let’s imagine a state
Waiting (Figure 8.1), which should be guarded by a time-out (not to be
stuck there forever). The state can be reached from several states: Statel,
State2, State3. Using a Mealy model we have to start a timer in all states
that lead to the state Waiting. A more elegant solution is achieved using
a Moore model where the timer will be started as an Entry Action in the
state Waiting. In the Moore model the meaning of the timer is explicitly
shown: the timer is started in the state Waiting to guard the state.

In Figure 8.1 the Input Action (D) in states Statel, State2 and State3 is
StartTimer (see also transition matrix in Table 8.1).

This example shows that the answer to the question “which model is
better” is rather subjective, and especially that a term like “elegant” is not

© 2006 by Taylor & Francis Group, LLC

Designing a State Machine ® 125

Figure 8.1 Starting a timer in a Mealy model.

Table 8.1 Starting a Timer in a Mealy Model:
Transition Matrix

To | ... Waiting
From
Statel | ... | conditionl/StartTimer
State2 | ... | condition2/StartTimer
State3 | ... | condition3/StartTimer

very precise. Other arguments such as number of states are also not
convincing. This point has no great value for a software implementation
(a state is just a variable — an integer). It may have some value considering
ease of comprehension but experience affirms that a state machine with
many, but simple states may be easier to understand than a state machine
with fewer, but complex states.

We conclude that the best results are achieved by combining both
models: Mealy and Moore. For a hardware implementation this kind of
decision is not so simple because it may mean additional expense. For a
software implementation the choice of a state machine model has no
financial consequences — it influences only the design process.

© 2006 by Taylor & Francis Group, LLC

126 ®m Modeling Software with Finite State Machines

A combined Mealy/Moore model means that the important actions
strongly linked with a state should be specified as Entry Actions. A good
example of such an important action is the timer start in the above-
discussed state Waiting. Auxiliary actions that, as a rule, are not accom-
panied by a state transition should be realized as Input Actions. This rule
underlines the character of the actions: Entry Actions are state dependent,
Input Actions are input (and present state) dependent.

Actions (Entry, Input, Exit, Transition)

The classical models of a state machine as defined in Automata Theory
know only Entry and Input Actions. In practice, two other actions are
imaginable: Exit and Transition. The Exit Action is performed on leaving
a state. The Transition Action is a kind of Input Action but is bound to
a transition. The question is whether to use them. Also in this case the
answer is not quite straightforward. One may think that to have a variety
of different actions available makes a design more flexible. This may be
true but it does not necessarily mean that a state machine with all
imaginable action types will be better. Rather the opposite occurs. The
reason is that a design should be understandable, at the initial design
stage and also after a while. It should be understandable to be easily
modified. It should be understandable so that other persons quickly grasp
its functioning. Ease of comprehension can be achieved if the rules of
functioning are simple. Therefore, we advocate:

B The use of a Moore model, with Entry Actions, as the leading
behavioral path in the state machine.

B Input Actions should be triggered by input conditions that
do not cause state changes.

B Exit Actions should be reserved for auxiliary activities that
do not result in any reactions of the controlled application.
A good example could be here an action that stops a timer
when leaving a state.

B Transition Actions are in general superfluous as they do not
provide any essential advantages in comparison with other
actions. In practice, we do not distinguish between Input
and Transition Actions: if an Input Action is followed imme-
diately by a state change, it may be effectively a Transition
Action (but not necessarily, as we have shown in a discus-
sion elsewhere in State transition table in Chapter 4).

© 2006 by Taylor & Francis Group, LLC

Designing a State Machine m 127

The above rules assume that it is better to operate with fewer action types.
In most cases there are no convincing arguments for using all imaginable
forms of action. In rare cases the use of more action types may bring
some advantages.

Defining States

In a state machine design the choice of the states is probably the most
important decision. Theoretically, we should use only those states that
are required for a given control (sequential) problem. Automata Theory
offers methods that help find an optimal, sometimes minimal set of states
required for a given control task. Unfortunately, these formal methods
find little application in practice. The first reason is that they are limited,
in principle, to the Moore model. The other reason is that the calculation
costs become too large for any non-trivial problem. In other words, the
Automata Theory methods are good for explaining some rules and ideas
but have very limited practical use.

In practice, a designer is responsible for definition of the states. His
appreciation of a control problem and his experience dictate to him what
states are needed. We should also not forget that — in contrast to hardware
implementations — size does not influence the cost of a state machine
in software. Therefore, we tend not to care about the number of states.
Of course, we should not invent states that are not necessary. We should
realize any combinational (state independent) functions without creating
artificial states. But we should also not forget that the definition of a state
is not so sharp in a software state machine as in classical Automata Theory.
A thorough analysis of existing software state machines shows that as a
rule state machines have too many states. We observe often that the nature
of the sequential problem requires fewer states than are typically used.
In most cases we have to accept this situation as a compromise between
pure science and reality; in reality we have no incentive to spend time
to tune the solution any further.

Acknowledgment Principle (Busy and Done States)

A state machine seldom operates as a single, independent control system.
Typically, the state machine communicates with the controlled application
and is also a part of a large system of communicating state machines.
These dependencies among state machines and controlled application
strongly influence the definitions of states. The dependency defined below

© 2006 by Taylor & Francis Group, LLC

128 m Modeling Software with Finite State Machines

4
Closed

1

Error Valve_CannotOpen Opening Valve_Opened

E:

Figure 8.2 Using valve control feedback signal in the Slave state machine.

is known as an acknowledgment principle; this is the most important
design rule related to the choice of states.

Let us analyze a situation where the state machine Slave performs an
action that results in setting an output signal, e.g., opening a valve. If the
valve does not have a feedback signal that signals success or failure of
the opening action, we cannot do very much. We have to live with a less
reliable controller, believing that the action will be successful at any time
(of course, the control system will notice it by discovering some undesired
effect at a later stage). Unfortunately,

a controller cannot replace missing information about the sit-
uation in the controlled object.

If the valve generates feedback signals the controller should use them as
shown in Figure 8.2. Let us assume the state machine Slave is in the state
Closed and receives (e.g., from the Master state machine) the command
Cmd_Open. Entering the state Opening the state machine performs the
Entry Action Open_Valve. On receiving the positive acknowledgment
Valve_Opened the state machine changes its state to Open. On receiving
the failure signal Valve_CannotOpen the state machine goes to the state
Error. The valve may generate several different failure answers allowing
for more precise evaluation of the situation and corresponding reactions.

This arrangement has a genuine advantage: the state of this state
machine signals to the world (e.g., any other state machine) the situation.
Its controller (a Master state machine, see Figure 8.3), which has generated
the Cmd_Open signal (Entry Action in the state Busy), also follows the
acknowledgment principle. It sends the command from the state Busy

© 2006 by Taylor & Francis Group, LLC

Designing a State Machine m 129

Slave_in_Open

Figure 8.3 Using Slave feedback signal in the Master state machine.

and waits for the reaction of the Slave state machine. If the Slave state
machine goes to the state Open the master could change to the state Domne.

The acknowledgment principle is a very important rule that
should be observed when designing state machines.

Sometimes we forget it or want to save states and try to bypass it by using
some tricky solutions. The result is wasted time and an unreliable controller.

The Role of a Timer

A timer plays a very important role in any control application (see the
discussion in the previous chapter). The timer is started to count a time
period (time-out). When the timer expires it generates an overflow signal.
The common function of the timer is to ensure that a state machine does
not stay forever in a state.

If a state machine sends a signal to the controlled application we can
never be sure that the required action will be performed and acknowl-
edged. For instance, there is always a danger that the communication
breaks down for some reason (a cable is broken, a connector falls out,
a switch does not work, a data acquisition unit is not in operation).
Therefore, it is a “must” to guard states that should wait for acknowledg-
ments from the outside peripherals against this kind of deadlock.

Taking the Slave state machine discussed before (Figure 8.2) we have
to guard the state Opening with a timer. Therefore, in addition to the
Entry Action Open_Valve this state has another Entry Action:
Start_Timer.

Error States and Alarms

Handling of failure situations is a very important point in any control
system. In fact, the sunny-day-scenarios in a control system are very often

© 2006 by Taylor & Francis Group, LLC

130 ®m Modeling Software with Finite State Machines

not difficult, and to handle them we do not need any formal methods or
tools. The true difficulties arise if we want to properly handle all failure
situations. Taking into consideration the failure situations increases enor-
mously the difficulty of a control problem. Often the problem becomes
so complex that some people believe that any formal methods will fail
and they return to “commonsense” solutions (as if the problem might then
become simpler). To reduce the complexity we have to distinguish
between error states and alarm signals:

The error state is used to signal to the world that a failure
situation has occurred. The alarm signal is information about
what failure has occurred and it does not carry any control
value.

A simple failure situation has one error source, which means that the
alarm signal can be generated in the error state as an Entry Action. In a
complex failure situation there are many error sources, but often there is
no reason to use a separate state for each failure: in many cases, for the
sequential nature of the control process the failure situation is important
and not what kind of failure has occurred.

We are going to illustrate this issue continuing the discussion of the
state machine Slave (Figure 8.2). Let us assume that there are two possible
failures:

B The valve cannot be opened.
B No answer from the valve; detected by the timer.

Instead of introducing two error states we use only one state Error, which
is reached if in the state Opening either the input Valve_CannotOpen
or Ti_Over is true. In addition, the state Opening gets two Input Actions:

B ValveAlarm_ CannotOpen
triggered by the input Valve_CannotOpen
B ValveAlarm NoAnswer triggered by the input Ti_Over

We see that the full specification of the state machine becomes more and
more incomplete when using the state transition diagram alone (see Figure
8.4). To have all details in one presentation we use the state transition
table (we confine ourselves for the moment to the most interesting state:
Opening shown in Figure 8.5). Note that for completeness we use also
the action Stop_Timer on exiting the state.

© 2006 by Taylor & Francis Group, LLC

Designing a State Machine m 131

4
Closed

1

Error Valve_CannotOpen | Ti_Over Valve_Opened

Figure 8.4 Handling of the failure situation by the Slave state machine.

Opening Entry action Open_Valve
Start_Timer
eXit action Stop_Timer
Valve_CannotOpen ValveAlarm_CannotOpen
Ti_Over ValveAlarm_NoAnswer
Open Valve_Opened
Error Valve_CannotOpen |
Ti_Over

Figure 8.5 The state transition table of the state Opening.

Alarms generated by a state machine are information for the user
interface and logging files. The error states are control values for other
state machine(s) in the system: a Master of the Slave could decide to
switch off the valve by sending a corresponding command to the Slave.
This example shows the idea behind the tasks of Master and Slave, which
we discuss in detail in the next chapter: the Slave handles the details of
the failure situation generating (in this case) alarm signals specific for the
two failure sources. The Master does not care about the details of the
failure receiving only rough information about the failure (Error has
occurred) and switches off the Valve control.

Of course, we may handle another control problem where we need
to pass to the Master two distinct control values about failure situations
by using two error states: Error_CannotOpen and Error_NoAnswer. This
kind of decision depends on the requirements.

© 2006 by Taylor & Francis Group, LLC

132 ®m Modeling Software with Finite State Machines

Completeness of the Design

A state machine should perform the complete control function,
as regards behavior. This is the most important rule for state
machine design. If this rule is not kept, the final control system
that is partly realized by a state machine and partly elsewhere
in the code does not make sense. Unfortunately, coded imple-
mentations of control systems tend to ignore this issue, which
explains the limited usage of state machines in software. It is
probably better to know that the control is hidden in the code
instead of living with the illusion that a state machine does the
control when it actually covers only a part of the specification.
One of the worst sins is to operate with a global variable State,
which is then manipulated in any imaginable situation.

Note these rules:

B A state can be changed only in the state machine code.

B A state can be used to perform something only in the state
machine code.

B Inputs must not trigger actions bypassing the state machine
code (Outputs must not be conditional, being dependent
on inputs which bypass the state machine code).

Does this not sound obvious? In practice, we still find deviations, which
are justified by the argument that they make life easier. In reality, there
is only one reason: it seems so easy to code anything anywhere. If people
want to understand a control system ostensibly based on state machines,
they will study the specification or implementation of these state machines.
They cannot then know that the code contains some other functions that
corrupt the state machine.

Let us take the state Opening shown in Figure 8.5 and assume that
we have done the initial design without taking into consideration the
second failure source: no answer from the valve. Receiving the additional
requirement we just decide to produce the second alarm somewhere in
the input/output handler. After a while we notice that it also requires a
state change. So we complete the transition to state Error using the input
Ti_Over but leave the generation of the alarm ValveAlarm NoAnswer
outside the state machine. Isn’t this a typical way of making small changes
in the code? This might be considered as a relatively small corruption of
the state machine but even this small deviation should be avoided.

© 2006 by Taylor & Francis Group, LLC

Designing a State Machine ® 133

Hiding Control Information

We pray all the time that a specification of the behavior will
be comprehensible, i.e., open and clear. This recommendation
has limits, which result from the required completeness. In the
specification we “see” only the control relevant view of the object,
i.e., its control values and actions, while the reasons for their
changes may stay hidden.

We will see later that there are both possibilities and reasons to hide
control information, e.g., with too complex logical equations, to simplify
the appearance of the specification. Hiding some information may make
the specification table seem clearer, though it is an illusion — to under-
stand truly the condition we have to see the full definition anyway.

Example — Pedestrian Traffic Lights

The first example is a pedestrian traffic light control. Traffic light controllers
are simple systems with a minimal dependency on inputs. In the simplest
case a traffic light control is just a state generator (green—yellow—red)
without any input. We will take a slightly more complex system with one
input: a request button.

The Requirements

We assume that there are two sets of traffic lights. The first set for car
traffic contains three lamps: green, yellow, and red. The second set for
pedestrians contains two lamps: green and red. Normally, the green lamp
for the car traffic and the red lamp for pedestrians are on. The traffic light
pillar has a one shot request button. If the button is pushed, the car lights
should soon change to yellow. After a while (e.g., 2 seconds) the car
lights should change to red and the pedestrian lights to green. After some
time (e.g., 15 seconds) the pedestrian lights should change to red. After
a time period equal to the yellow phase, the car lights should change to
green restoring the normal situation. When the described sequence ter-
minates, there is a disabled phase (e.g., 40 seconds) before the sequence
can be repeated. If the button is pushed during the disabled phase, it
should be stored and the sequence should be carried out when the
disabled phase ceases. The requirements are illustrated with a timing
diagram in Figure 8.6. At start-up when the traffic light control is switched

© 2006 by Taylor & Francis Group, LLC

134 m Modeling Software with Finite State Machines

Button ‘ ‘

i 4

Car Iights | green yellow red | green yellow
F
Peﬁeﬁttrlan | red | green | red |
ignts

Figure 8.6 The timing diagram for pedestrian traffic light.

on, the car traffic light should be yellow for a while, switching then to
green. The pedestrian traffic lights should be switched to red from the
beginning.

I have formulated these requirements by watching traffic lights installed
on a road I have to cross during my daily walks. Other pedestrian traffic
lights may differ slightly from these requirements.

The Specification

First of all we have to define (input) control values and (output) actions.
The first input is obvious — it is the control value representing the
button; let us call it Di_Request.
A traffic light control uses several timers to measure the required time
period. In the discussed case, the state machine needs three timers:

B Ti_Yellow: to measure the car yellow period, and also used for a
corresponding red-red overlap period later in the cycle.

B Ti_Green: to measure the pedestrian green period.

B Ti_Disabled: to measure the disabled pedestrian period.

Note that the state machine does not need a timer to measure the car red
period as it is defined by the pedestrian green period.
Hence, we have the following control values for the state machine:

Di_Request
Ti_Yellow_OVER
Ti_Green_OVER
Ti_Disabled_OVER

The state machine has to set traffic lights. Thus, we define the following
actions for the car traffic lights:

© 2006 by Taylor & Francis Group, LLC

Designing a State Machine ® 135

B C_Red_On
B C _Yellow On
B C_Green_On

and for the pedestrian’s traffic lights:

B P_Red_On
B P Green_On

By these definitions we have assumed that the electrical part of the traffic
lights has some “intelligence“ switching on the required lamps and switch-
ing off the other ones. In other words, the actions are just commands to
a control port, which handles the lamps directly.

The state machine Pedestrian0, which realizes the control, is shown
in Figure 8.7. To discuss its functioning we need to see the complete
specification as represented in its state transition tables. Three tables are
very similar: Red_Yellow_Init, Red_Red, and Green_Red. Therefore, we
show only one of them: Red_Yellow_Init in Figure 8.8. In all three states
some lights are switched on (the state names are chosen so that they
indicate the lights pedestrian-car) and a timer determines how long the
state machine stays in this state.

In the state Red_Yellow_Init car lights are switched to yellow and the
pedestrian lights are switched to red. The Ti_Yellow timer determines
when to leave the state. The two other states build a more interesting

Red_Yellow
X:

Green_Red

Di_Request & Ti_Djsabled_RUN

Red_Yellow_Ini} Ti_Yellow_OVER Red_Green

Ti_Yellow_OVER Red_Red

E:

E:

X:

Figure 8.7 Pedestrian0: the state transition diagram.

© 2006 by Taylor & Francis Group, LLC

136 ®m Modeling Software with Finite State Machines

Red_Yellow_Init Entry action C_Yellow_On
P_Red On
Ti_Yellow_ResetStart

eXit action Ti_Yellow_Stop

Red_Green Ti_Yellow_OVER

Figure 8.8 Pedesterian0: the state transition table of the state Red_Yellow_Init.

Red_Green Entry action C_Green_On
Ti_Disabled_ResetStart
eXit action
Red_Yellow Di_Request & Ti_Disabled OVER
Request Di_Request &

Ti_Disabled_RUN

Figure 8.9 Pedesterian0: the state transition table of the state Red_Green.

Request Entry action
eXit action
Red_Yellow Ti_Disabled_OVER

Figure 8.10 Pedesterian0: the state transition table of the state Request.

group. Their state transition tables are shown in Figure 8.9 (Red_Green)
and Figure 8.10 (Request). Particularly, they handle the Request button.
The state Red_Green represents the situation when the car traffic rolls
having the green light and the pedestrians have to wait. The timer that
guards this state does not represent here the time of the car green light but
the disabled time during which the control does not react to the Request.

If the Request comes after the timer Ti_Disabled expires, the state
machine goes to the state Red_Yellow introducing the green phase for the

© 2006 by Taylor & Francis Group, LLC

Designing a State Machine m 137

pedestrians. If the Request comes before the timer expires, the state
machine goes to the state Request where it waits for the timer expiration.
If the timer is over, it goes to the state Red_Yellow where the car light is
switched to yellow. This state is guarded by the timer Ti_Yellow, but in
addition, the timer Ti_Disabled must be stopped (it has been started in
state Red_Green already).

We have so far designed the entire control logic. Now, we have to
think about special situations; a start-up is a typical example. A state
machine must be set in a defined state after the start-up. This is the Init
state in the state transition diagram. We need this state to have the first
transition (always) to the state Red_Yellow_Init where the initial Entry
Action is performed.

The Pedestrian traffic light control is a simple system based mainly on
timers. Only the Request input requires some consideration: the presented
solution is one of several possible ways of handling this kind of problem.
The design is fairly complete; we have tried to take into consideration all
information contained in the specification. We will see later that the
practical implementation may impose additional requirements (see Appen-
dix K Pedestrian traffic light project). For the time being we are satisfied
with the result.

The Specification Must Be Understandable

The state machine Pedestrian is simple and really does not present a
difficult task to be solved; it requires only an analysis of the sequence of
timers to be started and the reaction to the Request button. But let us
imagine that we do not bother about signal naming and call the timers
in turn T1, T2, and T3 and the states get also rather simple names: S7
through S§7. The state diagram and the state transition tables become
practically unreadable independently of legend and remarks we put in
the project explaining the true meaning of the states and timers. That
remark is obvious, is it not? If the naming is such an essential factor for
such a simple project, we may imagine its importance in a large one. We
should never save time on inventing names and we should correct the
names during the project if we find a reason to improve them (of course,
the development tools should support the renaming process as there is
nothing worse than to change the names by hand).

A behavior specification should solve the problem and must be com-
prehensible for outside persons who want to see how it works or must
continue somebody’s project some time later, adapting the control system
to new requirements. If we understand our own specification, there is a
great chance that other people will also.

© 2006 by Taylor & Francis Group, LLC

138 ®m Modeling Software with Finite State Machines

Required
pressure Erroneous Temperature

Command <
parameter pressure too high

P

4

Required pressure value

Temperature| Vacuum |
too high Control
Pressure
value
Pump Chamber

Figure 8.11 A pressure supervision system.

Example — Pressure Supervision

In the second example we design a state machine that supervises pressure
in a chamber (see Figure 8.11).

The Requirements

The system to be controlled consists of a Vacuum Control, which stabilizes
pressure in a Chamber by controlling a Pump. The task of the Pressure
Supervision control is to set the Required pressure value and to check
whether the pressure has reached the required value in a certain time.
The pressure value is then continuously checked as to whether it stays
in a certain range. Deviations from the allowable range are tolerated if
they do not last too long and if the number of such deviations stays below

© 2006 by Taylor & Francis Group, LLC

Designing a State Machine ® 139

a certain limit; otherwise the Vacuum Control should be switched off.
The Vacuum Control should be also switched off if the temperature of
the pump is too high. Any pressure deviation outside the allowable range
should be signaled to the operator.

The Specification

We start the design defining the (input) control values and (output) actions.
The Pressure supervision state machine has inputs that must contain the
following control values:

B Cmd_Start: command

B RequiredPressure_CHANGED: signals that the value has changed

B Pressure_OK, Pressure_TooHigh, Pressure_TooLow:
characterize the vacuum in the Chamber

B Temperature_TooHigh: characterizes the Pump temperature

B Timer_OVER

B Counter_OVER

The actions to be performed by the Pressure supervision are:

SetPressure: sets the value of the required pressure
SetPressure_Off: switches off the Vacuum control
Al_PressureError: alarm

Al_PumpTooHot: alarm

Timer_ResetStart

Timer_Stop

Counter_ResetStart

Ofun_CalcLimit: calculate limits of the allowable pressure range
LED_On and LED_Off: switch on and off an indicator of the
pressure value

A state machine that realizes the Pressure supervision seems to be not as
straightforward as the Pedestrian traffic light control. Let us begin with an
initial state, which we call Idle (see Figure 8.12). In the state Idle the
supervision does not work and the state machine waits for a start com-
mand. Entering the state Idle the state machine switches off the required
pressure value.

Let's now introduce a state Starting where the state machine goes on
receiving the command Cmd_Start. The state Starting is a “busy” state
where the state machine sets the required pressure and waits for the
reaction — if the pressure reaches the required value it will go to the
“done” state (which we call Regulating). In case of failure: if the pressure

© 2006 by Taylor & Francis Group, LLC

140 ®m Modeling Software with Finite State Machines

All activities are ceased. Waiting for a Start command.

Idle Entry action SetPressure_Off
eXit action
Starting Cmd_Start

Figure 8.12 Pressure: the state transition table of the state /dle.

does not reach the required value within a certain time, it returns to the
state Idle, also generating an alarm. The state machine also returns to
the state Idle if the pump temperature gets too high. This consideration
leads to a state transition table shown in Figure 8.13.

The Entry Actions contain also a start of a counter and calculation of
limits for the allowable pressure range. The range of the allowable pressure
must be defined in this moment as this is the base for determining whether
the pressure reaches the required value. The counter is started as it should
supervise the number of pressure deviations from the allowable range.
The last pseudo-Entry Action is clearing the command: we have to do it
sometime before returning to the state Idle to avoid an immediate restart
(see Signal lifetime in Chapter 7).

Several activities are initiated. Waiting for Pressure acknowledgements. Due to a Timer missing
acknowledgement leads to return to the Idle state.

Starting Entry action MyCmd_Clear
SetPressure_Set
Counter_ResetStart
Timer_ResetStart
Ofun_CalcLimit

eXit action Timer_Stop
RequiredPress_ CHANGED Timer_ResetStart
Pump_TooHot Al_PumpTooHot
Timer_OVER Al_PressureError
Regulating Press_OK
Idle Pump_TooHot | Timer_OVER

Figure 8.13 Pressure: the state transition table of the state Starting.

© 2006 by Taylor & Francis Group, LLC

Designing a State Machine ®m 141

The Pressure value is ok.

Regulating Entry action LED_On
eXit action LED_Off
Pump_TooHot Al_PumpTooHot
Error Press_TooHigh | Press_ToolLow
Idle Pump_TooHot

Figure 8.14 Pressure: the state transition table of the state Regulating.

In case of a success (the pressure reaches the required value) the state
machine goes to the state Regulating (see Figure 8.14). The state Regu-
lating is a “done” state where the state machine stays until either the
pressure is bad or the pump gets too hot. If the pressure is too high or
too low, the state machine goes to the state Error. If the pump is too hot,
it is of no use for the pressure control anymore and the state machine
goes to the state Idle to switch off the Vacuum control.

In the state Error shown in Figure 8.15 the timer measures the time
pressure is outside the range. If this period exceeds its time-out, the state
machine goes to the state Idle. We assume that we use a counter that
counts the number of pressure failures (e.g., the number of entries into
the state Error). The counter has been started in the state Starting and if
it overflows the state machine returns to the state Idle. Both failures, Timer
and Counter overflow, generate alarms before the transition to the state Idle.

The Pressure value is outside limits. A return to the state Regulating is possible if the Pressure
improves in a certain time. A Counter forces a return to the Idle state if the number of errors
exceeds a predefined value (see project settings.) A Timer ensures that a missing
acknowledgement will cause a transition to the Idle state.

Error Entry action Timer_ResetStart
eXit action Timer_Stop
RequiredPress_ CHANGED Timer_ResetStart
Counter_ OVER | Timer_OVER Al_PressureError

Regulating Press_OK

Idle Counter_OVER | Timer_OVER

Figure 8.15 Pressure: the state transition table of the state Error.

© 2006 by Taylor & Francis Group, LLC

142 m Modeling Software with Finite State Machines

Specification of state independent actions. If the Required Pressure value changes:
- the Error Counter is reset,

- the Pressure Limits are recalculated,

- the Pressure value is set.

Always RequiredPress_ CHANGED Counter_ResetStart
Ofun_CalcLimit
SetPressure_Set

Figure 8.16 Pressure: the combinational part.

If the required pressure parameter changes while staying in the state
Error the state machine restarts the timer as the Vacuum Control system
needs some time to regulate the pressure to the new value. The change
of the required pressure parameter may happen at any moment and
requires three actions:

B Resetting of the Counter (we assume that after a change of the
required pressure value the control functions begin in a sense
again from the beginning)

B Calculating of the new limits of the allowable pressure range

B Setting the new required pressure value

We could introduce corresponding Input Actions in all states. Alternatively,
we may decide that the control system will have a combinational part,
which carries out the actions any time they are triggered by the required
pressure parameter change. Hence, the combinational part can be
described as presented in the (pseudo-state) table Always in Figure 8.16.

The Pressure supervision state machine is more interesting and chal-
lenging than the Pedestrian traffic control. Though it is a relatively small
state machine considering the number of states, it performs quite sophis-
ticated functions, which were achieved combining the Moore and Mealy
models. In the design we took some arbitrary decisions as, e.g., in the
definition of control values: Pressure_OK, Pressure_TooHigh, and
Pressure_TooLow (instead of Pressure_TooHigh and
Pressure_TooLow we could have used Pressure_Bad). The other
decision that requires a comment is the use of a counter that counts the
number of “errors” (alternatively, we could have used a counter that is
incremented explicitly by the state machine on entering the state Error).

The Output Function

We have not also discussed how the limits of the required pressure range
are used by determining the control values. Until we do speak about an

© 2006 by Taylor & Francis Group, LLC

Designing a State Machine ® 143

actual implementation we are in fact free from this kind of decision. The
main objective of such an implementation-independent specification is
the clarity or elegance of the design. If we design a state machine keeping
in mind a specific execution model (implementation) we have to take
into account limitations and requirements imposed by that implementation.
At this stage we are free, not limited by any coding or other restrictions.

In Data processing result in Chapter 6, we indicated that results of data
processing can be used as control values. In the StateWORKS implemen-
tation discussed in Part III data processing units are called output functions
and are just C/C++ functions specific to a given application. The function
CalcLimits () used in a StateWORKS project for specification of the state
machine Pressure is shown in Appendix M Ouitput function CalcLimitsO.

The State Transition Diagram

For completeness, we also show the state transition diagram of the Pressure
supervision state machine in Figure 8.17. In addition to the discussed
states the diagram contains the state Init, which is the initial state after
the start-up. The immediate (always) transition to the state Idle guarantees
that after the start-up the Vacuum control system receives the signal
PressureOff. This might be negligible as the Vacuum control system
should be constructed in such a way that it stays off after start-up. If it
is the case, the state Idle could be the initial state reducing the number
of states to four.

The diagram suggests that the Pressure supervision state machine is a
rather simple control problem. The details in the state transition table
disclose the true complexity of the machine. This example supports our
remark that the number of states is not the only criterion that determines
the complexity of the control problem.

3

Starting Regulating

E: X:

Cmd_Start Press_OK

I:

igh | Press_TooLow

Figure 8.17 Pressure supervision state machine: the state transition diagram.

© 2006 by Taylor & Francis Group, LLC

144 m Modeling Software with Finite State Machines

Conclusions

We formulated in this chapter some rules for state machine design. We
bypassed here the typical considerations based on classical definitions
found in Automata Theory, which assume that inputs are Boolean values.
This limitation does not make sense for a software implementation, which
is the actual goal and target of this book. Using the control values for
Transition and Input Action conditions and actions for outputs, we are
able to specify in an abstract but complete way the behavior of the state
machine neglecting details of implementation. This kind of state machine
design is not completely implementation independent (see remarks in
Pressure supervision state machine) but these dependencies refer to
available resources (counter, timer) and, of course, leave open the trans-
formation between the real input/output signals and control values used
by the state machine design. This is discussed in a later part of the book.

While designing state machines for the examples we have truly “for-
gotten” details that are irrelevant to the controller behavior problem. The
time periods for the lights, the actual values of the pressure limits, the
counter overflow value, the required pressure value: these are all values
foreign to the intrinsic design of a controller and as such they are ignored
in the discussion. Of course, they will have to be added at some stage,
but only as parameters or properties for the “objects,” which are the state
machines we have designed. For example, the three timer values for the
pedestrian crossing could vary, depending on road conditions in various
locations, and exactly the same state machine design could be reused in
hundreds of situations, suitably configured for each. These values could
even be altered at certain times, such as times when many school children
were expected.

© 2006 by Taylor & Francis Group, LLC

Chapter 9

Systems of State
Machines

Mastering Complexity

A single state machine can control a relatively simple application task,
e.g., a motor. Any non-trivial control system should not be designed as
a single state machine. Theoretically, we could do it but this approach is
not recommended. We have already stressed the requirement that a state
machine must stay comprehensible. The limit to the size (number of states)
that a designer can effectively develop and understand is not a fixed
maximum number of states that a manageable state machine should not
exceed. The maximum number of states depends on several factors, e.g.,
the chosen state machine model or complexity of the application. In
practice, the maximum reasonable number of states is between 30 and 100,
and some designers are not comfortable when exceeding even 20 states.
The larger numbers will be acceptable only if there is an easily appreciated
structure to the state transition diagram. Various factors such as the size
of the paper or the size of the monitor screen may also play a role here.
To understand a state machine we should “see” it at a glance. It gives us
at least a feeling for the sequences of transitions.

Normally, applications have several tasks to control. In practice, those
tasks are not controlled independently — they form a system in which
the parts interact. Thus, to master such an application we should partition
the control among several state machines. We need to know how to
organize such a system. Should it be a totally free system of loosely coupled

145

© 2006 by Taylor & Francis Group, LLC

146 m Modeling Software with Finite State Machines

state machines or should it have a strict organization? Though there is no
ultimate answer to this question we know from experience that a complex
system requires an organization. A lesson from software development is
that trivial problems are not problems — any solution will do, even
spaghetti code — but the difficulties encountered in development of
complex systems cannot be solved by ad hoc solutions. They require a
well-thought-out approach that allows the entire system to be partitioned
into several subsystems that communicate smoothly among themselves.

Thus, the way not to get lost is to partition a control task into several
smaller, easier to understand control tasks. This approach is characteristic
for other domains of design. For instance, we do not write a program as
a single, huge 1 million line code but divide it into modules, units,
functions, etc., each of which is relatively easy to understand on its own
abstraction level.

Partitioning a control task into several state machines has an important
side effect; namely, we may operate with a set of standard state machines
specialized for certain dedicated functions and used in several applications.
This resembles the use of functions or procedures in programming.

Several problems must be solved for a system of state machines:

B The partitioning criteria
B The communication interface among state machines
B The (hierarchical) structure of the control system

The Partitioning Criteria

Speaking about the partitioning criteria, we do not mean: first design a
huge state machine and then try to partition it into a set of smaller ones.
That may be an interesting academic topic but it does not make any
practical sense.

Partitioning is defined by the application that is to be controlled by
the system of state machines. Some application domains impose a parti-
tioning strategy; others are not quite so obvious. Partitioning is also a
trial-and-error process, which may require some changes or iterations.
The first idea is not always the ultimate one.

Consider as an example an industrial process that requires controlling
of vacuum, transport, and sputtering, which is typical for the semicon-
ductor industry. There are two partitioning lines for such a process (see
Figure 9.1). The vertical lines partition the control task into technological
domains, in this case:

B Vacuum control
B Transport control
B Sputtering control

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines ®m 147

(Operator, supervision control)

control i; i; éi
R g l

Vaggum Trafj$port Spuftgring
confrol control control

External device

Figure 9.1 Partitioning as defined by the application domain.

The horizontal lines inside each of the control domains partition the system
according to abstraction levels:

B Device control
B Group control
B Module control, etc.

Device control covers state machines that control devices on the lowest
level; these are state machines that communicate directly with physical
devices (pumps, motors, valves, gauges, sources, etc.).

State machines in Group control “see” only the device state machines;
in a well-designed system they should never communicate directly with
the devices, but only through the Device control layer.

Module control is still a higher abstraction, controlling sets of state
machines in the group control.

We may need several abstraction levels or not. Sometimes a flat
structure may be sufficient. Nearly every system will also require a state
machine Main, which coordinates the several control domains.

Not all applications are so clear when considering control partitions.
Consider, as another example, a system that is to manage a message
protocol. The partitioning lines are not well defined in that case. Perhaps,
we would consider a state machine that handles the protocol as the core
(Main) of the control system. Then, as the needs become evident we will
add state machines that each realizes some specific control task, e.g.,

© 2006 by Taylor & Francis Group, LLC

148 m Modeling Software with Finite State Machines

communication with the modem, communication with the user interface,
buffering control, etc.

The sense of the above remarks is to communicate the idea that there
are no well-defined criteria that define the partitioning of a control system
into a system of state machines. Especially, that the partitioning is strongly
governed by communication among state machines and thus by the overall
structure of the system.

The organization of a control may require several abstraction levels.
The first example above, the example of an industrial control task, illus-
trates this thesis quite well. The state machine Main, which coordinates
the technological branches, is not interested in the states of a single pump
or a motor; it can and should work out its decisions on a basis of more
abstract control information in a form of “vacuum is ok,” “wafer is in
position,” “sputtering done,” etc.

Also in that case, the form of the required abstraction is application
dependent and is difficult to express as a set of rules or recipes. Designing
a system of state machines cannot be automated; it is a genuine design
problem and the result reflects the ability of the designer.

The Communication Interface among State Machines

Building a control system from several state machines means that the state
machines must communicate among themselves. The way this communi-
cation is organized has a strong influence on the design and implemen-
tation.

This raises a question: What kind of information should state
machines exchange? If state machines exchange data, then they
would require a message as the information carrier. The data
in the message body would contain also control information.
But data handling is a different topic, which should not be
mixed with the control we are discussing. We do not discuss
at this point the software implementation of the state machines
but the logical structure of a system of state machines. The
concepts presented in this book are based on a total separation
between data and control flow, which means that: There is
no case for data exchange among state machines — state
machines exchange only control information.

We have already formulated the desire to have a system where state
machines deal with various layers of the control task. Several solutions are
imaginable. Speaking of solutions, we are not interested in the transmission

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines ® 149

Master

T
command T

l state
l

Slave

Figure 9.2 Interface between state machines.

or implementation means (messages, events, etc.) but we are concerned
with the information exchanged between two state machines. We could
discuss interfaces:

state—state
command—command
command-state
other signals

We strongly recommend a command-state interface between state
machines. That recommendation results from our understanding of a
relation between two state machines which should be a Master-Slave one:
the Master is able to send commands to the Slave and it uses the Slave’s
states as (inputs) control values (see Figure 9.2). This exchange mechanism
has the advantage that it does not require any new concepts to be invented.
This arrangement works if

the state of a state machine represents full information about
the control situation in the Slave state machine.

Using the previously introduced terminology we can say that the state of
the Slave state machine represents the control abstraction on its level.

Commands issued to a specific state machine are defined by the
designer and constitute a set of names (in the software implementation
they could be represented by individual integers), as for example

{ Cmd_Start, Cmd_Stop, Cmd_Continue }.

It is reasonably clear why a state of a Slave state machine should be used
as an input for the Master state machine: the state represents the control
information about the situation in the Slave. The question of whether to
use a state of Master in a Slave must be answered negatively: we should
not do it. First of all, it would not be a Master-Slave relation any more.
The second, and more important reason is, that by using commands in

© 2006 by Taylor & Francis Group, LLC

150 ®m Modeling Software with Finite State Machines

the way we suggest the Master is given great flexibility in issuing them:
it may use the same command in different states or it may generate several
commands in the same state. The Master—Slave relation means that Master
orders the Slave to do something and supervises the Slave by watching
its state: if the Slave reaches a certain state, the Master can assume that
its command has been carried out. This definition is based on the principle
that a state of the (Slave) state machine represents the entire control
situation as covered by this particular state machine.

The Handshaking Rule

From the above-formulated requirement (a state of the state machine
represents the control situation in the Slave state machine) we can derive
the handshaking rule, which determines the logic of the communication
between two state machines. The handshaking rule requires that a state
machine (Slave) uses two states: busy and done to pass the control
information properly to another state machine (Master). The explanation
of the problem is supported by Figure 9.3, which shows fragments of
state transition diagrams of two state machines: Master and Slave. We

Master Slave

——————————————— Cmd_Start--—-—---—- Timeout

------ -Slave_In_Busy----------—

Figure 9.3 The handshaking rule for Master-Slave communication.

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines ®m 151

analyze three states in both state machines: Idle, Busy, and Done. Idle is
also another done state where the transitions begin.

The Master state machine goes for some reason to the state M_Busy;
on entering the state it sends a command Cmd_Start to the Slave state
machine. That start command causes the Slave to go from the state S_Idle
to the state S_Busy; on entering the state S_Busy it sends a command to
its controlled device (which might be its Slave). “Seeing” that the Slave
is in the state S_Busy the Master goes to the state M_Done. On receiving
an acknowledgment OK from the controlled device the Slave goes to the
state S_Domne. If the OK does not come, the Slave returns (after time-out)
to the state S_Idle. This allows the Master to return to the state M_Idle.

The state M_Busy plays here an essential role. Sometimes we imagine
that we can do without that state but any trials to eliminate the state busy
in Master fail because the condition Slave_In_TIdle exists at the begin-
ning if both state machines are in Idle. If the Master goes directly from
the state M_Idle to the state M_Done, it will “see” immediately the condition
Slave_In_Idle and return to the state M_Idle. Of course, we can invent
an execution model (see also discussion in the State machine execution
models section in Chapter 6), which delays sending the information to
the Master. We are especially inventive when we code the implementation.
The execution model we are propagating (as in StateWORKS, Figure 10.1,
the Vfsm execution model section in Chapter 10) will cause the infinite
loop in the Master state machine.

The (Hierarchical) Structure of the Control System

The interface between state machines suggests that the organization of a
system of state machines should have a hierarchical structure as shown
in Figure 9.4. Each state machine in a system except Main has its Master,
which sends commands to it and uses its state as a control value. The
state machine Main also has, in fact, its Master, which sends commands
to it and monitors its state but this Master is outside the control system
we have defined; it may be a remote system, or even a human operator.
Similarly, the state machines on the lowest Level 3 may be considered as
Masters of controlled (hardware) devices. In a way, each state machine
is both a Master and a Slave.

Of course, the Master—Slave interface between state machines does not
dictate absolutely a hierarchical structure; it can be used in any system
of state machines for exchanging control signals. But in a non-hierarchical
structure the role of exchanged control values: commands and states
become vague — they contain the information but their interpretation or

© 2006 by Taylor & Francis Group, LLC

152 ®m Modeling Software with Finite State Machines

Main Level 1

Cmd

Transport Level 2
rCmd

State
! , L &1 4 ,
Motor1 Motor2 Gauge Valve Inlet Source Level 3
T Y Y Y 3 Y Y
Output_Input—————— [—

\ v v v v v

Figure 9.4 A hierarchical system of state machines.

use is not so clear. The entire system becomes hazy and its understanding
more difficult.

The recommendation to use a hierarchy of state machines is based on
many years of experience and also some considerations of a theoretical
nature. When designing state machines, we can make logical errors that
could result in infinite loops or deadlocks. The more state machines are
in the system, the higher is the probability of such errors and finding of
those errors is more difficult. Imagine a system of 100 state machines
where each state machine may send a command to any other state machine
and uses states of any state machine for definition of its behavior. It is
very difficult to understand how such a system really behaves and the
“structure” of such a system corresponds to non-structured software.

In contrast to a non-structured system a hierarchical system is easier
to design and understand as in its design or debugging we usually solve
several local problems: both for a Master and for its Slaves.

Figure 9.4 shows a hierarchical system with three levels: the upper level
(Level 1) containing a single Master state machine (Main), the second level
(Level 2) containing two state machines (Transport and Gas), and the
lowest level (Level 3) with six state machines (Motorl, ... Source).

Design Procedure
Locality of the Control Problems

A design of any state machine always requires an analysis of a limited
part of the system:

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines ®m 153

B A design of the state machine Motorl covers the outside signals
and commands from the state machine Transport.

B While designing the state machine Transport we are interested only
in the states of state machines Motorl and Motor2 and commands
from the state machine Main. The state machine Transport has no
idea about the details of the Motorl and Motor2 control (inputs,
outputs, delays, time-outs, parameters, etc.); it “sees” only the
(abstract) situation in Motor control, represented by the Motorl
and Motor2 state.

B While designing the state machine Main we take into account only
states of its Slaves (Transport, Gas, and Source).

The three MasterSlave systems are presented in Figure 9.4 with different
shadings covering the areas of the three Masters: Main, Transport, and Gas.

In a correctly designed hierarchical system any state machine “sees”
only the states of its Slaves that represent an abstract — but all the same
complete — set of the control signals relevant for the state machine. The
only state machines that “communicate” with external signals are the state
machine Main and the state machines on the lowest hierarchy level.

A hierarchical system allows us to think locally when designing state
machines, seeing only the few involved state machines (Master and its
Slaves) in an abstract way.

Up-Down or Bottom-Up Design

The other problem is how we should proceed in the design of a state
machine system. There is also no strict rule in this case, but it is obvious
that we ought to start where the information is the most complete. As a
rule we have relatively good information about the behavior of the state
machines on the lowest level: how to control peripheral devices. We
probably also know about commands for the state machine Main, but
unfortunately we do not know much about its Slaves. Therefore, in most
cases the only reasonable way is to start with the lowest level of state
machines. Having this layer ready, we get some idea how to organize the
Master layer above it. So, we continue until we reach the state machine
Main. These considerations do not preclude the preparation of an initial
plan by a top-down design process, but the finally implemented structure
will often depart from the initial plan.

The next question is the design of the hierarchy: how many layers
and which state machines are needed. There are some fixed points, e.g.,
we need a state machine Main at the top and we know very soon which
state machines are required at the lowest level — the lowest level is well
defined by the controlled devices. The definition of the rest is a process

© 2006 by Taylor & Francis Group, LLC

154 ®m Modeling Software with Finite State Machines

that is strongly bound to progress in designing the lowest level of state
machines. Building a hierarchy is an evolutionary process with several
trials and it does not have an ultimate solution. The solution reflects the
designer’s ability and preferences: some people like to use a few, rather
complex state machines; other people prefer many simpler state machines
in an elaborate hierarchy. There is no definite answer to the question of
which approach is a better one, as long as the designer can be quite
certain that he or she fully comprehends the way each state machine will
function, in both normal and abnormal situations.

Deadlocks

Discussing the design of a state machine we underlined the role of timers,
which are very important elements guarding state machines against dead-
lock. Any situation that requires an acknowledgment of actions by an
external signal must be protected by a timer.

In a well-designed system of state machines only the state machines
that communicate with the outside world should use such timers. If we
encounter a situation where we need a timer as a safeguard element in
a state machine that has no direct link to the outside world, it is a strong
indication that there is a failure in the design of a state machine that
communicates with the I/O system. In a hierarchical system only the
lowest level of state machines uses timers for this purpose.

This rule does not exclude the use of timers for other purposes in any
state machine. For example, timers might be used to define time steps in
a control sequence (see the Example — Pedestrian traffic lights section
in Chapter 8).

Loops

A state machine may go into infinite loop sequencing continuously through
some state. This may happen when the transition conditions are fulfilled
at the same time in all states of a certain control path. It is a rather
unpleasant situation, difficult to debug.

The situation can be much more difficult in a system of state machines.
A loop that closes through several state machines is essentially more
difficult to debug and remove than a loop in a single state machine.

Therefore, a state machine development environment has to provide
a (logical) step mode where the step is, e.g., one state transition. In
addition, the execution environment of a control system has to provide
some mechanism to detect infinite loops and guard the runtime system
against the side effects of such loops (processor overload).

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines ®m 155

Sins

We do not like to impose any strict barriers considering the structure of
the system. Any pigheaded, inflexible structure will be rejected in practice
as unworkable. Hence, we may design any system, e.g., having in principle
a hierarchical system but with additional links between some state
machines. How much deviation from a hierarchical system could be
tolerated? The diagram in Figure 9.5 shows two examples of sins committed
by a system designer.

The undesirable links Cmdl and Cmd2 are shown in bold. In case
Cmd1 a true Master (Transport) of the state machine Motor2 is bypassed,
as the state machine Motor2 receives commands directly from the state
machine Main (in addition to the commands from the state machine
Transport). It is very difficult to understand the behavior of such a system.
The probability of malfunctioning is very high as the true Master of the
state machine Motor2 (Transport) does not “know” about the additional
command. The additional commands are in fact a kind of unexpected
input that must be “corrected” by the Master (Transport). On the other
hand, if we consider the influence of these additional commands in design
of a Master state machine we find no reason for them: those commands
could be passed directly to the true Master (Transport). Similarly, it is
difficult to design a state machine like Source, which gets commands from
Main and also from Gas (Cmd2). What kind of design philosophy to follow?

A similar corruption would be to use a state of the Motor2 in conditions
in Main or a state of Source in Gas. All such bypassing is a set of tricks
that may give us an illusion of a simplification of a Transition or Input
Action condition. We pay for such illusions inevitably with increased errors,

v
Main Level 1
A 3
I Cmd | T
i——i
Transport Gas Level 2
IEJEJEL md.
o 1| 1 — 1=
State
v Ty s vl
Motor1 Motor2 Gauge Valve Inlet Source Level 3
| A A A A [A
Output Input
* | v v v v v

Figure 9.5 A corrupted hierarchical structure.

© 2006 by Taylor & Francis Group, LLC

156 ®m Modeling Software with Finite State Machines

which are caused by difficulties in understanding system behavior: the
system is becoming more and more mysterious with each additional trick.

There are many possibilities to corrupt the hierarchical system, similar
to any other software corruption practice. We should avoid them as in
general there is no real need for them. It is better to put in some additional
effort and make a correct design, avoiding any non-hierarchical deviations
in the system, instead of succumbing to the illusion that doing it quickly
but wrongly will save time.

Design Rules

Our recommendations for building a system of state machines are as
follows:

B Use Master—Slave (command/state) interfaces for communi-
cation between state machines.

B Organize the system as a hierarchy of state machines based
on a Master—Slave principle.

B Use bottom-up design.

B Avoid corruption of the hierarchy by “wild” links among
state machines.

B Use timers guarding against deadlocks only in state machines
that communicate with the external signals.

Using these rules we are able to build reliable and maintainable control
systems with a high degree of reusability. Well-designed state machines
can be stored in a library and used in future projects. The reuse of state
machines applies especially for state machines on the lowest level, which
control peripheral devices.

The rules are just guidelines that should be followed in most situations.
In specific, well-founded cases, we may deviate from them. We show here
two designs of a system of state machines. The first is a typical hierarchical
system; the second is a non-hierarchical system.

Example — Pumps Supervision System
Task Definition

Consider a control system that is to supervise two Pressure controllers as
discussed in the Example — Pressure supervision section in Chapter 8.
We will call the system Pumps (see Figure 9.6). In addition, it should
switch on a Device if the vacuum is okay. If the vacuum fails, the Device

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines ®m 157

in
(Main)

Pressure2 Pres;ure1 De\ﬁce1

(Pressure) (Pressure) (Device)

Figure 9.6 The Pumps system.

should be switched off. The Device is also switched off in case it is not
acknowledged appropriately. The details of the state machine Device are
shown in Appendix L Pumps supervision project. The entire system
receives commands: Start and Stop from the operator. In line with the
preceding discussion, these commands will be issued to the state machine
Main. The command Start starts the process (switching on the supervision
of pressure and automatic switching on Device if the vacuum is okay).
The command Stop switches off Device.

The Pumps supervision cannot be switched off; once started it runs
until the vacuum fails (normally, switching off pumps will result in a bad
vacuum, which switches off the pumps supervision).

There is only one state machine left in the system to be designed:
Main. If the Slave state machines are properly designed (i.e., their states
contain full control information about the situation), we need to “see”
only the state transition diagrams of Slaves while designing the state
machine Main. For convenience we repeat the diagrams here (Figure 9.7
and Figure 9.8).

The First Approach

Up to now, we could define two control values for the state machine
Main; corresponding to the two commands we have defined: Cmd_Start
and Cmd_Stop. We will introduce other control values on demand: we
know that those will be states of Slaves.

Let us make the first trial (see Figure 9.9). We start the design with a
state Idle where the state machine Main waits for the command
Cmd_Start. Next we define the state StartingPressure. Receiving the

© 2006 by Taylor & Francis Group, LLC

158 ®m Modeling Software with Finite State Machines

Di_NotReady | Ti_OVER

Init MyCmd_Off

Figure 9.7 Device: the state transition diagram (repeated from Appendix I:
Pumps Supervision Project).

3

Cmd_Start Starting Press_OK Regulating

X:

I

Press_TooHig

Press_TooLow

Figure 9.8 Pressure: the state transition diagram (repeated from Chapter 8,
Example — Pressure Supervision section).

Cmd_Start the state machine goes to the state StartingPressure and
sends from there the commands PressureCmd_Start to both state
machines Pressure. In the state StartingPressure the state machine just
waits until both state machines Pressure are in the state Regulating, which
forces Main to go to the next state we need, namely, StartingDevice. In
the StartingDevice state Main sends the command Cmd_On to the state
machine Device and waits until Device goes to the state Running, which
forces Main to go to the state On.

The state On is the “done” state of Main: the Cmd_Start, which has
initialized this series of transitions and actions, has been completely carried
out. Main stays in this state until it receives the Cmd_Stop, which forces
it to go to the state Stop, which is the last state we need. Detecting the
acknowledgment from Device (when it is in the state Idle) Main returns

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines ® 159

Pressure1_Regulating | Pressure

PressureStarted

Cmd_Stop

Figure 9.9 Main: the first (erroneous) design.

to the Idle state. In such a way we have specified the “normal” control
path in the state machine Main when everything goes as we wish. We
may say that we have realized the sunny-day-scenario. It seems to be
not too complicated. Unfortunately, it is not only incomplete but also
contains one essential error — we will see it by going into fine details
of the control task.

In the design process we have defined so far for the state machine
Main, the following control values:

B Cmd_Start and Cmd_Stop, which represent commands from the
operator

B Device_Idle and Device_Running, which represent states of
the state machine Device

B Pressurel_Regulating and Pressure2_Regulating, which
represent states of the state machines Pressure (we call the state
machines Pressurel and Pressure2)

and the following actions:

B DeviceCmd_On and DeviceCmd_Off, which represent com-
mands to the state machine Device

B PressurelCmd_Start and Pressure2Cmd_Start, which rep-
resent commands to the state machines Pressure

The Second Trial

Unfortunately, things may go wrong (remember Murphy’s law), which
makes the control task more complicated. In the next round we have to

© 2006 by Taylor & Francis Group, LLC

160 ®m Modeling Software with Finite State Machines

StartingPressuke ossure1_Starting | Pressure JfressureStartdd

Cmd

Pressure1_Regy(ating | Pressure...

Cmd_Start & Pressure1_Regulati...

Device\ Idle Device/Running

Figure 9.10 Main: the state transition diagram.

analyze the situation in each state trying to foresee all difficulties that may
occur and introducing the appropriate reactions to them. After several
trials we designed a state machine Main for which the state transition
diagram is shown in Figure 9.10. In the following discussion we try to
explain how we have come to this solution.

State Idle (see Figure 9.11): the decision to go to the state Starting-
Pressure when receiving the Cmd_Start might be unnecessary if the

The state machine waits for command Start.

Receiving the command it by-passes the pressure initialization if the pressure is already ok going
directly to the state StartingDevice, otherwise it goes to the state StartingPressure. Note the
transition priorities.

As the command is not used later it is cleared on leaving the state.

Idle Entry action
eXit action Cmd_Clear
StartingDevice Cmd_Start &

Pressure1_Regulating &
Pressure2_Regulating

StartingPressure Cmd_Start

Figure 9.11 Main: the state transition table of the state Idle.

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines ®m 161

state machines Pressure are already in the state Regulating (remember
that once successfully started the state machines Pressure stay in the state
Regulating until the pressure falls out). In such a case, it would be correct
to go immediately to the state StartingDevice.

The function of the original state PressureStarted is now realized by
two states: StartingPressure and PressureStarted. We wanted the state
machine Main to wait in the state PressureStarted until both state machine
Pressurel and Pressure2 reach the state Regulating. If the state machine
Pressure cannot reach the state Regulating, it will return to the state Idle,
which should force Main also to return to the state Idle. If we add this
transition in this state, the state machine will not work properly: at the
instant Main enters the state PressureStarted the state machines Pressure
are still in Idle. We assume that the state machines work in sequence, i.e.,
if the state machine Main terminates its activity, the Slave machines
execute.

Taking into account the priority rules for transitions we put the tran-
sition to the state StartingDevice in front of the transition to the state
StartingPressure. As the Main command has to be “consumed” before
returning to the state Idle, we add the appropriate Exit Action here.

State StartingPressure (see Figure 9.12): After sending the command
Cmd_Start to state machines Pressure, Main walits, in principle, until

An intermediate state where the state machine waits for Pressure slaves acknowledgments to
the commands Start sent to them on entering the state.

Receiving positive acknowledgements: Starting or Regulating it goes to the state.
PressureStarted, otherwise it returns to the state Idle. Receiving Error states from slaves it
acknowledges that sending the command Break to the slaves.

Note missing timer - the slaves are responsible for that, the Main master control is based
exclusively on slaves’ states.

StartingPressure Entry action Pressure1Cmd_Start
Pressure2Cmd_Start

eXit action

PressureStarted (Pressure1_Starting |
Pressure1_Regulating) &
(Pressure2_Starting |
Pressure2_Regulating)

Idle Cmd_Stop |
Pressure1_PumpEtrror |
Pressure2_PumpError

Figure 9.12 Main: the state transition table of the state StartingPressure.

© 2006 by Taylor & Francis Group, LLC

162 m Modeling Software with Finite State Machines

It is a busy state where Main waits for Pressure slaves performing the required operations:
achieve the proper pressure.

If the slaves reach the goal the state machine goes to the state StartingDevice, otherwise it
returns to the state Idle sending the command Break to slaves.

PressureStarted Entry action
eXit action
StartingDevice Pressure1_Regulating&

Pressure2_Regulating

Idle Pressure1_ldle |
Pressure2_ldle

Figure 9.13 Main: the state transition table of the state PressureStarted.

Pressure is in the state Starting. But it is imaginable that one of the state
machines Pressure is already in the state Regulating. Hence, we have to
expand the transition condition to Pressure_Start OR
Pressure_Regulating. For completeness, we have to foresee a break
with the Cmd_Stop which forces Main to the state Idle.

State PressureStarted (see Figure 9.13): Main waits for the state
machines Pressure until they go to the state Regulating. If the state machines
Pressure have problems, their timers will force them to the state Idle. If
either of the state machines Pressure goes to the state Idle, then Main
breaks the process returning to its state Idle.

State StartingDevice (see Figure 9.14): in comparison with the initial
design the state has been only complemented with the transition to the
state Stop. We see that there are several reasons to go there: Cmd_Stop
and problems in Slaves. We note also that in that case there is no
acknowledgment problem with Device: in case of difficulties the state
machine Device goes to the state Error and not to the usual state Idle.
Hence, we do not need a state DeviceStarted comparable to the Pressur-
eStarted state. This situation shows the coupling between Master and Slave
designs: different behavior in Pressure in case of an error in starting could
eliminate the state PressureStarted in Main.

State On (see Figure 9.15): in comparison with the initial design the
state has been only complemented with the transition to the state Stop.
There are two reasons to go there: Cmd_Stop and problems in state
machines Pressure.

State Stop (see Figure 9.10): there are no changes here in comparison
to the initial design — if Device goes to the state Idle, then Main returns
to the state Idle too. This state demonstrates the difference between internal

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines

m 163

A busy state: the state machine waits whether the Device slave is running. Receiving that
information it goes to the state On. The control process may be interrupted by slaves signalling
problems or the command Stop: in such a case the state machine goes to the state Stop.

StartingDevice

Entry action

DeviceCmd_On

eXit action

On

Device_Running

Stop

Cmd_Stop |
Device_Error |
Pressure1_ldle |
Pressure2_Idle

Figure 9.14 Main: the state transition table of the state StartingDevice.

This is a final state where everything works as required: the pressure in the two chambers
controlled by the Pressure slaves is ok and the Device slave is running.

Disturbances in the slaves or the command Stop cause the state machine to go to the state

Stop.

On Entry action
eXit action

Stop Cmd_Stop |
Device_Error |
Pressure1_Idle |
Pressure2_Idle

Figure 9.15 Main: the state transition table of the state On.

The state is only for sending a command Off to the slave Device.

Receiving the acknowledgement from the Device the state machine goes to the state Idle.

Stop Entry action DeviceCmd_Off
eXit action
Idle Device_lIdle

Figure 9.16 Main: the state transition table of the state Stop.

© 2006 by Taylor & Francis Group, LLC

164 m Modeling Software with Finite State Machines

and external conditions. Main sends a command Cmd_Of £ to Device. The
state transition table of Device shows that it is the only signal needed for
going to the state Idle. So, we assume that it will happen and do not use
a timer to guard Main against a deadlock here. (If it does not happen, it
means that the execution software is corrupted and the timer cannot help
here as it will not work either).

We note that there has been no demand for using timers as safeguards
in any state of Main. The Slaves — Pressurel, Pressure2, and Device —
guarantee that the state for which Main is waiting will be always reached
in an intended time. In other words, as we have designed the Slaves
behavior (Pressure and Device) without any danger of deadlock, Main is
safe and does not need timers.

The Ultimate Solution

Though the system that we have designed so far seems to work, we still
have a problem. We have left it to the end to show now that there is a
difference between a design of a single state machine and a design of a
state machine that has to be used in a system. We know that state machines
“communicate” using the command-state interface: there is no way to
pass control information in another way (more precisely, we can of course
do it but we should not do iv).

Imagine a situation where the pump is too hot and switched off and
the Main sends the command Cmd_Start. The state machine Pressure
will go to the state Starting and return immediately to Idle; effectively,
from the Main point of view it will stay in the state Idle.

In that moment we should make a break and mention the assumption
we have in mind, an assumption bound with the execution model of a state
machine (see the State machine execution models section in Chapter 6). It
would be possible (especially if the specification will be coded) that we
manage to realize a different execution sequence: after sending the command
from Main to Pressure to stop the execution of the Main, start the execution
of Pressure, after a state change in Pressure — stop its execution, pass the
information about a state change in Pressure to Main, and resume the
execution of Main. Our aim is to use a standard execution environment and
not to code control sequences depending on a specific situation. The Vfsm
execution environment we use (Figure 10.1, The Vfsm execution model
section in Chapter 10) realizes control sequences according to the following
rule: state machines are executed in sequences; once started, the execution
of a state machine is continued until there are no state changes due.

When designing the state machine Pressure we had not foreseen
passing this information to its Master (remember, we have designed the
state machine not thinking at this moment about its usage in a system).

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines ® 165

In such a situation Main remains in the state StartingPressure until the
operator sends the command Cmd_Stop. This may be acceptable but it
is not perfect: we wanted to have an automatic control process meaning
that after sending the Cmd_Start the system either reaches the state On
or returns to Idle informing us about the reason of a failure.

Trying to improve the design we may consider several solutions:

B Add a timer to Main in the state StartingPressure: a bad design,
we have advised against the use of time-outs in Masters.

B Use the Pump_TooHot signal in Main to prevent starting the
process: a very bad design (see the Sins section above).

B Replace in the state StartingPressure the transition condition to the
state Idle: Pump_TooHot OR Timer_ OVER by Timer_ OVER: this
will work but unnecessarily delays the return to Idle (and in the
meantime the pumps will burn out).

B Add another very short time-out in the state Starting (a variant of
the previous solution): it will cost us another timer.

Perhaps, there are still more solutions but probably the only correct one
that is in line with our recommendations (pass control information using
the state) is to add a state PumpError in Pressure (see Figure 9.17). If the
pump is too hot, Pressure leaves the state Starting or Regulating, going
to the state PumpError where the corresponding alarm is generated and
waits there for a Cmd_Break (we need another command), which forces
Pressure to the state Idle.

PumpError

Press_OK

imer_OVER | Ofun_OwnerError | ...

Counter_OVER| Timer_OVER - igh | Press_TooLow

Figure 9.17 Pressure: the ultimate state transition diagram.

© 2006 by Taylor & Francis Group, LLC

166 ®m Modeling Software with Finite State Machines

As we need the Cmd_Break also in other states (PressureStarted and
On) we may move it to the table Always (as in the complete project
shown in Appendix L Pump supervision project). The changed state Starting
is shown in Figure 9.18 and the new state PumpError in Figure 9.19.
Similarly, in the state Regulating the direct transition to the state Idle is
replaced by a transition to the same PumpError. The state machine Main
must be also slightly changed: we add two Input Actions in the state
StartingPressure (see Figure 9.20).

Several activites are initiated. Waiting for Pressure acknowledgments. Due to a Timer missing
acknowledgement leads to return to the Idle state. Too hot pump leads to the PumpError state.
Both erroneous situations generate corresponding alarms. Error in accessing the output function
returns the state machine also to the state Idle: it does not make sense to supervise the pressure
without having proper pressure limits (corresponding alarms are generated in Always table).

Starting Entry action MyCmd_Clear
SetPressure_Set
Counter_ResetStart
Timer_ResetStart
Ofun_CalcLimit

eXit action Timer_Stop
RequiredPress_ CHANGED Timer_ResetStart
Timer_OVER Al_PressureError
PumpError Pump_TooHot
Idle Timer_OVER |

Ofun_OwnerError |
Ofun_ParameterError

Regulating Press_OK

Figure 9.18 Pressure: the state transition table of the corrected state Starting.

PumpError Entry action Al_PumpTooHot
eXit action
Idle Cmd_Break

Figure 9.19 Pressure: the state transition table of the state PumpError.

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines ®m 167

An intermediate state where the state machine waits for Pressure slaves acknowledgements to
the commands Start sent to them on entering the state.

Receiving positive acknowledgements: Starting or Regulating it goes to the state
PressureStarted, otherwise it returns to the state Idle. Receiving Error states from slaves it
acknowledges that sending the command Break to the slaves.

Note missing timer - the slaves are responsible for that, the Main master control is based
exclusively on slaves' states.

StartingPressure Entry action Pressure1Cmd_Start
Pressure2Cmd_Start

eXt action

Pressure1_PumpError Pressure1Cmd_Break

Pressure2_PumpError Pressure2Cmd_Break
PressureStarted (Pressure1_Starting |

Pressure1_Regulating) &
(Pressure2_Starting |
Pressure2_Regulating)

Idle Cmd_Stop |
Pressure1_PumpError |
Pressure2_PumpError

Figure 9.20 Main: the state transition table of the corrected state StartingPressure.

To make the state Starting of Pressure perfect, we also expanded the
transition condition to the state Idle. The transition is due not only when
the timer expires but also when the Output function signals errors. The
Output function calls the CalcLimit () function to calculate the switch
point limits: if the calculation fails it is of no use to continue and the state
machine returns to the state Idle. Corresponding alarms are generated in
the table Always.

We manage in Main without an additional state: any handshaking in this
solution does not make sense as the Pressure transition will be done for sure.

The last changes improved the design. They showed us also that a
state machine that operated satisfactorily as a single controller was not
sufficiently well designed for an integration in a system of state machines.
We stress with the last corrections again the basic rule of design of a
system of state machines:

The control information from Slaves to Master should be passed
by states only.

The implementation of the Pumps projects in StateWORKS is shown in
Appendix L Pumps supervision project.

© 2006 by Taylor & Francis Group, LLC

168 m Modeling Software with Finite State Machines

Flashing

Flashing
light

Figure 9.21 Traffic lights at a level-crossing of a railway and a road.

Example — Traffic Light Control

Task Definition

We now discuss an example that is a completely different design in
comparison with the previous one. The main difference lies in its structure:
it looks like a hierarchical system but in reality there is no hierarchy there.

The design is a traffic light control at a level-crossing of a railway and
a road. The control rules are well known but as there may be some
variants let us set out the details.

The railway consists of two tracks. Each is monitored by three sensors
L (eft), M (middle), and R (right) — see Figure 9.21. We assume that a
train may come from either direction on each track, but only one train
(per track) can enter the sensor zone (we call the space between sensor
L and R the sensor zone). Further, we assume that a train never changes
its movement direction. We assume also that trains may be short or very
long; i.e., a train in the sensor zone may cover no sensor, one sensor,
two sensors, or all three sensors at the same time.

The control system should cover all imaginable situations, switching
the traffic lights according to the following rules:

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines ® 169

B Both lights are switched off if the control system is not working.

B The yellow lights are flashing if there is no train between sensors L
and R or a train just passed the sensor M and is still between
sensors M and L (R) moving toward R (L), i.e., leaving the sensor
zone.

B The red lights are on if there is a train between sensor L (R) and
M moving toward M, i.e., approaching the road.

B Both red and yellow lights are on if the situation is not definitely
defined: after a system start, when an unexpected sensor signal is
received and when the expected sensor signal has not come after
a certain time (train disappeared?). These situations are considered
unsafe and can be resolved only by a manual control: if the
situation is cleared, the operator may reset the system.

There is seldom a “best” solution for a control system. The solution depends
on decisions taken by a system project leader (which state machines to
use) as well as on details of the specification of the state machines
themselves. Eventually, the specifics of the implementation tools may also
influence the solution. When specifying the state machine a designer may
minimize the number of states by using Input Actions intensively (Mealy
model). Or the designer may not bother about the number of states, trying
to achieve a clear, understandable state machine (Moore model).

The TrafficLight control system will be designed as a modular system
that can be expanded for any number of tracks, each having three sensors:
L, M, R.

“Obvious” Solution

In this case, the designs of single state machines and a system of state
machines are strongly coupled, especially in that a hierarchical system
will not do here. Let us consider first only the problem that seems to be
the basic one: how to identify the train position that determines the traffic
lights.

If we think a while about it, we may very soon find an obvious solution:
the system has to “know” that a train entered the sensor zone, i.e., has
passed the sensor L or R and moves toward the sensor M. This information
seems to be sufficient to switch on the red light. When the train is over
the sensor M, the red light stays switched on. When eventually the train
leaves the sensor M, the red light can be switched off. The information —
moving toward (plus staying over the sensor M) and left sensor M — seems
to be sufficient to control both lights: red and the flashing yellow. Thus,

© 2006 by Taylor & Francis Group, LLC

170 ®m Modeling Software with Finite State Machines

it seems that, using a hardware analogy, one flip-flop should be enough
to control the lamp or, in other words, two states will do.

This solution has one major limitation: it uses the signal edges for
control: in hardware it would mean that the rising edge of the L sensor
sets the flip-flop; the falling edge of the M sensor resets it. This kind of
control is not always possible and is considered unreliable. Anyway, for
our exercise, as we want first to show a simple solution we are generous
and accept for a while this “edge” based solution and assume that we are
able to “detect” the direction of signal changes.

Before we show the error in the solution, we underline once more
the difference between the sunny-day-scenario and the real world. The
simple analysis above has been limited to the sunny-day-scenario, which
considers only the correct, i.e., the most probable sequence of events
(sensor changes according to train movement). If we limit our consider-
ation to the sunny-day-scenario, we forget the true control problem. In
the discussed example, there are at least the following situations that
require consideration, namely, the system behavior:

B On startup

B When the “train gets lost” (it entered the sensor zone but never left it)

B When an unexpected sensor signal occurs, e.g., a sensor M signals
the presence of a train though there has been no train yet detected
in the sensor zone

If we take into account all what we have said up to now we could specify
the state machine shown in Figure 9.22. The diagram shows the basic
two states NoTrain and Present to realize the basic control. On the state
transition diagram we use the name Sensorl for denoting either sensor L
if the train comes from the left or sensor R if the train comes from the
right. The name Sensor2 means a sensor signaling that the train leaves
the controlled zone. The name SensorM means of course the sensor in
the middle.

In addition, to make the control system more realistic, we introduced:

B A state Start, which allows the state machine to switch on the
traffic lights after the start-up

B States Missing and Unexpected to handle the two above-mentioned
erroneous situations

If we try to define transition conditions and actions for the Unexpected

state, we encounter some difficulties. Let us consider the following situ-
ation: a short train has entered the sensor zone, the state machine has

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines ®m 171

Unexpected

SensorM_Disappeared

(\‘(\6‘/

Figure 9.22 Light: the “obvious” but erroneous state transition diagram.

detected the change of the L sensor and has changed its state from NoTrain
to Present where it has switched on the red light and has stopped the
yellow flashing light. The train continues its movement toward the sensor
M. Eventually, the train leaves the sensor L but it has not arrived at sensor
M yet. At this moment the sensor L signals a (new?) train. What should
the state machine do now? Our first reaction — change to the state
Unexpected — will not work. This has been the condition to make the
transition from NoTrain to Present. So, if we use the same condition for
the transition from state Present to Unexpected this transition will be
performed immediately when entering the state Present. We see that the
state machine cannot express the different situations in the analyzed
control system with four states. To specify the behavior of the light control
we need more states.

The Ultimate Control

After the first unsuccessful trials we jump over the many intermediate
solutions that have been explored and present the complete solution.

The control system consists of three state machines: TrafficLight, Light,
and Flash. Light is the state machine that realizes the control sequence
for one direction. Flash is a state machine that generates the yellow
(flashing) traffic light. TrafficLight is the main state machine that controls
directly the red traffic light. TrafficLight enables/disables the functioning
of Flash by commands Cmd_Enable and Cmd_Disable.

© 2006 by Taylor & Francis Group, LLC

172 m Modeling Software with Finite State Machines

Light

The state machine Light “follows” the train and at any time presents the
train position by its states. We need two state machines Light for one rail:
one state machine for each direction. The state transition diagram in Figure
9.23 for Light is as follows: The state transition diagram displays only the
states and transition conditions. The complete specification requires the
Entry, Exit, and Input Actions, which are only indicated in the diagram
by letters E:, X:, I.. The full specification is provided in state transition tables.

If there is no train between sensors L and R, the state machine stays
in the state NoTrain. Depending on the train length many state sequences
are imaginable, e.g.,

B For a short train, which covers only one sensor at a time

NoTrain -> Coming -> Approaching -> Present ->
Leaving -> Going -> NoTrain

B For a long train, which covers two sensors at a time

NoTrain -> Coming -> ApprPresent -> Present ->
LeavPresent -> Going -> NoTrain

B For a very long train, which covers all three sensors at a time

NoTrain -> Coming -> Approaching -> AllPresent ->
Leaving -> Going -> NoTrain

The functioning of the two state machines Light for a rail is mutually
exclusive: if one state machine goes into the state Coming, the “partner”
state machine goes into the state Disabled. This arrangement avoids
erroneous signaling of failures: a proper sequence of events (sensors) for
one direction would be a failure for the other direction.

Comparing the state transition diagram with the diagram specified in
the Design example — Traffic light control section in Chapter 5, we find
the states used there in the main loop:

NoTrain -> Coming -> Approaching ->
Present -> Leaving -> Going

of the present state machine. This main loop has been extended by three
states: ApprPresent, AllPresent, and LeavPresent, which are needed as we
allow trains with any length. The other additional states have been
introduced to cover erroneous situations resulting from false signals from

© 2006 by Taylor & Francis Group, LLC

D71 ‘dnoin swouerq % J0[Ae L, 9 9007 O

2
DelayStart

X:

Delay_OVER

ApprPresent

Light2_NoTrain & Delay_OVER

5 4
Reset_Button No Train Light2_Coming Disabled
E:

Unexpected

W Iosueg | | iosueg

S
S >
s, Sensor_M_NO _NOT
7 e0‘/
N %Q,Q

10
Sensor_2 AllPresent

LeavPresent

E:

E: E:

Figure 9.23 Light: the state transition diagram.

SaUIYDBIN 9]B]S JO SWIISAS

€/l =

174 m Modeling Software with Finite State Machines

Figure 9.24 TrafficLight: a combinational system will do.

sensors. Obviously, the hardware solution was a rather simple example
covering only the sunny-day-scenario.

TrafficLight

Because the state machine Light represents, at any time, the train position,
the state machine TrafficLight can be a simple combinational system. In
other words, it is just a degenerated state machine with one state Init
(Figure 9.24).

The behavior of the two traffic lights — red (controlled by TrafficLight)
and yellow (controlled by Flash) — is then defined by states of the state
machine Light in Table 9.1. We mention in passing that the state machine
Light specified in that project is a kind of Parser type (see the Application
based state machine models section in Chapter 6) state machine: it translates
(by parsing the sensors L, M, R) the train position into states. The states
are then used by the state machine TrafficLight to decode the situation
using a pure combinational system for controlling the crossing lights.

To simplify the logic equations the states are combined in complex
Conditions, e.g., the condition TrainComing is an OR combination of
six states (Coming, Approaching, ApprPresent, Present, AllPresent, Leave-
Present) and describes situations when the train is between Sensorl and
Sensor2 moving toward M or is already on M. Using the complex Condi-
tions the following equations specify the On/Off signals for the Red light:

RedLight_On = Start | TrainComing | Error
RedLight_Off = Disabled | NoTrain | TrainGoing
Similar equations can be defined for the Yellow (Flash) light:

Flash_Enabled = Start | Disabled | NoTrain |
TrainGoing | Error

Flash_Disabled = TrainComing

For several rails the OR-combination for On signal and AND-combination
for Off signal will do. For instance, for two-rail railway we get the
following equations for the Red light:

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines ®m 175

Table 9.1

and Red and Yellow Lights

TrafficLight: Dependencies between Light States

TrafficLight (red) Flash (yellow)
Light state Condition Off On Disable | Enable
Start Start X X
Disabled Disabled X X
NoTrain NoTrain X X
Coming X X
Approaching X X
ApprPresent TrainComing X X
Present X X
AllPresent X X
LeavePresent X X
Leaving TrainGoing X X
Going X X
Unexpected | Error X
Missing X X
RedLight_On = Startl | TrainComingl | Errorl |
Start2 | TrainComing2 | Error2
RedLight_Off = (Disabledl | NoTrainl | TrainGoingl) &
(Disabled2 | NoTrain2 | TrainGoing2)
and for the Flash light:
Flash Enabled = (Startl | Disabledl | NoTrainl |
TrainGoingl | Errorl) &
(Start2 | Disabled2 | NoTrain2 |
TrainGoing2 | Error2)

Flash_Disabled = TrainComingl & TrainComing?2

Flash

The yellow light is not controlled directly by the state machine TrafficLight.
There is a simple state machine Flash (see Figure 9.25), which generates
the flash-cycle and controls the yellow light. The state machine TrafficLight
controls the behavior of the state machine Flash using commands:
CmdEnable and CmdDisable.

© 2006 by Taylor & Francis Group, LLC

176 ®m Modeling Software with Finite State Machines

2 Timer2_OVER

Light_Off

E: X:

Timer1_OVER & Cmd_Enable

Figure 9.25 Flash: the state transition diagram.

System for Two-Track Railway

The diagram in Figure 9.26 shows the state machines system required for
a two-track railway. It is interesting to note the unconventional system
structure. It is not a hierarchical system. The main state machine TrafficLight,
which in fact controls the traffic light, is a combinational system that uses
the states of the state machines Light as inputs.

The state machines Light create a layer that “translates” the train
movements into definite train positions. Knowing the train positions, the
control problem simplifies to a pure combinational system solved by
TrafficLight. The approach can be extended to more tracks, and we may

0:Di:L 0:Di:M 0:Di:R 1:Di:L 1:Di:M 1:Di:R

A h 4 A4 ¢ l h 4 \ 4 A4 h 4 i l A

S — S —
LightOiLeft [* o°°7| LightO:Right Light1:Left [*o°T| Light:1:Right
I— State —»| — State —»|

|—State StateJ
1) 1

TrafficLight
|—Cmd—¢
Flash
oo
Do:Light Do:Flash

Figure 9.26 State machines for controlling a two-track railway.

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines ®m 177

notice that, once a state machine has been designed, further instances
can be added to the project very easily.

The implementation of the TrafficLight project in StateWORKS is shown
in Appendix N Traffic light project. You will see that there is nothing
much in the Init state transition table of the state machine TrafficLight,
and that the logic is located in the Always table.

Summary

Is the solution the best one? Nobody can answer this question. We like
it and it works perfectly, so we stopped searching for better solutions.

We may have questions, especially considering the state machine Light.
It may seem an overkill to use so many states. Considering the basic
representation of train movement, we started with two states (NoTrains
and Present) and ended with nine states (NoTrain, Coming,... Going).
We have shown that the minimal solution could not work but we have
not proved that we really need nine states. Maybe a smaller number will
do. We have of course tried other solutions. If we were to design a
hardware system with a limited number of flip-flops (nowadays this does
not seem to be a problem either), we would try to minimize the number
of states. Using Automata Theory design methods we can arrive at a state
transition diagram with a minimal number of states (see the minimal
solution with six states in Figure 5.3, Design example — Traffic light
control section Chapter 5).

But the solution is not adequate as the software solution covers more
than the requirements defined for the hardware project. But we do not
want to invest more time tuning the number of states as there are two
problems with Automata Theory approach:

B How many people know and are able to effectively use the
Automata Theory methods?

B A solution with the minimal number of states is often less com-
prehensible than a system with intuitively defined states.

In a software implementation the number of states does not significantly
influence the needed memory, so other factors are important. In software
implementations we should choose clear, understandable solutions. This
should not be understood as encouragement to overuse states. In this
specific control system we have the impression that the states used
represent very well the train position, which is the essential information.
Paraphrasing a well-known rule we would recommend:

We use as many states as we find necessary but no more.

© 2006 by Taylor & Francis Group, LLC

178 m Modeling Software with Finite State Machines

With this example of traffic light control we would like to send a
message: do not underestimate the control problem. At a first glance, the
traffic light control may appear a trivial exercise. It may be simple if we
limit our considerations to a sunny-day-scenario with one train going in
one direction, but such a solution is without any practical value. It is a
non-trivial problem if we discuss it seriously, taking into account the real
situations that may occur in such a system. The task of a control system
is to react not only to expected, routine sequences but also to manage
unexpected situations that may appear once a year or even once in the
system lifetime. Correct actions in these rare situations may save human
life or save costly damage to hardware equipment.

The example demonstrates how to cover unusual situations in a control
system. Problems arise from the rarely occurring but dangerous, erroneous
situations that make the design of control systems difficult and justify all
the effort needed to design a good control system.

One must bear in mind that the complexity of a state machine is not
just a matter of the numbers of states and transitions. We have encountered
situations where a very complex process, in fact extremely difficult to
express correctly in code, has been expressed by means of a state machine
with only four or five states. This state machine seems to be quite simple,
until one examines the very complex expressions governing state transi-
tions, and the lists of entry and exit actions associated with some of the
states. Then one realizes that one is dealing with a complex entity and
begins to understand why coding would be difficult, and where the
advantage of a state machine approach lies, with its coherent framework
for expressing the complete behavior of the system.

We should also not forget that examples we can illustrate in a book
cannot be too complex to be easily appreciated by the reader. The entire
control problem will be seen when designing a true traffic light control
system, being confronted with complete specifications considering avail-
able sensors, actuators, and especially in this case safety requirements.

Conclusions

The examples we gave represent fragments of a typical design procedure.
We start to analyze the control system and produce the first trial solution.
Doing this we learn better the requirements. After several trials we under-
stand the problem and we do the first system design where we decide
about the overall structure of the system: inputs, outputs, type and number
of state machines and their interface (in fact, we decompose at this moment
the control task into manageable entities and determine how these entities

© 2006 by Taylor & Francis Group, LLC

Systems of State Machines ®m 179

cooperate). The system design may not be the ultimate one. It may be
changed if during the preparation of state machine specifications we
encounter problems whose solutions require changes to the system design.

We could not show all the steps, errors made, all the defeats and
triumphs that accompany the design process. We presented just the first
unsatisfactory trial and then the ultimate solution, ultimate from our point
of view. We would not be surprised if somebody finds a better solution.

Implementation

A state machine or a system of state machines specified according to rules
presented in Part II described fully the behavior of the controlled appli-
cation. The specification contains all details; i.e., there is no need to
complete it later with some features which were (intentionally?) left for
the implementation. Even if we really forget something we can always
return to the specification and add the missing feature as we have shown
that there are no limitations in the presented method.

If the specification is complete we could think about its execution, at
least for testing purposes. Having an executor that carries out the speci-
fication we would get a possibility to test it for logical errors. After those
tests we are sure that the specification is nearly perfect. If we make still
another step and add to the executor of the specification input/output
and user interfaces there is no need to strive after another (coded)
implementation — that executor would be the implementation.

As we have gained experience designing the examples we can now
expand the already defined design rules formulating the following
recommendations.

Designing a State Machine

B Choose good expressive names for states and conditions.

B States of a state machine must contain the full control
information on its abstraction level.

B Start with sunny-day-scenarios and refine.

B The highest priority should be given to transitions to error
signaling states; the expected transition should be placed at
the end in the state transition table, with lowest priority.

B Use timers guarding against deadlocks in state machines that
communicate with external signals.

B Consider the integration into a system of state machines.

© 2006 by Taylor & Francis Group, LLC

180 m Modeling Software with Finite State Machines

Designing a System of State Machines

B Use a hierarchical structure if there are no obvious alterna-
tives.

B Use Master-Slave (command-state) interfaces for communi-
cation between state machines.

B Keep strict handshaking rules for synchronizing Master with
Slaves.

B Use bottom-up design.

B Avoid corruption of the hierarchy by “wild” links among
state machines.

B Use timers guarding against deadlocks only in state machines
that communicate with external signals.

We see that by following the rules we are able to achieve an executable
specification, and the executor that executes the specification can be the
application or at least a frame for the application. This kind of software
realization is the topic of the following part.

© 2006 by Taylor & Francis Group, LLC

Part 11l .

STATEWORKS:
PRINCIPLES
AND PRACTICE

Chapter 10
StateWORKS

Virtual Environment and Vism

In the Any class of signal may “contain” the control value section in
Chapter 6, we have shown that instead of trying to express all control
expressions in terms of Boolean values we may operate on names describ-
ing the control inputs. Formalizing this approach and completing it with
positive logic algebra gave rise to the Vfsm method. Vfsm stands for
Virtual Finite State Machine, where the name “virtual” characterizes the
environment in which the Finite State Machine operates. The concept of
the Vfsm method was first presented by Wagner.!? The achieved results
were shown by Wagner et al.?>

The basis of the Vfsm method is the concept of a virtual environment,
which is defined by three sets of names:

B Input names representing control values
B Output names representing actions
B State names

The Input and Output names represent pure control information derived
from some real signals. To distinguish them from real signal values and
to underline their abstract content, we consider and call them as virtual
values. State names do not have any equivalents in the real world — they
are a product of our imagination and help us to describe behavior. As
such, there is no need to call them virtual but state names are by definition
abstract and therefore fit perfectly into the virtual environment.

183

© 2006 by Taylor & Francis Group, LLC

184 m Modeling Software with Finite State Machines

The virtual environment implements the idea of separation between
data and logic operations. The virtual environment does not know the
data — it is a pure control concept.

The StateWORKS Development Environment

StateWORKS is the practical implementation of ideas formulated in Part
IT of this book. Introducing control values and actions in a virtual envi-
ronment should produce a software development system in which the
application behavior is specified and not coded. In other words we are
discussing an executable specification.

StateWORKS uses a state machine model for expressing behavior. The
used state machine model must be defined to the last details because the
results of the specification are not vague descriptions of intention but are
used by the runtime system. Therefore, StateWORKS defines a state
machine execution model, which a designer must have in view while
designing a state machine.

A state machine is a decision machine. Decisions are logical expressions
governed by rules of Boolean algebra. Unfortunately, we cannot apply
the rules of Boolean algebra directly to Input names, which are non-
Boolean values. Therefore, StateWORKS introduces a specific Positive logic
algebra, which is a set of rules for using logical operators in a virtual
environment.

Positive Logic Algebra

Sets of names that define the virtual environment are used to build virtual
conditions, virtual input, and virtual output.

The virtual conditions are a set of names — in fact control values.
The virtual conditions are used to express Transition and Input Action
conditions:

B A virtual condition defines a (Boolean) AND operation on names
in the set.

B A group of virtual conditions defines a (Boolean) OR operation
on virtual conditions.

For instance, using conventional set notation:
{Di_ON, Temp_HIGH} {Timer_OVER}
specifies two conditions. The first one reads: Di is ON AND Temp is HIGH.

© 2006 by Taylor & Francis Group, LLC

StateWORKS m 185

The second one reads: Timer is OVER. Together they specify a logical
expression:

(Di_ON & Temp_HIGH) | Timer_ OVER

To hide from the user the set definitions and operations, which are less
comprehensible than Boolean equations, we use in StateWORKS Studio
the logical expression with the symbols & for the logical AND and | for
the logical OR operation.

With this arrangement we achieve a user-friendly development envi-
ronment where logical conditions are expressed in the way to which users
are accustomed. As the NOT operation is not applicable here and is not
used, we call the rules positive logic algebra.

The virtual input (VD) is a set of names — control values describing
the actual input (subset of Input names). For instance:

{Di_ON, Temp_LOW, Timer_OVER}
specifies the input well described by the names used: the digital input Di
is ON and the Temperature is LOW and the Timer is OVER.

VI contains by default a name always. Thus, VI can never be empty;
it contains at least the name always. The existence of that name simplifies
specification — the name is used to specify a condition that is always
true. Actually the previous example of VI has the strict form:

{always, Di_ON, Temp_LOW, Timer_OVER}
The virtual output is a set of names — actions that are needed for
output definitions (subset of Output names). For instance:
{Do_On, Cmd_Stop}

specifies actions to be performed: the digital output Do is On and the
command Cmd has the value Stop.

The Vfsm Execution Model

A Vfsm is thus a state machine specified and operating in a virtual
environment:

B The Transition and Input Action conditions are expressed using
virtual conditions.

B Actions are expressed using virtual output.

B The actual input is represented by VI.

The Vfsm Executor compares continuously the VI with those Transition
and Input Action conditions relevant to the present state and works out
the transitions and actions to be done:

© 2006 by Taylor & Francis Group, LLC

186 m Modeling Software with Finite State Machines

virtual
input (VI)

—» wait for VI change

input action
condition

execute input

eS| .
y actions

transition

condition yes-»| execute exit actions

4
execute entry actions [« change state

Figure 10.1 The Vfsm execution model.

B Perform an Input Action if the Input Action conditions are fulfilled.

B Change a state if the Transition condition is fulfilled.

B Perform all Exit (in the present state) and Entry (in the next state)
Actions if the state changes.

The Transition or Input Action condition is fulfilled if any set of corre-
sponding conditions is a subset of VI.

The complete execution model of the Vfsm is described by the flow-
chart shown in Figure 10.1. The Executor waits for a VI change. If it
occurs, the input conditions of all Input Actions are checked, and if due,
the corresponding Input Actions are carried out. Then the Transition
conditions are checked — the first transition that is due is carried out:
the Exit Actions are executed, the state is changed, and the Entry Actions
in the new state are executed. In the new state the Transition conditions
are checked, and if due, the next transition is done. This process is
continued until there are no transitions due in the state that has been
reached — then the Executor returns to the waiting point.

The commitment to this specific execution model is not arbitrary. It is
based on practical experience and many years of discussions and consider-
ations. We believe that it is a good compromise among several requirements,
when considering the imaginable sequences of transitions and actions. The
characteristics of the Executor model can be summarized as follows:

© 2006 by Taylor & Francis Group, LLC

StateWORKS m 187

B An event is a change of the virtual input and not a change of
object data. In addition, providing the same data value does
not generate an event — an event is produced by a change.

B A single event is able to trigger a series of several state
transitions. All Entry Actions in entered states (intermediate
and final) are performed but only Input Actions due in the
starting state are carried out; Input Actions in intermediate
states are ignored.

B The first state transition, which is due, is performed — the
sequence of checking determines the priority (defined by
the sequence in the state transition table).

® All Input Actions that are due in the present state are carried
out but their execution sequence is unpredictable. Hence,
we must not make any assumption about their order: any
required sequence of outputs can be only achieved by
arranging a sequence of states.

B The same rule relates to Entry and Exit Actions. If many of
them are carried out in a given state, their sequence is
unpredictable.

Objects

The Vfsm definitions are sufficient for coded implementations according
to rules described in Part II of this book.

The primary goal of StateWORKS has been to completely eliminate
coding of the control logic. To achieve this, StateWORKS operates on
objects that store values and translate them into control values and sets
outputs in response to actions. In other words, an object is an interface
between the physical signals and the virtual environment. To manage
objects effectively they are organized in a Real Time Data Base (RTDB;
see also the StateWORKS execution environment section below).

The physical signals are very heterogeneous. It is difficult, maybe
impossible to cover them with one universal object. Therefore, State-
WORKS defines various object types covering a large variety of imaginable
signals: it is possible to add extra objects if needed. There are two groups:
input and output objects. There is also a group of objects that possess
both features: those of inputs as well as output objects. Table 10.1
summarizes the basic control features of objects.

The full characterization of objects is more complex. The table contains
only control features and actions required for the virtual specification. The
complete descriptions are supplied in the following chapters discussing
details of objects, their properties, and use.

© 2006 by Taylor & Francis Group, LLC

188 m Modeling Software with Finite State Machines

Table 10.1 RTDB Objects
Object Description | Value Type Control Values Actions
VFSM Vism State state -> number —
(integer > 0)
CMD as Command | Command name -> number | Clear
CMD-IN (integer > 0)
CMD as Command | Command - name ->
CMD-OUT (integer > 0) number
TI Timer Counter RESET, STOP,RUN, | Reset, Stop,
value OVER, Start,
OVERSTOP ResetStart
CNT Counter Counter RESET, STOP,RUN, | Reset, Stop,
value OVER, Start,
OVERSTOP ResetStart,
Inc, Dec
ECNT Event Counter RESET, STOP,RUN, | Reset, Stop,
Counter value OVER, Start,
OVERSTOP ResetStart,
Inc, Dec
uDC Up/down | Counter UNDEF, DEF, Clear, Up,
counter value CHANGED, INIT | Down
SWIP Switch- Supervised OFF, LOW, IN, Off, On
point value HIGH,UNDEF
STR String Supervised OFF, INIT, Off, On, Set
string MATCH,
NOMATCH, DEF,
ERROR
XDA Number Integer > 0 number > 0 number > 0
OFUN Number Integer number number
DI Digital Boolean UNKNOWN, —
input value LOW, HIGH
NI Numerical | Number UNDEF, DEF, —
input (type CHANGED
defined by a
Format
property)

© 2006 by Taylor & Francis Group, LLC

StateWORKS m 189

Table 10.1 (continued)

RTDB Objects

Object Description | Value Type Control Values Actions
DAT Any input | Number UNDEF, DEF, —
(type CHANGED
defined by a
Format
property)
PAR Parameter | Number UNDEF, INIT, DEF, | —
(type CHANGED
defined by a
Format
property)
DO Digital Boolean — Low, High
output value
NO Numerical | Number — Off, On, Set
output (type
defined by a
Format
property)
AL Alarm Number — Coming,
Going,
Staying
TAB Demulti- Integer > 0 — Number
plexer (index)
UNIT List of — — —
objects

Objects representing pure input features are DI, NI, DAT, and PAR.
They store the input values (or parameters) and generate the control values.

Objects representing pure output features are: DO, NO, AL, and TAB.
They are controlled by actions and they set the output values.

The largest group contains objects that are both inputs and outputs:
CMD, TI, CNT, ECNT, UDC, SWIP, STR, XDA, and OFUN. The last object —
OFUN — is a kind of software interface allowing calls of user-written,
application-specific functions which extend the range of possible object
types.

VFSM is an object that stores the behavior specification of the state
machine, the virtual input, and a state (control value).

UNIT is of no direct interest in relation to control. UNIT is just a list
of objects that are used in the physical grouping of I/O handlers and
Output functions.

© 2006 by Taylor & Francis Group, LLC

190 ®m Modeling Software with Finite State Machines

All object types have also Description properties: Text and Link.
Those properties are outside the scope of the book. They are used for
XML documents generated by StateWORKS Studio and are described in
StateWORKS Studio help.

State Machine Defines Object Control Values

All input or I/O objects possess control features; i.e., they generate control
values used for state machine specification. Those values reflect the states
of input signals (e.g., DI, ND), data (e.g., PAR or DAT), or a state of a
computer resource used (e.g., TI, CNT). In other words, control values
present aspects of the behavior of those objects. That behavior can in fact
be described by a state machine. We use this kind of description in the
following chapters, which specify the RTDB objects. For each object type
we draw a state machine illustrating its behavior (see, e.g., Figure 11.1
for DI, Figure 12.1 for DAT, Figure 14.1 for CNT, etc.). States (written in
uppercase) of those state machines are the control values of the corre-
sponding objects.

Signal Lifetime

Objects store data and corresponding control values. Both data and control
values may lose their meaning in certain situations. In general, we may
speak about (limited) lifetime of control signals. This problem relates
especially to data coming from outside: peripheral devices (hardware) or
files.

Hardware itself or the path from hardware to the RTDB may break
down and the information delivered by drivers and I/O handlers ceases.
Especially objects of type DI and NI can be affected. Therefore, these
object types should have a control value (UNKNOWN or UNDEF), which
informs directly about the arisen situation.

A similar problem may occur when loading parameters from a disk or
network on system start-up. For instance, a missing file should be signaled
with a control value (UNDEF) of the PAR object.

A special case is the use of CMD objects. A command is a signal whose
value can be only replaced by another command. A command is not
generated by some physical events — a command is issued as a result
of a designer’s decision. In other words, a designer defines the lifetime
of a command. We have discussed the problem already (see the Signal
lifetime section in Chapter 7).

The situations caused by hardware malfunctions could, of course, be
solved using separate signals, but integrating detection and signaling of

© 2006 by Taylor & Francis Group, LLC

StateWORKS m 191

such erroneous cases works more smoothly if the control value of affected
data provides a corresponding value.

We encounter a similar problem when writing functions managed by
OFUN objects. When writing such output functions we have to provide
a return value that informs about erroneous situations — this value can
then be treated as a control value, telling us about any unfortunate
calculations.

Behavior Specification

The task of a VFSM is to react to input changes, working out appropriate
outputs. Input stimuli are stored in the RTDB and are “seen” by VFSM as
control values. Control values are static signals that reflect the outside
world and change according to changes of physical input signals. The
outputs are set by VFSM as actions, which are then transformed into
physical outputs. Having this model in mind we specify the behavior
using the state machine execution model shown in Figure 10.1. We may
do it in a development environment such as StateWORKS Studio, which
makes several editors available to create State Transition diagrams (ST
diagram), State Transition tables (ST table), State Machines System
(SMS) diagrams, and Objects and their Properties. The ST diagram and
the ST tables are used to specify a single state machine. The SMS diagram
helps in the specification of a system of multiple state machines.

First, we must discuss the use of Input and Output names. Any object
has control values that may be used for control specification. As we have
several objects of the same type we must distinguish among their control
values. We do it by naming them according to their meaning. For instance,
a control value OVER for a timer object Timeout would get the
name Timeout_ELAPSED and for another timer object —
MyPatience_EXPIRED. The same applies for actions. For instance, a
Do High value switching the Motor will get the name Motor_On and
another Do High value closing a valve will get the name Valve_Close.

The necessity of inventing State names is obvious — those names are
the basis of any specification that uses state machine models.

StateWORKS Studio uses diagrams and tables already introduced and
discussed in Part II of this book. For now, we confine ourselves to an
example of a table explaining the detailed specification. For this purpose
we take a table from the previously discussed state machine Pressure (see
Figure 10.2). The table specifies a state Starting using Input names, Output
names, and State names.

The Input names that we need to create are the names assigned to
those control values we shall use, taken from the set of possible control
values of the objects we wish to use. This means that before we create

© 2006 by Taylor & Francis Group, LLC

192 m Modeling Software with Finite State Machines

Several activities are initiated. Waiting for Pressure acknowledgments. Due to a Timer missing
acknowledgment leads to return to the Idle state. Too hot a pump leads to the PumpError state.
Both erroneous situations generate corresponding alarms. Error by accessing the output function
returns the state machine also to the state Idle: it does not make sense to supervise the
pressure without having proper pressure limits (corresponding alarms are generated in Always

table).
Starting Entry action MyCmd_Clear
SetPressure_Set
Counter_ResetStart
Timer_ResetStart
Ofun_CalcLimit
eXit action Timer_Stop
RequiredPress_ CHANGED Timer_ResetStart
Timer_OVER Al_PressureError
PumpError Pump_TooHot
Idle Timer_OVER |
Ofun_OwnerError |
Ofun_ParameterError
Regulating Press_OK

Figure 10.2 An example of an ST table.

names we have to decide which objects will be used by the state machine.
Then we create names for object values. For instance, because we have
to supervise the pressure we need the SWIP object. The SWIP object (see
the Getting the control value (SWIP) section in Chapter 12) has five possible
control values: OFF, LOW, IN, HIGH, and UNDEF. So, we shall create a
Press_OK name for the control value IN.

Similarly, the Output names used signify actions and are created using
possible actions (commands) on the output objects. For instance, as we
need a timer (TI object type, see the A timer (T section in Chapter 14)
to guard the state Starting we invent an Output name
Timer_ResetStart corresponding to the command ResetStart for
a TI. Note that a timer is controlled by actions, but it also generates Input
names (e.g., Timer_ OVER created on the control value OVER). Other
Input names (Pump_TooHot and RequiredPress_CHANGED) have
been created in a similar manner on input objects: Di and Par. Similarly,
other Output names (MyCmd_Clear, SetPressure_Set,
Counter_ResetStart, Ofun_CalcLimit, Al_PressureError)
have been created on objects: MyCmd, No, Ecnt, Ofun, and Al

© 2006 by Taylor & Francis Group, LLC

StateWORKS m 193

Specification of state independent actions. If the Required Pressure value changes:
- the Error Counter is reset,

- the Pressure Limits are recalculated,

- the Pressure value is set.

Always RequiredPress_ CHANGED Counter_ResetStart
Ofun_CalcLimit
SetPressure_Set

Figure 10.3 An example of a table Always.

The State names are just freely invented names that we need to better
describe our Vfsm design to help understand it later.

There are three possible transitions from the state Starting to the states:
PumpkError, Idle, and Regulating. The positions of those transitions in the
table are important — they determine priorities, with PumpError having the
highest priority. In contrast to transitions the actions are not prioritized —
their positions in the table are insignificant. This rule applies to all types:
Entry Actions, Exit Actions, and Input Action expressions.

The Input Actions specified in the State transition table may not be
complete. If the state machine has actions specified in the table Always,
these are equivalent to Input Actions specified in each State Transition
table. Such Input Actions are placed in the table Always as a shortcut.
They contain state-independent Input Actions, i.e., actions that will be
checked and carried out if due in any state. So, in the example the Input
Actions in the state Starting are complemented by the Input Actions
specified in the table Always (see Figure 10.3).

One state machine has limits. Those are not limits of the state machine
itself, but rather of the human beings who are able to comprehend and
keep under control problems of limited size. Therefore, we should parti-
tion a more complex control problem into several state machines. The
state machines communicate among themselves as described in Chapter 15
VESM and Its Interfaces.

To illustrate the communication using Commands and State we take
another already known example — the system of state machines in the
project Pumps. We will analyze the state StartingPressure (see Figure 10.4).
Main is a Master of three state machines: two machines of type Pressure
and one of type Device.

On starting a specification of a system of state machine we have a
problem. We have already specified state machines as regards their behav-
ior, but each may have many instances; effectively we have specified
behavior of certain types of state machines. As the system does not yet
exist we have to assume that it will be created at some stage and for now

© 2006 by Taylor & Francis Group, LLC

194 m Modeling Software with Finite State Machines

An intermediate state where the state machine waits for Pressure slaves acknowledgments to
the commands Start sent to them on entering the state.

Receiving positive acknowledgments: Starting or Regulating it goes to the state.
PressureStarted, otherwise it returns to the state Idle. Receiving Error states from slaves it
acknowledges that sending the command Break to the slaves.

Note missing timer - the slaves are responsible for that, the Main master control is based
exclusively on slaves' states.

StartingPressure Entry action Pressure1Cmd_Start
Pressure2Cmd_Start

eXt action

Pressure1_PumpError Pressure1Cmd_Break

Pressure2_PumpError Pressure2Cmd_Break
PressureStarted (Pressure1_Starting |

Pressure1_Regulating) &
(Pressure2_Starting |
Pressure2_Regulating)

Idle Cmd_Stop |
Pressure1_PumpError |
Pressure2_PumpError

Figure 10.4 An example of a state in a Master state machine.

Main
(Master)

Device
(Slave)

Pressure2
(Slave)

Pressurel
(Slave)

Figure 10.5 The idea of Master-Slave system in behavior specification.

we just declare how many Slaves of a given type any Master will have.
Thus, we prepare for some Master-Slave links. For the discussed example
Pumps, we think about something like in Figure 10.5.

From the SMS diagram shown later in Figure 10.6 we learn that the
Main state machine “sends” commands (actions) to its Slaves, Pressurel,
Pressure2, and Device, and uses the states of its Slaves as control values.

© 2006 by Taylor & Francis Group, LLC

StateWORKS m 195

!

Main

(Main)
Pressure2 Pressuret Devicel
(Pressure) (Pressure) Device)

- ©
OfuLimit:02 OfuLimit:01
(OfuLimit) (OfuLimit)

Figure 10.6 An example of an SMS diagram.

In the state transition table of the state StartingPressure the details of
the control are seen. To specify the state we have decided that the state
machine Main will have two equal state machines of type Pressure as
Slaves and one of type Device. The states of state machine Device are
not used in the discussed state StartingPressure; hence, we concentrate
on the two Pressure Slaves. Hence, we have declared two VFSM objects
(see A virtual finite state machine (VFSM) in Chapter 15) of type Pressure
and two CMD objects (see A command (CMD) in Chapter 15) of type Pressure
in the Main VFSM. By declaring those objects the states of the Pressure Slaves
are made available in the Main specification and can be used as control
values. Thus, we create the names:

B Pressurel_Starting (on the State name Starting of Pressurel)

B Pressurel_Regulating (on the State name Regulating of
Pressurel)

B Pressurel_PumpError (on the State name PumpError of
Pressurel)

© 2006 by Taylor & Francis Group, LLC

196 ®m Modeling Software with Finite State Machines

We create similar names on State names of Pressure2:

B Pressure2_Starting
B Pressure2_Regulating
B Pressure2_PumpError

Similarly, we create Output names:

B PressurelCmd_Start (on the command name Cmd_Start of
Pressurel)

B PressurelCmd_Break (on the command name Cmd_Break of
Pressurel)

and Output names on command names of Pressure2:

B Pressure2Cmd_Start
B Pressure2Cmd_Break

Having those names we use them to specify the state machine:

B Input names for declaring state transition and Input Action conditions
B Qutput names for declaring actions

We see that the usage of VFSM states as control values corresponds to
creating Input names by using any other RTDB objects (this will be even
more obvious if we understand that object control values are states of
state machines that describe their behavior).

The use of Slave commands as actions requires further discussion,
which will be done in detail in A command (CMD) in Chapter 15. At this
point we would only outline the topic, referring to Figure 15.3 in Chapter
15. A command is stored in an object of type CMD. The CMD object has
two aspects. On the one hand, it belongs to a certain state machine where
its values may be used as control values (Input names). On the other hand,
the commands must be set by somebody. In the example, CMD objects,
which belong to state machines Pressurel and Pressure2 (as well Device),
are also accessed by the state machine Main. The state machine Main uses
actions such as PressurelCmd_Start or Pressure2Cmd_Start to
send corresponding commands to Slaves: Pressurel and Pressure2. The
same CMD obijects are treated in Pressurel and Pressure2 state machines
as input commands and used in Transition and Input Actions condition
to control their behavior.

© 2006 by Taylor & Francis Group, LLC

StateWORKS m 197

System Specification

All that we have said so far refers to a (virtual) specification of state
machines. Behavior of each state machine is specified in ST tables sup-
ported by an ST diagram. It is similar to a definition of a type or a class
in a programming language.

The next step is to specify objects needed to implement the designed
control system, which is similar to declaring variables, e.g., instances of
classes. This specification includes definitions of links between objects:

Master — Slaves

Supervised objects (e.g. NI) — Supervising objects (SWIP, STR)
Inputs and Outputs (e.g. D) — I/O handlers

Used objects — Output functions (OFUN)

Parameters (PAR) — Parameterized objects (e.g. TD

In this specification process we determine also object properties (see
descriptions of objects in the following chapters).

Having specified the system we are able to get the entire view of the
system of state machine in the form represented by an example in Figure
10.6. The SMS diagram shows all state machines and UNITs used and
how they are linked. The lines with arrows display the Master <> Slave
(command <> state) links: an arrow to a Master (the upper state machine)
indicates the Slave’s state; an arrow to the Slave (the lower state machine)
indicates the Master’'s command. Other bindings (e.g., XDA) or to UNIT
and OFUN are indicated using lines with a small rectangle. By placing
the cursor over an arrow or a rectangle a tool tip appears displaying
name(s) of involved objects.

Now we are able to build the system, producing the files required by
the StateWORKS execution environment.

The StateWORKS Execution Environment

The core of the StateWORKS concept is the executable specification. The
results of the state machine specifications are files that contain the entire
knowledge about the application’s behavior. The form of the files is
adjusted to the RTDB; i.e., if loaded into the database they become
executable. The RTDB is the heart of a StateWORKS runtime system. The
full application requires output functions and I/O handlers. Output func-
tions contain that application specific functionality, which cannot be
realized by RTDB objects. The I/O handlers are the interfaces to peripheral

© 2006 by Taylor & Francis Group, LLC

198 m Modeling Software with Finite State Machines

devices — to the controlled system. For completeness we should also
mention the user interface, but it is not an integral part of the StateWORKS
runtime system — it is a foreign program, which communicates with the
RTDB via TCP/IP.

RTDB-Based Runtime System

We have already introduced the term RTDB as a database containing
objects that represent all the signals required for control of an application.
But the RTDB is much more than that. It is not only a collection of
objects — it contains the Vfsm Executor, which carries out control accord-
ing to the Vfsm execution model (see Figure 10.1).

The RTDB is available as a library and is used to build applications.
Figure 10.7 shows the basic components of such an application. It contains:

B The RTDB with the Vfsm Executor
B The I/O handlers
B The Output functions

The RTDB with the Vfsm Executor is a fixed code independent of the
application. The specifics of the application are determined by the Control

—input—i
~-output-—

Y

1/0O Unit RTDB

(Objects: state
machines,
commands,
timers,
User written p| digital inputs,

functions digital outputs,
parameters,
etc.)

TCP/IP i
Monitoring
interface

Virtual Input
StateWORKS Studio
development
environment % Load by systerg
iaeaions I

VFSM
Executor

Figure 10.7 A Vfsm runtime system.

© 2006 by Taylor & Francis Group, LLC

StateWORKS m 199

Specification, the I/O handlers, and the User-written output functions. The
Control Specification consists of a set of files produced by the State WORKS
Studio and read at start-up of the runtime system.

The runtime system communicates with the controlled system via I/O
handlers, which deliver input signals to the RTDB and pass output signals
from the RTDB. RTDB objects are accessible using a TCP/IP link — this
is mostly used for user interfaces, but it may be also used as a substitute
for I/O handlers, or for various other purposes.

The Vfsm runtime system is an event-driven system, where the event
is a change of a control value. A data change in the RTDB (input via I/O
handlers, parameter via user interface, internal event like timer expiration)
may cause a change of control values, i.e., a change of state machine
virtual inputs (one or more). Such a change triggers the Vfsm Executor,
which performs actions and state transitions according to information in
Control Specification. Those state transitions and actions may change other
control values and in turn corresponding virtual inputs; all of them are
treated one by one in the emerging sequence until all events are fully
processed.

Output Function

The applications will often require data processing that cannot be per-
formed by RTDB objects. Typical examples are calculations of limits, time,
etc. The RTDB contains an object OFUN (see An interface to a user written
Jfunction (OFUN) in Chapter 15) to handle such problems. The OFUN
object is a software interface allowing expansion of the RTDB functionality.
This object itself cannot process data but it manages the actions which
call the required C/C++ function(s), and it serves as a source of control
values that may be used for behavior specification. The OFUN control values
are the return values (integers) of the called functions. The called function
may return calculation results; at least the information whether the calcu-
lations were successful or failed — all of those return values represent
control values.

The definition of an OFUN object is based on a UNIT, which defines
RTDB objects accessible by the called function. As a simple example, the
Pressure state machine uses a SWIP object to supervise a pressure repre-
sented by numerical data stored in an NI object. The allowable pressure
range is defined by Limits of the SWIP object. In this example the Limits
cannot be constant values as they depend on the required pressure value
and the allowed pressure deviation from it. All those dependencies are
shown in Figure 10.8. The OFUN calls a function that calculates the Low
Limit and High Limit for the SWIP using the parameter values: Required
Pressure Value and Pressure Deviation.

© 2006 by Taylor & Francis Group, LLC

200 ®m Modeling Software with Finite State Machines

Control values
(LOW, IN, HIGH,
UNDEF, OFF)

Pressure —pl NI F——»] SWIP —»

Low High
Required Limit Limit

Pressure Value PAR

Pressure | /

Deviation PAR

OFUN

Figure 10.8 Example of dependencies in OFUN definition.

Thus, the UNIT used by the OFUN must contain a list of objects which
the calling functions are to access:

B PAR: Required Pressure Value
B PAR: Pressure Deviation
B SWIP: Supervising Pressure (NI

The application contains two Pressure state machines. Therefore, the
system has two OFUN objects and each has its own UNIT (OfuLimit:1
and OfuLimit:2 in Figure 10.6, see also Appendix M Output function
CalcLimit()). A VFSM object may be used as a substitute of a UNIT if it
contains all objects required by the output functions.

1/0 Handler

The RTDB possesses a software interface for linking RTDB objects with
the outside world (Inputs and Outputs). The interface is a set of methods
of C++ classes, which are used to write I/O Handlers. The use of 1/O
Handlers is not limited to the obvious communication with hardware
peripheral devices. From a programmer’s point of view an I/O Handler
(and its definition UNIT) is a gateway to the RTDB. We may access the
RTDB objects for any (reasonable) purpose. For instance, instead of using
Output functions defined explicitly for such purposes (via OFUN), we
may concentrate all the application-specific programming part in I/O
Handlers.

Similar to output functions, when programming an I/O Handler the
software developer needs a list of RTDB objects that must be accessed
from the I/O handler. The list is defined by a suitable UNIT. The obvious
candidates for the list are DI, DO, NI, NO objects, which represent digital
and numerical inputs and outputs. Of course, any other object may be

© 2006 by Taylor & Francis Group, LLC

StateWORKS m 201

declared in the list if required. As for OFUN, a VFSM object may be used
as a substitute for a UNIT if it contains all objects required by the I/O
Handler.

User Interface

The RTDB contains the TCP/IP interface for communication with objects.
The RTDB is a server, and foreign programs that want to communicate
with the RTDB must be clients. The server—client model of the State WORKS
runtime system is shown in Figure 10.9 and uses a port with two sockets:
Request/Reply and Event/Ack. If connected, a client may send a Request
(or Poke, Advise), which is answered with a Reply. If “advised” (when
registered as a client®), the client receives events that have to be acknowl-
edged.

RTDB objects are complex items. Each object contains several attributes
(values), which can be separately read or changed. Two examples are
shown below (Table 10.1 and Appendix S: Attributes of RTDB Objects
show the attributes of all objects):

B DI: Peripheral Value (PeV), Service Mode (SvM), Service Value
(SvV), Trace (Trc), and State (Val)

B TI: Time-out value (CnC), Running counter value(CnR), State name
(StN), Trace (Trc), Timer base (Uni), and State (Val)

A client may request or change (if it makes sense and is allowed) any
object attribute. A client may register to any object attribute so as to be
notified of any change. Hence the RTDB server—client model incorporates
both the synchronous transmission for Request and the asynchronous
transmission for Events sent as notification to registered clients for those

attributes.
RTDB based User
application Interface
(server) (client)
- request
reply———»|

vent——»|
- ack

Figure 10.9 The RTDB TCP/IP Server—Client communication.

* Not in a TCP/IP sense but as an object user.

© 2006 by Taylor & Francis Group, LLC

202 ®m Modeling Software with Finite State Machines

For implementation of the TCP/IP communication we can use a static
or dynamic (DLL under Windows) library, which hides the complexity of
the TCP/IP interface, offering a set of functions for establishing the
connection (Connect and Disconnect), for synchronous transfer (Request,
Poke), and for asynchronous transfer (AdviseStart and AdviseStop). The
client must be able to intercept the RTDB events in an appropriate thread.

Recommended Reading

1.

Wagner, F., “VFSM Executable Specification,” Proceedings of the Interna-
tional Conference on Computer System and Software Engineering, The
Hague, the Netherlands, 1992: 226-231.

. Wagner, F., The Virtual Finite State Machine: Executable Control Flow

Specification. Giessen: Rosa Fischer-Low Verlag, 1994.

Wagner, F., Wolstenholme, P., “A modern real-time software design tool:
applying lessons from Leo,” IEE Computing & Control Engineering (Feb-
ruary 2003).

. Wagner, F., Wolstenholme, P., “Modeling and building reliable and re-usable

software,” Proceedings of the ECBS’03, Hunstville, April 2003.
Wagner, F., Wolstenholme, P., Wagner, T., “Closing the gap between soft-
ware modeling and code,” Proceedings of the ECBS’04, Brno, May 2004.

© 2006 by Taylor & Francis Group, LLC

Chapter 11

Digital Input and Output

A Digital Input Has Three Control Values

We begin the discussion of RTDB objects with digital input (DD and
output (DO). Both objects are similar considering their values. In Boolean
algebra they are treated as two values (false, true) signals. In the Vfsm
concept, DI have three control values: LOW, HIGH, and UNKNOWN and
there are two actions defined for DO: Low and High.

Figure 11.1 shows the state transition diagram of a DI object controlled
by the external I/O signals Di_LOW, Di_HIGH, Di_UNKNOWN. We chose
LOW and HIGH deliberately, although they are clearly not appropriate in
all situations. They correspond to an electronic engineer’s view of such
signals, of course. One could argue for the more general names 0 and 1,
or TRUE and FALSE, for example, but we wish to highlight the distinction
between these values and binary Boolean values.

For the DI object the UNKNOWN control value represents missing
information about DI. This means that effectively it plays a role mostly
after a start-up; it may occur also if the hardware interface is down. In
the latter case the I/O Handler must detect the hardware malfunction and
set the UNKNOWN value in the RTDB using the Di_UNKNOWN signal. It
means also that if we define only one control value for the DI object
using either the LOW or HIGH value, the missing entry in VI is ambiguous —
it may mean the not used or the unknown control value and we cannot
use the absence of a control value for formulating conditions (a rule of
our positive-logic algebra).

203

© 2006 by Taylor & Francis Group, LLC

204 ®m Modeling Software with Finite State Machines

OWN Di_UN®

Di_HIGH

Figure 11.1 The DI Vfsm ST diagram.

Example

The example represents a pure combinational system with a digital input
Di and a digital output Do. We use the table Always to define the Input
Action expressions: input conditions and corresponding output actions.
Two Input Action expressions defined in Figure 11.2 say that LED (Do)
is switched On (name used, e.g., for the value High) if Button (Di) is LOW
and is switched Of £ (name used, e.g., for the value Low) if Button is HIGH.
Appendix O DI_DO project describes the details of this example.

Always Button_LOW LED_On

Always Button_HIGH LED_Off

Figure 11.2 Test_DI-DO example: the table Always.

Setting and Clearing the Boolean Output Are Two
Different Actions

In the Vfsm concept each action has its governing command. To control
Do we need two commands; the absence of one command does not
guarantee that the other command is due. This feature has important

© 2006 by Taylor & Francis Group, LLC

Digital Input and Output m 205

¢ DoValve

|

1 » DiWaterHigh

—} » DiWaterLow

Figure 11.3 A water tank control.

DiWaterHigh_HIGH

DiWaterHigh_LOW & DiWaterLOW_LOW

Figure 11.4 A state machine for the water tank control.

consequences, demonstrated with the example Tank, which is a valve
control for a water tank (Figure 11.3).

The tank serves as a water supply buffer. The water level in the tank
is monitored by two sensors. The water is supplied to the tank by a pipe
equipped with an open/close valve. The valve is controlled by a signal
DoValve; e.g., its High level opens the valve, the Low level closes it. If
the tank is empty (DiWaterLow is LOW) the valve should be opened and
it should stay opened until the tank is full (DiWaterHigh and DiWaterLow
are HIGH). If the tank is full, the valve is closed and it should stay closed
until the tank becomes almost empty (DiWaterLow is LOW again).

This simple valve control is a state machine (Figure 11.4) as for the
input condition

DiWaterHigh=LOW and DiWaterLow=HIGH

the output can be High or Low depending on the previous input condi-
tion. Using a conventional automata theory design method we get an
automaton with two states that requires one R-S flip-flop to encode the
states. The flip-flop Set and Reset signals for a hardware design would be:

© 2006 by Taylor & Francis Group, LLC

206 m Modeling Software with Finite State Machines

S = DiWaterHigh & DiWaterLow

R = DiWaterHigh

which in Vfsm convention reads
S = DiWaterHigh_LOW & DiWaterLow_LOW
R = DiWaterHigh_ HIGH

In StateWORKS the state machine is superfluous as the DO object is already
defined as such a state machine (see Figure 11.5).

Therefore, we may solve the water tank control by setting and resetting
DoValve using actions: DoValve_Close and DoValve_Open as shown
in Figure 11.6.

Analyzing a control problem most of us think in categories: the motor,
pump, valve, etc. should be open if “here comes the open action” and
should be closed if “here comes the close action,” which exactly corre-
sponds to the Vfsm concept. Of course, the open/close actions are not
always so simple as in the example and to solve the control problem we
do need a state machine. Anyway, the digital output understood and
implemented as a flip-flop very often simplifies the solution.

In summary, in a situation where a single state machine is a solution,
StateWORKS using the Vfsm concept presents a combinational solution
for the control problem due to the flip-flop function of the DO object.

Set

Reset

Figure 11.5 The DO Vfsm ST diagram.

Always DiWaterHigh_HIGH DoValve_Close

Always DiWaterHigh_LOW & DoValve_Open
DiWaterLow_LOW

Figure 11.6 Tank example: the table Always.

© 2006 by Taylor & Francis Group, LLC

Digital Input and Output = 207

DI and DO Properties

Both object types have only one Property: Invert, which defines whether
the value is negated or not:

B Invert: may be false (value = original) or true (value =
negated).

A detailed description of object use and their properties can be found in
Reference 1 through 3.

Recommended Reading

1. SW Software: StateWORKS. Reference Manual for the Class Library.
2. SW Software: StateWORKS Development Tools. User’s Guide.
3. SW Software: StateWORKS Studio. Help.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC

Chapter 12
Other Inputs

Input Data (DAT)

A digital input is well defined and its control values correspond directly to
its physical value. It is in this respect an exception; other input values with
which we have to deal are not so homogeneous. For example, any data
type can transport control information: integer, float, string, etc. To handle
those data types the RTDB defines a basic data type DAT, which can be
of any type typically used in programming languages. The object of DAT
type is a container for any data, and it can be used, e.g., for storing strings.

Control Values

There are two types of control values generated by a DAT object: the
changes of data and the data value. Although all numerical input objects
possess these two sources of control value, for some of them the changes
of data are important, and for others the data value is used.

The behavior of a DAT object is described by a state machine as in
Figure 12.1. After start-up a DAT object is in the state UNDEF. The first data
change forces it to go to the state CHANGED. If the DAT state is used by
another object (e.g., as Input of a SWIP object — see the next section), it
goes to the state DEF. From this time it loops between the states DEF and
CHANGED: any data change forces it to go to the state CHANGED and if this
event is used (consumed) by some other object it returns to the state DEF.
DAT will return to the state UNDEF if data cannot be kept up to date. This
may occur if a DAT object is used to store inputs delivered by an I/O

209

© 2006 by Taylor & Francis Group, LLC

210 ®m Modeling Software with Finite State Machines

Data_Changed

Figure 12.1 The DAT Vfsm ST diagram.

handler; if the I/O handler fails, it should set the DAT object to the UNDEF
state using the signal No_Data. We may use the DAT states as control values.

In general, all input data objects (DAT, NI, PAR, UDC) have the states
DEF and CHANGED; the rules of changing between them are those
described for the DAT type. In practice there is a need for more specialized
DAT objects. They may differ in initial states, which may be INIT or
UNDEF and the role that the initial state plays. For some objects (PAR)
the initial state is a true initial state, which once left is never reached
again. Other objects (DAT, NI) may return to the initial state to signal a
problem with a data update.

The other source of control value is the data value; i.e., the data stored
by a DAT object may be of interest and we need a way to filter the control
value from the object data. As there are several object types whose data
contains control values, the RTDB has special objects SWIP (for numerical
data) and STR (for string type) to do the job (the alternative would be to
add this kind of feature to each object). If the SWIP or STR object
supervises the data stored in a DAT object the DAT’s own control value
loses its sense and must not be used.

Example

The example shows the use of a data change as a source of a control
value. In the example the state CHANGED of the object DAT is used to

© 2006 by Taylor & Francis Group, LLC

Other Inputs m 211

Always Dat_CHANGED LED_Dat_Changed

Always Di_HIGH LED_Off

Figure 12.2 DAT example: the table Always.

switch on LED (LED_Dat_Changed means LED on). The digital input
Di is used to switch off LED so that we can repeat the exercise (LED_Of £
means LED off). The control is specified in the table Always (Figure 12.2).

Appendix P: Other_Inputs Project describes the details of the project
Test_DAT as an example.

Properties

The object of DAT type is a characterized by two properties:

B Format: any C-like data format (bool, short, unsigned short, etc.)
B Unit: any string (for instance V, A, mBar, m, sec, etc.)

The Unit property has an auxiliary use: it contains any string that defines
a unit of a physical quantity and may be used for a display.

A detailed description of object use and their properties can be found
in References 1 through 3.

Getting the Control Value (SWIP)

The SWIP object is a universal object used to supervise a data value in
other objects. Data in objects like DAT may have an infinite number of
values (theoretically). For control purposes only some of them are relevant
described by ranges as in Figure 12.3.

Actions

To function, the SWIP object is controlled by actions (commands*), which
are, on the one hand, changes of the supervised data (see Figure 12.3):

* We sometimes use the term command or action command as a substitute for
action — it should not be confused with the function of the CMD object type.

© 2006 by Taylor & Francis Group, LLC

212 m Modeling Software with Finite State Machines

Data Value A

High limit
Low limit
- \
¢ >
time
SWIP state: LOW IN HIGH IN LOW

Figure 12.3 SWIP state reflects the control value of the supervised object.

B in: data value is in the range (Low limit >= Data value <= High
limit).

B high: data value is larger than the High limit (Data value > High
limit).

B low: data value is less than the Low limit (Data value < Low limit).

B undef: data value is not valid.

Note that a more complex supervision could be arranged by use of two
SWIP objects to supervise the same data object, so as to have four
boundaries rather than two.

On the other hand, SWIP is triggered by action commands received
from a VFSM object:

B Off: command to disable SWIP
B On: command to enable SWIP

Control Values

The data value changes continuously in time. The SWIP state represents
the control value of the supervised object according to the Limit High
and Limit Low values (see SWIP properties later in the Properties section
below). Figure 12.4 shows the state transition diagram of the SWIP object.

To start the supervision, SWIP must be switched on; i.e., the object
leaves the state OFF and goes to one of the states: HIGH, IN, or LOW.
The supervision loses its sense if the Input data is not valid — it occurs
if the Input object switches to the UNDEF state. This situation is intercepted
by the SWIP object, which then goes into the state UNDEF. All SWIP states
may be used as control values. If the SWIP object supervises data stored
in another object the control value of that supervised object loses its sense
and must not be used.

© 2006 by Taylor & Francis Group, LLC

Other Inputs ®m 213

Figure 12.4 The SWIP Vfsm ST diagram.

Example

The state machine Test_SWIP (Figure 12.5) has a state Mylnit in addition
to the start-up state /nit. The only purpose of this arrangement is to start
the SWIP object in the Entry Action of the state MyInit. The entire control
is defined in the table Always — see Figure 12.6. In the example, to signal
the SWIP changes we use the output LED, which is on (LED_In) if SWIP
is IN; otherwise it is off (LED_High_or_Low).

Appendix P Other_Inputs project describes the details of this example.

Always

always

Figure 12.5 SWIP example: the ST diagram.

© 2006 by Taylor & Francis Group, LLC

214 m Modeling Software with Finite State Machines

Always Swip_IN LED In

Always Swip_HIGH | Swip_LOW LED_High_or_Low

Figure 12.6 SWIP example: the table Always.

Properties
The object of SWIP type is characterized by the following properties:

B Input: the name of the supervised object; the object type may be
DAT, PAR, NI, or UDC.

B Limit Low: a number defining the lower value of the supervised
range; may be a constant value or a parameter name.

B Limit High: a number defining the upper value of the supervised
range; may be a constant value or a parameter name.

A detailed description of object use and their properties can be found in
References 1 through 3.

NI Object as an Extension of DAT Type

The NI type is intended to store data coming from the outside world
(hardware peripheral devices). It is like the DI object but for non-Boolean
values.

Control Values

The behavior of an NI object can be described by the state machine of
the DAT object as seen in Figure 12.1.

The use of an NI state as a control value is rather limited; the change
of an NI value normally does not present any relevant control information.
Much more interesting from the control point of view is the data value,
which is transformed into the control value by means of a SWIP as
described above for the DAT object. Supervising the range of the NI data
by SWIP and the use of SWIP state for control is a typical application of
NI objects (see Figure 12.7).

Properties

Containers that store data may require more properties than DAT so as
to make the use of RTDB objects more convenient. In addition to Format
and Unit, NI contains the following properties:

© 2006 by Taylor & Francis Group, LLC

Other Inputs ® 215

Action command: Off, On

Input
Ni—» NI > SWIP > Control value:
{LOW, IN, HIGH,
UNDEF, OFF}

T

Limit Limit
Low High

Figure 12.7 SWIP supervising NI.

B Scale Mode: none, Lin and Exp
The Lin (linear) mode means that the original input data is scaled
using the formula:

y=a*x+b

The Exp (exponential) mode means that the input original data is
scaled using the formula:

y= ea”erh
where y = output, x = input, a = Scale Factor, b = Offset.
B Scale Factor: float or integer number
B Offset: float or integer number
B Threshold: any float or integer number

The requirement for those properties comes from hardware practice, which
shows that analog input values represent various physical values like
temperature, pressure, distance, speed, etc. These values are produced
by sensors with certain characteristics (linear, exponential) and offsets.
The analog values are converted by analog-to-digital (A/D) converters into
numerical values, such as integer numbers. The outputs of A/D converters
may have also offset or threshold. Of course, the user would like to see
and use the actual value of a physical entity instead of a pure number.
For instance, a value of 572 from an A/D converter is more difficult to
comprehend than a value 36.5 mBar after scaling.

A detailed description of object use and their properties can be found
in References 1 through 3.

PAR Object as a Specific Variant of DAT Type

The PAR type is intended to store data like the DAT object. This time
data does not come from hardware, but represents values stored internally

© 2006 by Taylor & Francis Group, LLC

216 ®m Modeling Software with Finite State Machines

in software and used for defining some application-specific features; the
data may be specified with a default Initial value and is called a parameter.

Control Values

The behavior of a PAR object is specified by a state transition diagram
shown in Figure 12.8. The diagram possesses two initial states: UNDEF
and INIT, which are used to differentiate between process parameters
(PP) and equipment parameters (EP) (see PAR properties). The DEF and
CHANGED state corresponds to similar states of the object DAT.

The PP parameter is valid if loaded by a start-up from a parameter
file. If the parameter file is not loaded, the parameter has the default
Initial value and the PAR object stays in the state UNDEF. The control may
react to a problem during start-up (missing parameter file?) as a PP PAR
object is initialized by a start-up to the state UNDEF.

The EP parameter is always valid as we assume that the system
(computer) resources are available and if the EP parameter is not found
in resources the Initial value is the intended choice. Thus, the EP PAR
object is initialized to the state INIT by a start-up.

If the initial state (INIT or UNDEF) is left the PAR object never returns
there.

The use of a PAR data value to generate control values is rather limited;
if required it is done by SWIP, which gets the PAR object as Input. More
interesting from the control point of view is the PAR state. Especially the
state CHANGED is often used as a trigger to do some actions (see

Data_Changed

Figure 12.8 The PAR Vfsm ST diagram.

© 2006 by Taylor & Francis Group, LLC

Other Inputs ®m 217

Example — Pressure supervision in Chapter 8) where the parameter change
triggers the Output function). Reading of the PAR state “consumes” its
control value and the object returns to the state DEF. Also in that case
we should not forget that the PAR control values and the SWIP or STR
control value cannot be used at the same time: if the SWIP or STR object
supervises the data stored in a PAR object, the PAR control value loses
its sense and must not be used (it will be “consumed” by SWIP or STR).

Properties

Also in this case we would like to have some additional properties to
make the use of parameters as convenient as possible. In addition to
Format and Unit as for the DAT object the PAR type contains the following
properties:

Category: PP or EP, several variants of each

Low limit: any number

High limit: any number

Initial value: any number representing a default data value

The Low and High limit are numbers that may be used by the user, e.g.,
in a user interface; they do not play any role in the RTDB, and they are
especially not used as limits for the Initial value. The Initial value is the
default data value.

The most interesting property is the Category, which may belong to
the PP or EP group.

The PP Category is intended for defining parameters for the actual
process (in terms of controlled processes). In other words PP parameters
are a kind of recipe, which may be changed from time to time. The way
the PP parameters are changed is the user’s responsibility. There are two
variants of PP parameters: PP and PP_Coded where the latter is used to
indicate that its value is generated in program code of an I/O handler or
User Function.

The EP Category is used for defining environmental parameters —
constant for a given application in a given system. In principle, EP
parameters do not change when the application runs. The EP parameters
are stored in system resources (Registry under Windows or a special file)
and loaded during start-up from the resources. If there are no entries in
the resources, the Initial value is taken. There are three variants of EP
parameters: EP, EP_LM_USERS, and EP_LM_ADMIN whose utilization
depends on user rights (single user, all users, and administrator).

A detailed description of object use and their properties can be found
in Reference 1 through 3.

© 2006 by Taylor & Francis Group, LLC

218 m Modeling Software with Finite State Machines

String (STR) as a Specific Variant of SWIP

The DAT object may contain data of string type. As SWIP cannot deal
with such a non-numerical problem, we have the STR object as a super-
visor of string data. For identifying the string content, the STR object
compares the Input (see STR properties) string with one or more pre-
defined patterns. The pattern(s) to be matched must be specified as a
regular expression (RE) as known and used in the software, especially
UNIX, world. In addition to the result control value (MATCH, NOMATCH,
ERROR) the Input string is partitioned into substrings according to the RE
and placed in specified data objects; in case of NOMATCH, the data values
of the destination objects do not change. The substrings are converted to
the destination types.

Actions

Like similar objects (see, e.g., SWIP) STR is controlled by action commands.
There are explicit commands available as actions:

B Off: disables the object.
B On: enables the object.
B Set: activates the matching operation.

and internal commands generated by the matching process:

B match: the Input string matches RE.
B nomatch: the Input string does not match RE.
B error: RE is erroneous.

Matching starts if STR is enabled and either the Input string or the RE
changes. When matching is finished, STR is deactivated and can be
activated by the command Set.

Control Values

The behavior of a STR object is specified by a state transition diagram
shown in Figure 12.9.

On start-up STR is in the state OFF. The command On enables its
operation: the object goes to the state INIT. After the first match operation
STR goes to one of the states: MATCH, NOMATCH, or ERROR. The command
Set activates the object — STR goes to the state DEF, where it is able to
perform the next matching operation. From that time it oscillates between

© 2006 by Taylor & Francis Group, LLC

Other Inputs ® 219

Figure 12.9 The STR Vfsm ST diagram.

one of the MATCH, NOMATCH, ERROR states and the DEF state comparing
the Input string with RE and being activated by the Set command for
the next matching operation. Note that the matching operation is triggered
by a new Input string; the same string written into Input is ignored.

As for SWIP, if the STR object supervises data stored in another object,
that object’s control value loses its sense and must not be used.

Example

The example demonstrates a simple application where the STR object is
used to detect a string “Start” or “Stop” plus a number of the device to
be started/stopped. The state machine has two states: Init and MyInit; the
second one is for enabling the STR object. The entire control we want to
show is the Input Action in the state MyInit (see Figure 12.10).

On entering the state MyInit the state machine sends a command On
to the STR object, which enables its activity — the object is in state INIT.
Any change of the Input string triggers the matching process and the STR
goes into one of the states: NOMATCH, MATCH, or ERROR depending on
the matching result. Receiving in that moment the command Cmd_Set
the state machine sends the command Set to the STR object, which goes
into the state DEF. In that state it reacts to changes of the Input string
similarly as in the state INIT.

© 2006 by Taylor & Francis Group, LLC

220 ®m Modeling Software with Finite State Machines

My nit Entry action Str_On
eXit action
Cmd_Set Str_Set
MyCmd_Clear

Figure 12.10 STR example: the ST table of the state Myinit.

To “consume” the command Cmd_Set the state machine uses the
signal MyCmd_Clear, which clears the present command allowing a
repetition of the command.

Note that to fully understand the functioning we have to look at the
properties. For instance, the essential role played here by the regular
expression, which defines the matching string:

RE = (Start|Stop[1+) ([0-9]1+)
Appendix P Other_Inputs project describes the details of this example.

Properties

The STR object has the following properties:

B Input: the supervised object; may be DAT or PAR.

B Regular expression: defines the RE; may be a string or the name
of a DAT or PAR object, which contains the RE.

B List of substrings: a list of destination objects (which may be
DAT, PAR, NI, or NO), which receive the substrings produced by
matching. The strings are automatically converted into the format
of the destination objects.

STR objects can be quite complex. The ability to analyze strings using
regular expressions and to assign the results to a number of single-valued
objects makes STR a very powerful device for message-based applications.

A detailed description of object use and their properties can be found
in References 1 through 3.

Recommended Reading

1. SW Software: StateWORKS. Reference Manual for the Class Library.
2. SW Software: StateWORKS Development Tools. User’s Guide.
3. SW Software: StateWORKS Studio. Help.

© 2006 by Taylor & Francis Group, LLC

Chapter 13
Other Outputs

Output Data (NO)

Setting a digital output is the simplest and most often used operation,
especially in industrial control. In general, we would like to output any
value. For this purpose the RTDB has an object type NO for numerical
output. The NO object is a kind of switch (see Figure 13.1 and the Actions
as described below) used to pass the Out Data defined in a DAT or PAR
object to the output. The TAB object may be used to expand the possible
sources of output data. We may also use NI and UDC objects as the source
of NO Out Data, but that would be very unusual. One should note that
a value could have been set into a DAT or PAR object in the RTDB by
some other program, external to the StateWORKS system, if that were
required for the application.

Actions

The behavior of NO may be described by a state machine diagram as in
Figure 13.2, where the transitions are triggered by action commands:

B Off: sets the value 0 to the output.

B On: links the Out Data object (PAR, DAT, TAB) continuously with
the output.

B Set: sets the Out Data object (PAR, DAT, TAB) to the output; the
value is valid until changed by another Set command.

221

© 2006 by Taylor & Francis Group, LLC

222 m Modeling Software with Finite State Machines

0 —Q O
Out Data .—L. .output
(PAR,DAT,TAB)

0 off

OutData . output
(PAR,DAT,TAB)

Set$,
Out Data I

EEE— A .S

(PAR,DAT,TAB)

Figure 13.1 NO as an output switch.

changed

Figure 13.2 The NO Vfsm ST diagram.

The signal generated by the NO object itself is:
B Changed: signals that Out Data has changed.

The state transition diagram explains the way this object type can be used.
The state transition diagram does not play any role in generating control
values as it would be rather strange to use the NO state for control
purposes.

© 2006 by Taylor & Francis Group, LLC

Other Outputs ®m 223

After start-up, the NO object is in the state OFF if its Out Data is a PAR
or DAT object — in this state NO is disabled passing the value 0 to its
output. If NO Out Data is the TAB object the NO object is after start-up in
the state INIT — in this state NO is enabled and any data change forces
it to go to the state CHANGED. If we leave it there, it works as if it has
received the On command passing any Out Data (PAR, DAT, TAB) to its
output. It is the most common way of using an NO object and the object
does not require any initialization. Applying Set command stores the current
value of Out Data (PAR, DAT, TAB) in the NO object, and from that moment
this data is passed to the output until a new Set command actualizes it.

With the Off command we force the NO object to go to the state
OFF where it cuts off the output from the Out Data and sets the value
0 to the output. The transition from the state CHANGED to OFF is done
via a CHANGED2 state, which is transparent to the outside — it is seen
as CHANGED. Receiving the On command the NO object returns to the
CHANGED state.

Receiving the command Set in any state, it goes to the state SET via
the state CHANGED. This applies also to the state SET: receiving the
command Set, it goes to the state CHANGED and returns immediately to
SET. An Out Data change while NO is in the state CHANGED causes a
transition to the same state — CHANGED. Therefore, to avoid a loop the
signal changed is cleared in the state CHANGE in the Entry Action. Similarly,
the Set command is cleared in Entry Action of the state SET.

Example

Thus, there are several imaginable schemes to set the NO output. In
practice, we choose one of two possible variants:

B Enabling the NO object by sending the command On — from this
moment the value on its Out Data is passed to the output.

B Sending the NO object Out Data to the output by sending the
command Set — actualization of the output requires a repetition
of the command.

In Appendix Q Other_Outputs project there is an example that demon-
strates the possible use of the NO object.

Properties

The NO object has properties similar to NI allowing convenient cooperation
with digital-to-analog (D/A) converters, which are the primary destinations
of NO data. The properties of NO are as follows:

© 2006 by Taylor & Francis Group, LLC

224 m Modeling Software with Finite State Machines

B Format: any C-like data format (bool, short, unsigned short, etc.,
except string)

B Unit: any string (e.g., V, A, mBar, m, sec, etc.)

B Scale Mode: none, Lin, and Exp
The Lin (linear) mode means that before passing it to the output
the original Out Data is scaled using the formula:

y=ax+b

The Exp (exponential) mode means that before passing it to the
output the original Out Data is scaled using the formula:

y = eu*x+b

where y — output, x — Out Data, @ — Scaling Factor, b — Offset.
B Scale Factor: float or integer number
B Offset: float or integer number
B QOut Data: the data to be output; may be DAT, PAR, NI, UDC, or
TAB objects

A detailed description of object use and their properties can be found in
References 1 through 3.

Output Demultiplexer (TAB)

The TAB object selects one object from several to derive its output. It is
used as an output in the I/O handler (see Figure 13.3). As TAB input
objects we can use PAR, DAT, and NI types. To realize it TAB has a property:

B Table rows: specifies the used input objects.

TAB is used primarily for delivering Out Data to an NO object if they are
to come from various sources as in the project Other_Outputs discussed
in the previous section. TAB can be used also as an independent output.
A good example of such use is passing several strings to the I/O handler.

a) b)
PAR —p10 DAT —p10
PAR _ gt DAT _ gk

Figure 13.3 TAB object (a) delivering PAR values to NO; (b) sending values
(strings) to 1/0 output directly.

© 2006 by Taylor & Francis Group, LLC

Other Outputs ® 225

Actions

The actions controlling TAB switching are just numbers which are indices
0 ... N to its table of input objects.

A detailed description of object use and their properties can be found
in References 1 through 3.

Example

The project Other_Outputs also contains a Tab object of type TAB.
Appendix Q Other_Outputs project describes the details of this example.

Alarms (AL)

An AL object stores messages called Alarms. An Alarm carries no control
information — it is only a message about a usually erroneous situation,
but in general, it may contain any information. Each single Alarm, as well
as all Alarms in the system, requires quite sophisticated handling to make
Alarm use convenient for the users.

Actions

The behavior of the AL object is well described by a state transition
diagram in Figure 13.4. AL is controlled by action commands:

B Staying: forces a generation of a Staying Alarm.

B Coming: forces a generation of a Coming Alarm in expectation of
a following Going Alarm.

B Going: forces a generation of a Going Alarm, which is to signal
that the Alarm reason has disappeared.

and an external signal:

B Ack: passed directly to the AL object (cannot be specified as an
action).

While specifying an Alarm as an output its action command may then
receive one of three commands: Staying, Coming, or Going. We use
the command Staying if we decide that the reason for the Alarm is
irreversible and will not disappear by itself. The other two commands,
Coming and Going, must be used in pairs. We use the Coming command
if we assume that some time later we will use the Going command to
signal that the reason for the Alarm has vanished.

© 2006 by Taylor & Francis Group, LLC

226 m Modeling Software with Finite State Machines

Staying_|

Figure 13.4 The AL Vfsm ST diagram.

In addition to the Alarm objects the RTDB has a pseudo-Alarm (with
the name AL equal to the type name), which is a list of all not-yet-
acknowledged alarms. Any Alarm is entered at the top of the list and is
accessible (visible). In the state transition diagram the I and R characters
accompanying the transition conditions denote the Transition Actions
performed on a state change: I stays for “Insert the Alarm into the AL
queue” and R stays for “Remove the Alarm from the AL queue.”

The pseudo-Alarm AL is “intelligent” enough to reject a new Alarm if
it is already in the list. This makes the use of Alarms more comfortable.

Properties

The AL object has two properties:

B Category: positive integer number. Defines the severity: Error,
Warning, and Information are the typical values. A user may
define any specific value. The meaning of the Category value is
shown in Table 13.1.

B Text: alarm string to be displayed.

The Category expresses only the intention; the actually logged Alarms
depend on the AL_CatKeyPar EP parameter, and those Alarms are logged
in the AlarmLog.txt file. The parameter AL_CatKeyPar may have the values
0 ... 7 with the following binary coded meaning:

© 2006 by Taylor & Francis Group, LLC

Other Outputs m 227

B 1 — write Errors to AlarmLog
B 2 — write Warnings to AlarmLog
B 4 — write Informations to AlarmLog

For instance, the value 1 means that all Errors will be logged and value
7 (1 + 2 + 4) means that all three Alarm categories: Error, Warning,
and Information will be logged. If the AL_CatKeyPar EP parameter is
not defined, all Alarms are logged. Alarms with user-defined categories
other than 1, 2, or 4 are not logged.

Table 13.1 Alarm Severity Logged
in AlarmLog.txt

Category | Coming, Staying | Going, None

1 Error Information
2 Warning Information
4 Information Information

Other User defined User defined

The Text property is used to define the text to display if the Alarm is
generated. The Text may contain:

B Pure text
B Identifier beginning with IDS_
B Name of an RTDB object (DAT, NI, PAR, NO, UDC) beginning with %

Any combination of the three string forms is allowed by building the Text
string; space is used as a separator. The IDS_ identifiers can be prepared
and are managed by StateWORKS Studio.

The Text string is then completed by Alarm Output value defined in
the state machine, which uses the object and time taken from computer
resources. Such an Alarm text can be fetched as a whole (attribute AIL)
or as separate attributes one by one (Type, Text, Category, Time).

A detailed description of object use and their properties can be found
in References 1 through 3.

Example

Exercises with the state machine Test_AL in the Appendix Q Other_Outputs
project demonstrate the Alarm possibilities.

© 2006 by Taylor & Francis Group, LLC

228 m Modeling Software with Finite State Machines

For the three alarms used, the Text and Category have been defined

as follows:
B Al:01 7ext: This is Al:01 alarm Category: 1
B Al:02 7ext: No:01 has changed:. % No:01 Category: 2
B Al:03 7ext: IDS_TEXT Category: 4

Text 13.1 Example of the AlarmLog.txt file

C:...\Other_Outputs\Conf\Other_outputs.swd started
at: 05-Nov-04 12:56:19
ERROR 05-Nov-04 12:56:33 - Al:01 - COMING - This is Al:01 alarm

INFO 05-Nov-04 12:56:34 - Al:01 - COM_GO

WARNING 05-Nov-04 12:56:37 - Al:02 - STAYING - No:01 has changed: 20mBar

INFO 05-Nov-04 12:56:53 - Al:03 - STAYING - This text has been taken from Resources
INFO 05-Nov-04 12:56:55 - Al:03 - NONE

INFO 05-Nov-04 12:56:56 - Al:02 - NONE

INFO 05-Nov-04 12:56:57 - Al:01 - GOING

INFO 05-Nov-04 12:56:57 - Al:01 - NONE

After some experiments: generating Alarms and acknowledging them
the AlarmLog.txt file contains entries as shown in Text 13.1. We see that
the %No:01 name has been replaced by the actual data value of the object
No:01 equals 20mBar and the IDS_TEXT identifier has been replaced by
the string “This text has been taken from Resources.”

The possibility of using a text identifier allows internationalization of
the Alarm text. By supplying stringres.src files with text in different
languages we can adapt the displayed information to the language used.

Recommended Reading

1. SW Software: StateWORKS. Reference Manual for the Class Library.
2. SW Software: StateWORKS Development Tools. User’s Guide.
3. SW Software: StateWORKS Studio. Help.

© 2006 by Taylor & Francis Group, LLC

Chapter 14

Counters

A Simple Counter (CNT)

Counters are very often used in the design of state machines. A counter
may be forced to increment or decrement its counting register by com-
mands (actions) or it may count some events. Therefore the RTDB has
several counter types, which simplify certain control problems. Counting
itself is normally of no relevance in guiding the control. The only inter-
esting moment is when a certain counting value, called an expiration
value, is reached.
The simplest counter is represented by an object CNT.

Actions
The CNT object is controlled by action commands:

Reset: resets the counting register

Start: enables counting

ResetStart: resets the counting register and enables counting
Stop: disables counting

Inc: increments the counting register

Dec: decrements the counting register

and a CNT internal command:

B Expired: generated if the counting register equals or is larger
than the expiration value

229

© 2006 by Taylor & Francis Group, LLC

230 ®m Modeling Software with Finite State Machines

An object of a type CNT counts after start-up from 0. Typically, a CNT
object is enabled by the ResetStart command and counts forward on
receiving the command Inc, and when its counting register reaches the
expiration value, it generates the overflow signal.

Control Values

The behavior of a CNT object is specified by a state transition diagram
shown in Figure 14.1. A CNT object waits in the RESET state to be enabled.
Receiving the command Start or ResetStart it goes to the state RUN
where it is able to react to the command Inc, which increments its
counting register, and to the command Dec, which decrements its counting
register. While in the state RUN a CNT object may be disabled again by
a command Reset or Stop. In the state STOP a CNT object is disabled
but it may resume counting from the last value (receiving command
Start) or counting from 0 (receiving the command ResetStart). The
command ResetStart in the state RUN restarts counting from 0.

Any state may be used as a control value but the most interesting state
is the state OVER, which signals that the counter has reached the expiration
value. While in the state OVER the counter continues counting of com-
mands Inc and Dec. The command Stop may disable counting in OVER
forcing the transition to the state OVERSTOP. From both OVER states CNT
may be reset or start counting from 0.

ResetStart ResetStart

Start | ResetStart

Figure 14.1 The CNT Vfsm ST diagram.

© 2006 by Taylor & Francis Group, LLC

Counters m 231

Di_HIGH

Figure 14.2 The state machine counting Di changes.

Example

The CNT object has to count changes (to HIGH) of a digital input Di. We
use for this purpose the state machine Test_CNT shown in Figure 14.2.
After start-up the state machine is in the state Init. The first change of Di
to HIGH starts the counter (in the Input Action) and changes the state to
Start. On entering the state Start the output LED is switched off (at that
first entry it has been initialized to off). The state machine continues the
state changes (Di is HIGH) going to the state Count where it sends the Inc
command to the counter. On Di LOW it returns to the state Start. The next
Di HIGH means a transition to the state Count and counter increment and
so on. This switching between these two states lasts until the counter
reaches the expiration value and goes to its state OVER. The counter OVER
causes a transition of the state machine to the state Stop where LED is
switched on signaling the expiration and the counter is restarted. The
next Di HIGH causes a transition to the state Start and the counting will
be repeated.

We have to be careful in specifying the transition in the state Count
(see Figure 14.3): the pure transition condition Cnt_OVER to the state
Stop would not work. It will cause an immediate transition to Count if Di
is HIGH (which generates Cnt_OVER). This in turn will cause a further
transition to the state Start and the state machine Test_CNT will loop
through the states: Start—Count—Stop. If we use the Cnt_OVER and
Di_LOW condition, the transition to the state Stop is delayed until Di is
LOW. We note also that the sequence of Transition expressions in the state
transition table is relevant.

Appendix R Counters project describes the details of this example.

We would not recommend that anyone solve this type of counting
problem in this way — using the ECNT object offers a much simpler

© 2006 by Taylor & Francis Group, LLC

232 m Modeling Software with Finite State Machines

Count Entry action Cnt_Inc
eXit action

Stop Cnt_OVER & Di_LOW

Start Di_LOW

Figure 14.3 CNT example: the ST table of the state Count.

solution. At least, this example well illustrates the use of the CNT object
by requiring:

B Enabling and resetting the counter
B Incrementing the counter by command

Properties

The object of CNT type has three properties defining the expiration value:

® By value
B Object name
® Const Value

Expiration value equals Const Value if By value is true; otherwise Expi-
ration value equals the value of an object (PAR) defined under Object
name.

A detailed description of object use and properties can be found in
References 1 through 3.

An Event Counter (ECNT)

The simple counter (CNT object) “counts” its commands Inc and Dec.
Indirectly, it may count several things. We have shown in the CNT example
how to count a state being triggered by a command Inc on entering the
state — indirectly CNT counts the changes of a DI object. This solution
was over complex — the ECNT object makes life much easier.

The ECNT object is very like the CNT object. Both object types have
the same Actions and Control values; they differ only in Properties.

© 2006 by Taylor & Francis Group, LLC

Counters m 233

ECNT has exactly the same commands as the CNT object. The use of
actions is similar but the Inc and Dec commands are rarely used as the
ECNT task is to count control values of other objects and not its own
commands.

The state transition diagram of the CNT object applies also to the ECNT
object and the state OVER is the most interesting and commonly used
control value.

Example

The state machine Test_ECNT realizes the same problem as the previous
example for the CNT object: it counts the changes (to HIGH) of a digital
input and the expiration is signaled by the output LED. In addition, we
use a command Cmd_RestartEcnt to restart the counter.

In that case we have solved the problem in the table Always shown
in Figure 14.4. The command Cmd_RestartEcnt switches off the LED
and restarts the ECNT object. Expiration (Ecnt_OVER) of the counter
switches on the LED and clears the command — the command
Cmd_RestartEcnt may start counting again.

Always Cmd_RestartEcnt LED_Off
Ecnt_Restart

Always Ecnt_OVER LED_On
MyCmd_Clear

Figure 14.4 ECNT example: the table Always.

The object whose changes are counted is defined in the ECNT properties.
This means that the state machine itself does not contain the complete
control information. It controls the ECNT object (sending commands) and
uses control values generated by the object but the true counting circum-
stances are hidden and can be seen in the project specification. In other
words for the state machine Test_ ECNT the object ECNT is a Slave state
machine.

Appendix R Counters project describes the details of this example.

Properties

The object of ECNT type has properties defining the Const value (see
CNT properties) and two additional properties:

© 2006 by Taylor & Francis Group, LLC

234 m Modeling Software with Finite State Machines

B Input: defines the object whose control value (state) is to be
counted. It may be an object of any type except CMD and UNIT.
B Up Value: defines the control value to be counted.

A detailed description of object use and properties can be found in
References 1 through 3.

A Timer (TI)

A timer (TD is a very frequently used object type. Especially, when
designing state machines controlling directly peripheral devices we use
timers to guard against deadlocks. An object of type TI is a specific event
counter — it counts clock pulses, effectively measuring time elapsed since
its start.

TI has the same action commands as the CNT counter except for Inc
and Dec, which of course would not make sense.

The state transition diagram of the CNT object applies also to the TI
object and the OVER state is the most interesting and used control value.
The expiration value for TI is called a time-out.

A typical use of the TI object is shown in a state transition table in
Figure 14.5. On entering the state Busy the state machine does something
and waits for the reaction. At the same time it starts a timer so that it
does not remain forever in that state. If the expected reaction comes
before the timer expires, the state machine goes to the state Domne.
Otherwise, the time determined by the time-out value elapses and the
state machine goes to the state Error. In most cases OVER only has a local
value — after leaving a state it becomes insignificant. Therefore, as a rule
the timer is stopped on exiting the state.

Busy Entry action DoSomething
Ti_ResetStart
eXit action Ti_Stop
Done ExpectedReaction
Error Ti_OVER

Figure 14.5 A TI object guarding a busy state.

© 2006 by Taylor & Francis Group, LLC

Counters m 235

Properties

The object of TI type has properties defining the Const value (see CNT
properties). As the counting object is by definition determined, it has only
one additional property:

B Clock: defining the clock period that may be: min, sec, 100msec.

The first “tick” of the clock is not precisely defined. Therefore, we recom-
mend for small time-out values that a clock period one level lower than
required be used, e.g., instead of 1 sec it is better to use 10*100msec.

A detailed description of object use and properties can be found in
References 1 through 3.

An Up/Down Counter (UDC)

The ECNT object is powerful and its features are sufficient in most cases.
The weak point of ECNT is in counting events only in one direction —
a bidirectional counter may be required sometimes. For such applications
the RTDB has another up/down event counter of type UDC. An object
of UDC type is completely different than the up-to-now discussed family
of counters. UDC is an example of an object with very powerful func-
tionality considering its behavior as well as its properties.

Actions

An object of type UDC has the following action commands:

B Clear: to clear its counting register
B Up: to increment its counting register
B Down: to decrement its counting register

Those commands correspond to Reset, Inc, and Dec of CNT and ECNT
counters. The different names have been chosen to underline the different
character of the UDC counter.

Control Values

UDC control values are the same as those of EP PAR (see state transition
diagram in Figure 12.8) but these are not very often employed. An object

© 2006 by Taylor & Francis Group, LLC

236 m Modeling Software with Finite State Machines

of UDC type is rather exotic and its task is to perform some unusual
counting function where its behavior is irrelevant.

UDC does not have an expiration value like other counters. Instead
we have to use SWIP to recognize the counted value. This opens some
different perspectives as shown in the example below. For example,
several counter values may be detected and both positive and negative
integers can be supervised. But first we have to present the properties,
which are also completely different from those of other counters.

Properties

An object of UDC type has the following properties:

Unit: any string for display purpose

Up Input: the object name to be used for forward counting

Up Value: the control value to be counted

Down Input: the object name to be used for backward counting
Down Value: the control value to be counted

Clear Input: the object name to be used for clearing the counting
register

B Clear Value: the control value used as a clear value

The UDC counts changes of control values of the declared objects. Any
object type except CMD and UNIT may be used for this purpose. The
control values may be used to count up, down, or clear the counting
register (set to 0).

A detailed description of object use and properties can be found in
References 1 through 3.

Example

The example Test_UDC demonstrates some possibilities of the UDC. The
essence of the example lies in the property definitions. Analyzing them
we see how it works:

B [t counts forward (Up) changes of the state Stop (4) of the state
machine Test_ CNT.

B It counts backward (Down) the value HIGH (1) of the digital input
Di:UdcDownlInput.

B It can be cleared by the value LOW (0) of the digital input Di:Udc-
ClearInput.

© 2006 by Taylor & Francis Group, LLC

Counters m 237

B A switchpoint Swip_for_UDC:01 detects the value 5 of the counting
register.

B A second switchpoint Swip_for_UDC:02 detects the range between
-2 and 3, with the limits defined by parameters Par:UDCLimitLow
and Par:UDCLimitHigh, which could, of course, be changed to suit
different circumstances, and even dynamically by some software
process able to access the RTDB.

Appendix R Counters project contains the details of this example.

Recommended Reading

1. SW Software: StateWORKS. Reference Manual for the Class Library.
2. SW Software: StateWORKS Development Tools. User’s Guide.
3. SW Software: StateWORKS Studio. Help.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC

Chapter 15
VFSM and Its Interfaces

Virtual Finite State Machine Interfaces

VFSM is the central object in the RTDB, storing the behavior specification
and allowing the Vfsm Executor to carry out the specification. To realize
that task the VFSM object has links to other objects. The diagram in Figure
15.1 shows all participating interface elements. There are a few interfaces
between:

B State machines: realized by CMD objects and a direct access to
VFSM states (the “state” links between VFSM are shown using thick
lines)

B State machines and I/O handlers: realized by UNIT objects

B State machines and output functions (via OFUN objects): realized
by UNIT objects

The diagram does not show objects owned by VFSMs (except the CMD).
The VFSM object list contains by definition a command (CMD) object as
it is assumed that a VFSM should have a command. In practice, when
specifying simple examples we design also state machines without a
command — this is accepted by the runtime system. State machines
designed for a system of state machines have commands as the commands
realize the interface among them.

We also mention in passing that a UNIT for OFUN may be replaced
by VFSM, which owns objects required by the output function (both: UNIT
and VFSM are lists of object names).

239

© 2006 by Taylor & Francis Group, LLC

240 m Modeling Software with Finite State Machines

CMD
VESM
t 1
CMD CM CMD
\v ,
VESM VFSM VFSM
type 2 type 2 type 3
_ Y
|0FUN|; MD | |0FUN|;CMD;
v v Y v Y

C
UNIT UNIT UNIT UNIT UNIT
type 1 type 2 type 1 type 2 type 3

function function
1/O unit T/O unit /O unit

Figure 15.1 VFSM interfaces.

A Virtual Finite State Machine (VFSM)

A VFSM object is an instance of a state machine specified in a virtual
environment. A VFSM type is just a list of objects used by a Vfsm
specification — the list represents VFSM properties. VFSM behavior is
defined by the specification, which depends on the just developed appli-
cation. Hence, VFSM is a general term defining a group of VFSM types
in a project. We should note the difference: there are several types of
objects like CMD, DI, NI, SWIP, etc., but VFSM defines an entire group
of very different objects, each described by its own state transition diagram.
Each VFSM type may have of course several instances — objects of a
given VFSM type like any other object types. For instance, the system in
Figure 15.1 contains three different VFSM types: type 1, type 2, and type 3,
with #ype 2 used twice.

The interface between state machines is a command-state one; i.e.,
one state machine (a Master) sends a command to another state machine
(a Slave) as shown in Figure 15.2. The Slave in turn displays to the Master
its state, which is used by the Master as a control value. To realize the
interface we need a CMD object, which is discussed in the following
chapter. Here we talk only about the “state” interface, which passes the
control information from Slave state machines to the Master.

Specifying the behavior of a Master state machine VFSM type 1 we
declare its Slaves: two VESM type 2 and one VFSM #ype 3 as its I/O Inputs.

© 2006 by Taylor & Francis Group, LLC

VFSM and Its Interfaces m 241

Figure 15.2 VFSM CMD-state interface.

From that moment the Slave states can be used as control values. When
specifying (Transition or Input Action) conditions we are confronted very
often with the following problem: something should be done for several
Slave states. A direct specification of such requirements results in rather
long expressions, which make the ST table more difficult to read. The
Vfsm editor allows here a short cut — instead of writing, for example:

(Pressurel_Starting | Pressurel Regulating) &
(Pressure2_Starting | Pressure2_Regulating)

as we have done in the example Pumps (see Figure 9.12) we could define
a name Pressure_StartingORRegulating combining that logical
expression under one control value. The editor allows creation of com-
plex logical conditions according to the formula:

Compact_Name =

(Slavel_Statel | Slavel_State2 | ... Slavel_StateN) &
(Slave2_Statel | Slave2_State2 | ... Slave2_StateN) &
(SlaveK_Statel | SlaveK _State2 | ... SlaveK_StateN)

This feature leads to very compact expressions, but we should not fail to
invent expressive names that remind us what the control values mean. A
compact specification is good if it explains the behavior well — hiding
details of the specification is a very bad habit. For that reason the facility
is limited to groups of state names, and is not applicable to all object types.

Hiding Specification Details

The use of control values in the form of complex expressions described
above is not a completely straightforward issue. In some cases, it really
makes the specification more readable, placing under a nice name a

© 2006 by Taylor & Francis Group, LLC

242 m Modeling Software with Finite State Machines

complex expression. But we should not forget that such a control value
hides the details of the specification. Thus, we have to look at the full
expression to understand completely the state machine behavior. There-
fore, the idea needs very careful use. We should do it only if we really
have the feeling that hiding details makes sense in that case.

It is not the only point where we may hide details. Using the event
counter (ECNT) we do not see in the Vfsm specification what events are
counted by the counter — they are not defined and seen until the RTDB
object properties for each specific ECNT are specified. In certain situations
an alternative solution using an object of a CNT (see A simple counter
(CNT) in Chapter 14) type is clearer showing explicitly when the counter
increases its value with the action Inc. The evaluation of what is better
is in a sense a matter of taste. It is also a compromise between two factors,
which influence the comprehensibility: compactness or explicitness.

Similarly, when supervising a value of NI or PAR with a SWIP object
we do not see the supervised object in the Vfsm specification — it is
determined in the system configuration process. That decision is made by
specifying RTDB objects.

The possibility of hiding some specification details is on the one hand
useful, making the specification more readable or at least we get a
superficial feeling that it is more readable. On the other hand, we should
like to have all behavior details in the specification; hiding details makes
things eventually less comprehensible. Taking into account that hiding is
unavoidable in some cases (e.g., using SWIP objects) we have to live with
it but hiding details should not be a goal of our specification effort. Note
that the approach does not conform to other software practices but it
results from the basic definition of the Vfsm concept: to show the entire
behavior as a function of control values.

A Command (CMD)

The specific role of CMD as a link between two state machines requires
special management. When specifying state machines we are confronted
with two “types” of CMD objects (see Figure 15.3). For some state machines
(particularly for a Master on the hierarchy top level), commands will come
from the outside world; e.g., they could be set by an operator or by some
software process, even in another computer system over a network.
Commands for most state machines are set by their Master state machine.
In the second aspect the CMD object is controlled by actions of a Master
state machine.

Because of this double access feature, the Vfsm editor “knows” about
two CMD object types: CMD-IN and CMD-OUT.

© 2006 by Taylor & Francis Group, LLC

VFSM and Its Interfaces m 243

CMD-IN

VFSM
(Master)

CMD-OUT CMD-OUT

CMD CMD
CMD-IN CMD-IN
VESM VFSM
(Slave) (Slave)

Figure 15.3 A CMD object as the interface between a Master and Slaves state
machines.

The CMD-IN object is the state machine command as set by an operator
or other state machine; normally each state machine has one CMD-IN and
its assigned default name is MyCmd. The CMD-OUT is a foreign command
declared in another state machine; normally a Master state machine has
a few of them — one for each Slave. As most state machines are both a
Slave and a Master, in general a state machine has its single CMD-IN
object and several CMD-OUT objects defined by its Slaves.

Actually, there is only one object type CMD. The two notations used
in the Vfsm editor are to avoid confusion and to make it easier to
differentiate between the input commands (CMD-IN), which the state
machine gets from its Master, and the output commands (CMD-OUT),
which the state machine sends to its Slaves (if a state machine is both a
Master and a Slave).

So, we have learned that any state machine has by definition a CMD-IN.
We may say that a CMD-IN is owned by the state machine. A designer may
introduce additional CMD-IN objects. A possible reason could be, e.g., to
have a set of commands for maintenance that the designer wants to separate
from Master access. In practice additional CMD-IN are seldom used. The
auxiliary role of additional CMD-IN results also from the fact that a Master
state machine “sees” and can send commands only to the default MyCmd
of a Slave’s object. Hence, an additional CMD-IN can be only used to send
commands directly to a state machine from a Monitor or operator.

© 2006 by Taylor & Francis Group, LLC

244 m Modeling Software with Finite State Machines

In behavior specification a CMD-IN object is, of course, a source of
control values and we may define Input names on command names
(values). A CMD-IN has also one output value Clear, which can be used
to define an action. Here we discover the problem of the command lifetime
(see also section Signal lifetime in Chapter 7). A command is a signal
which a designer invents to organize the cooperation of state machines
and it is the designer’s responsibility to decide how long a concrete
command value is valid. The command value may be needed for Transition
or Input Action conditions in several consecutive states or is not used and
just irrelevant but eventually it is replaced by another command. Some-
times, a state machine does a loop through several states returning to the
state that has been left due to a command — if the command is still there,
the state machine will continue the (in such a case infinite) loop. The
value Clear is then a very useful command allowing a definition of an
action, which sets the command to a value 0 (hence, the value 0 must
not be used as a command and to be on the safe side the Vfsm editor
prevents it). As the state machine owns the CMD-IN object, it is logical
that this state machine has the chance to determine the lifetime of the
command — it does it when it does not need the command any longer
or when it must do it to avoid undesirable effects as in the infinite loop
example.

Figure 15.4 shows the two possible ways of handling a command.
Receiving the Cmd_Start the state machine Test_CMD goes to the state
Start, performs there the required Entry actions, and returns to Init on
receiving the command Cmd_ Stop (Figure 15.5). Similar behavior can be

Figure 15.4 Test_CMD: the ST diagram.

© 2006 by Taylor & Francis Group, LLC

VFSM and Its Interfaces m 245

Start Entry action DoSomething
eXit action
Init Cmd_Stop

Figure 15.5 Test_CMD: the ST table of the state Start.

The timer causes a break which is required to clear the Cmd.

Retry Entry action DoSomething
MyCmd_Clear
Ti_ResetStart
eXit action Ti_Stop
Init Ti_OVER

Figure 15.6 Test_CMD: the ST table of the state Retry.

achieved using the Cmd_Retry which switches the state machine into
the state Retry. On entering the state Retry the state machine performs
the required Entry action and returns to the state Init (Figure 15.6). To
avoid an infinite loop the command value has been cleared on entering
the state Retry. A timer is used to cause a required break to assure that
the command is cleared.

A Master state machine defines actions using commands of its Slaves
(seen as CMD-OUT). The comprehensively discussed project Pumps is a
good illustration of the Master-Slave links.

A special problem is presented by a command link between state
machines and I/O handlers. Although an I/O handler is not a Vfsm, it
may be controlled by commands. In Figure 15.1 the VFSM #ype 2 sends a
command (CMD frame as dotted line) to its I/O handler via UNIT #ype 2.
For instance, we may use commands to set some features of I/O handlers
or actually send commands to peripheral devices. This is of course
possible — by declaring a CMD object in the corresponding UNIT we
define the link. The Vfsm editor also allows us to use command names
instead of numbers.

© 2006 by Taylor & Francis Group, LLC

246 m Modeling Software with Finite State Machines

Properties

Commands are numbers. To make commands more understandable for
human beings we use names instead of numbers in the specification. By
default, the definition of command names is stored in H- and IOD-files
generated by Build. The IOD-file is then used by the RTDB as a source
of command names. But command names may be defined in any H- and
IOD-file, which is important for state machines that use several* CMD
objects (several sets of commands). To distinguish between different
command sets an object CMD has a property Type, which should contain
the name (without extension) of the H- and IOD-files that contain the
definitions of command names for that object.

A detailed description of object use and properties can be found in
References 1 through 3.

An Interface to 1/0 Handler (UNIT)

We now arrive at objects of type UNIT. As for VFSM the UNIT type is a
list of objects. The list defines objects that are used in a corresponding
I/O handler or Output function. UNIT does not have any behavior;
different UNIT types differ only in properties. The list of objects is
completed by two properties:

B Phys Address: an integer number
B Comm Port: a string, e.g., “COM1”

These two properties are very hardware oriented. If necessary, they may
be misused for passing any value to an I/O handler.

StateWORKS defines a few standard UNIT types. There is a group of
UNITs that are used for accessing digital and analog inputs and outputs
on the graphical user interface of the SWLab simulator: DIS, DOS8, NI4,
and NO4. There is also a StandardUnit, which defines a list of objects
(Appendix H IOD file of the StandardUnit shows the 10D file of the UNIT).
The StandardUnit is actually a kind of template that has been used to
program a standard I/O handler able to work with I/O drivers in form of
DLLs. The I/O handler is programmed in such a way that only the objects
commented as “must-not-be-changed” are constant entries that must stay
there. All other object types may be adjusted to the application: removed

* The topic of several CMD objects in a state machine is too specific for the book.
Detailed information is included in the StateWORKS Studio help.

© 2006 by Taylor & Francis Group, LLC

VFSM and Its Interfaces m 247

or expanded with additional objects. The command names and values
(see the C section of the IOD file) can be also defined according to the
applications requirements.

VFSM and UNIT contents are used in I/O handlers and output functions,
which are the programmable parts of an RTDB-based application. There-
fore, Build generates H-files that can be used by programs written in C
or C++. The H-file contains the names used in the virtual environment
(Input, Output, State, and CMD names).

A UNIT type may be replaced by a VFSM type if the Phys Address and
Comm Port are not used. This especially makes sense for output functions
that are closely related to a certain state machine and use the same objects.

When specifying the list of objects needed for programming of an I/O
handler, we may, in principle, use any object types. Using a DI object for
writing digital inputs to the RTDB or using DO to write digital outputs to
an I/O handler is obvious. The issue may not always be so clear if the
signals sent to output devices are messages including some complex
information that must be assembled in the code of an I/O handler. Is then
a command a good choice? It might be, but a change of a parameter or
a string sent directly via a TAB object may be a better solution in other
cases. The goal is to trigger in some way a code in the I/O handler, which
processes the request and eventually transmits a message, information,
command, or whatever name we like to use in a certain situation. Hence,
the object used as a trigger element depends on the application.

This last reflection also explains the possibility of putting any code,
as well as those of output functions, in I/O handlers. We need just a
trigger point to access an application specific code, which completes the
RTDB functionality. We can have the code in the I/O handler but using
OFUN as a gate for user-written software has some advantages.

An Interface to a User-Written Function (OFUN)

RTDB objects store data and generate control values corresponding to the
actual data value. At present there are several types of objects — they
have been developed according to known requirements while designing
control systems in several application domains, especially industrial control
and telecommunication. Of course, the defined object types cannot cover
all situations that may be encountered in the design of control systems.
Therefore, the RTDB also contains an object OFUN, which is an interface
for user-written functions. In other words the object of type OFUN is a
substitute for a hypothetical object whose features are defined by a
function.

© 2006 by Taylor & Francis Group, LLC

248 m Modeling Software with Finite State Machines

OFUN is an input/output object; i.e., it is controlled by actions and it
generates control values. An action is an integer number that is passed
to the called function as a parameter. The control values are integer
numbers — return values of the called function. By that arrangement
OFUN object is able to pass to the function the requirements “what to
do” and to receive from the function the result of the calculation or
operation or just information about success or failure.

The use of OFUN offers a simple input/output object that assures an
integration of an Output function as if it were a standard RTDB object.
It means also that we may build up a set of functions that find application
in several projects via corresponding OFUN objects.

Example

The state machine of type Pressure in the project Pumps (see Example —
Pressure supervision in Chapter 8 and Appendix L Pumps supervision
project) contains an object OFUN. For this object there is one action
Ofun_CalcLimit (value 1) defined — the name describes clearly “what
to do”: calculate limit(s). The function returns values:

B 0: wrong owner (Unit Name — see Properties below)
B 1: limits calculated
B 2: the calculation failed (wrong parameter # 1)

Although the two failures signaled by numbers 0 and 2 belong to spec-
ification errors and not to runtime errors, we use them in the example to
demonstrate the discussed issue: we have specified two Input names:
Ofun_OwnerError (0) and Ofun_ParameterError (2) on them and
use the names to break the starting process by enforcing a transition from
the state Starting to Idle and to generate a corresponding alarm if the
limits are not calculated (in fact, it is no use for any pressure supervision
if the limits of the SWIP objects are not set).

Appendix M Output function CalcLimit() shows the function Calc-
Limit () used in StateWORKS project Pumps for specification of the state
machine Pressure.

Properties
An object of the OFUN type has two properties:

B Function Name: the name of the called C/C++ function
B Unit Name: the name of the UNIT or VFSM object which defines
(we say also “owns”) the function

© 2006 by Taylor & Francis Group, LLC

VFSM and Its Interfaces m 249

The Output function accesses RTDB objects. The OFUN defines the list
of objects “seen” by the function in form of UNIT or VFSM.

A detailed description of object use and properties can be found in
References 1 through 3.

Just XDA

Eventually, we discuss the last type of RTDB objects — the XDA. It is an
unusual type: it does not have a truly obvious name, it is just XDA. Objects
of type XDA find two completely different applications.

Memory for OFUN

An XDA object is a memory for OFUN. To fulfill this task XDA has a
property:

B Size: a number (integer >= 0), which declares the size of the
reserved memory in bytes

When writing an Output function that contains a thread we need some
memory. By specifying an XDA object with memory we may use it while
programming the function.

Internal Value as a Control Value

First, XDA is an input/output object like OFUN or CMD, whose control
values and actions are defined by the designer of the state machine.
Therefore XDA could be used as a substitute for a CMD object to pass
information (commands) from Master to Slaves. In this application the
CMD object is superior to XDA because CMD values can be names “seen”
by RTDB clients and XDA are just pure integers. Also the predefined
Clear action of the CMD object makes the use of CMD more comfortable
than XDA. To avoid any misuse of a CMD object it cannot be used as
input and output in the same state machine: the only exception to this
rule is the output value Clear whose use is well defined and very limited.
In other words, the CMD type has been designed to function very well
as a link between Master and Slave. Therefore, we would not recommend
replacing it with XDA without any recognizable advantages. XDA objects
find applications in communication between state machines and I/O
handlers, where they are very useful to pass (acknowledgment) informa-
tion from the I/O handler to state machines.

© 2006 by Taylor & Francis Group, LLC

250 ®m Modeling Software with Finite State Machines

Because of its simplicity we would sometimes think that we could use
XDA just to store some information (as a number); as opposed to the
CMD object there are no formal restrictions that would not allow it.* More
careful analysis of such situations shows inevitably that we are just trying
to corrupt the state machine by storing some flags instead of introducing
missing states. Any XDA that is used in the same state machine as input
and output is suspicious — it is very probable that the design is not
correct. An XDA object used in one state machine as an output object
and in another state machine as an input object might work, supporting
or completing commands in some way.

A detailed description of object use and properties can be found in
References 1 through 3.

Recommended Reading

1. SW Software: StateWORKS. Reference Manual for the Class Library.
2. SW Software: StateWORKS Development Tools. User’s Guide.
3. SW Software: StateWORKS Studio. Help.

* Actually there is one restriction: XDA must not be used as input (control value) and
output (action) in the same state as its behavior becomes unpredictable.

© 2006 by Taylor & Francis Group, LLC

Chapter 16

Debugging Vism

Testing a Vfsm Application

Any nontrivial software must be tested. In testing, errors are detected and
corrected — this process is known in software development as debugging.
A program may have two kinds of errors: coding and application failures.
Obvious coding errors manifest themselves by crashing that program or
other programs, and in the worst case the operating system. Several not
so obvious coding errors result in misbehaving of the application, so
“simulating” in a way logical errors. A notorious example of such a failure
is the unfortunate comparison operator (= =) used in C/C++, which often
stays undetected by a compiler if confused with the assignment operator
(=). I would like to have the money corresponding to the time invested
in searching for this kind of simple error. Application errors mean that
the program does not realize the requirements. Hence, the reasons for
application errors are very often not clear — they can be logical errors
or coding failures.

Classical debugging is done in a program, which means that we are
trying to find the erroneous code and correct it. Such debugging is not
easy as the two aspects, code and application errors, are overlaid.

In StateWORKS the debugging is clearer — in principle we are looking
only for application errors. The probability of a coding error is vanishingly
low as the application is built using a very robust, standard code (RTDB),
which has been used and tested over many years in diverse applications.

Thus, for the user, debugging of the RTDB-based application means
testing whether the system of state machines works properly. Testing of

251

© 2006 by Taylor & Francis Group, LLC

252 ®m Modeling Software with Finite State Machines

a state machine may be tricky. To facilitate testing a few facilities must be
available, such as a trace facility, a debugging mode, an automation of
test sequences, and a service mode. Good, up-to-date documentation
rounds out the development environment.

System Consistency

Debugging of the RTDB application begins with a start-up during which a
SULOG.TXT file is produced. This file is a log file with a list of objects that
could not be built due to some inconsistencies in the system specification
file SWD. The inconsistencies are allowed on purpose in StateWORKS to
test not-quite-complete applications. Of course, the ultimate application
should produce an empty SULOG file.

An example of a SULOG.TXT file is shown in Text 16.1. In a rather
cryptic form it contains three warnings signaling missing:

B Cmd names list

B String for an alarm text
B OQutput function

Text 16.1 Example of a SULOG.TXT File

VFSM System Startup Log

Config File: ...\SWSystem\Spec\SWSystem.swd

Startup Time: 14-Jan-04 09:29:18

wl 4 Not found enumeration in/or IOD-File: joystickdigital
X:JoystickDigital:Cmd

w4 27 String Resource not found: IDS_AL_START_ERROR
Axes:Al:Motor_Start_Problem

w135 8 Not found User Defined OutFunction OfuCheckDeviceNumber

Allsens:OFun:CheckDeviceNumber
There are:
3 Warning(s)

The number in the second column (4, 27, 8) is an error/warning type —
in all there are 30 types of them.

Trace

Trace means the ability to record all or selected steps performed by a
program. All RTDB objects have the trace facility, which may be activated

© 2006 by Taylor & Francis Group, LLC

Debugging Vfsm m 253

or disabled. Normally, the trace facility is disabled. If activated, the trace
facility causes all changes of object states (and for some objects also the
data values) to be logged into a TRACE.TXT file. Trace can be activated
from Monitors by setting the Trace flag of an object to true (1). Any
number of objects may be traced simultaneously. In addition, the
TRACE.TXT file can be closed and opened again at any time from Monitors.
After opening, the TRACE file is always empty. An example of a trace is
shown in Text 16.2. A line in a trace file shows:

The time of the event

The object type

The object name

The numerical value of the object state
The name of the object state (if available)
The data value (f appropriate)

Text 16.2 Example of a TRACE.TXT File

VFSM System Trace File

(Date: 18-Oct-04 21:57:22)

21:57:29 CMD Main:Cmd 0

21:57:29 CMD Pressurel :MyCmd 1 Cmd_Start
21:57:29 VFSM Pressure:01 3 Starting
21:57:29 CMD Pressurel :MyCmd 0

21:57:29 TI Pressurel:Ti:Timer 3 RUN
21:57:29 NO Pressurel:No:SetPressure 3 CHANGED 900
21:57:29 NO Pressurel:No:SetPressure 5 SET 900
21:57:29 OFUN Pressurel:0Ofun:ActualPressure_CalcLimit 1

21:57:35 SWIP Pressurel:Swip:ActualPressure_Supervison 3 IN

21:57:35 TI Pressurel:Ti:Timer 2 STOP
21:57:35 VFSM Pressure:01 4 Regulating

For instance, at 21:57:29 the object NO with the name Pressurel:No:Set-
Pressure changed its state to SET (5) because its value had been set to 900.
The trace illustrates well the events in the state machine Pressurel: it
received the Cmd_Start and went into the state Starting (3) where the
following Entry Actions were performed: the Cmd was canceled, the Timer
started, the Numerical Output set to 900 (two entries because the NO data
was first changed and then set as output), and the Output function was
called to calculate the switchpoint limits — the operation was successful,
which was signaled by the return value 1. At 6 seconds later (see time
stamp) SWIP object had signaled with its IN state that the input pressure
was within limits, which forced the state machine to go to the state
Regulating. Before it left the state Starting it had stopped the Timer.

© 2006 by Taylor & Francis Group, LLC

254 ®m Modeling Software with Finite State Machines

The trace “description” corresponds of course exactly to the state
machine specification — see Figure 9.17.

Debugging Mode (VFSM)

Probably the most difficult requirement is to test state machines “slowly,”
step by step. A state machine or even worse a system of state machines
may have loops. A loop in a state machine means that a state machine
performs several state changes or Input Actions in response to a single
stimulus (condition change), and that there is a design error. The changes
are too fast to be noticed by a human being. For a coded implementation
we debug the code using a debugger step mode. A similar possibility is
available in the StateWORKS development environment.

A step in the StateWORKS execution environment means to perform
one state transition (with appropriate actions) or Input Actions specified
in a present state. The use of the step mode is especially easy in SWMon
where a state machine has three radio buttons to control the step mode:
Run, Hold, and Step. Of course, we can control the step mode from other
monitors by setting the RMo (Run Mode) and NSt (Next Step) attributes.

If the Run button is chosen (default) as in Figure 16.1 the state machine
runs and the Next box to the right to the radio buttons displays “-/none”:
no Input Action and no transition.

Marking the Hold button as in Figure 16.2 stops the execution of the
Vfsm Executor but the next state is displayed in the frame right to the
buttons. In the example below the next state is Starting.

Clicking on the Step button forces the Vfsm Executor to perform one
step — in the example the transition to the state Starting (Figure 16.3

VFSM |Pressuret ||_ o r"| -inone ldle

Figure 16.1 SWMon: VFSM Pressure1 is in the Run mode.

VFSM |Pressurel |r‘ r‘*r:r| -/Starting I Idle

Figure 16.2 SWMon: VFSM Pressure is in the Hold mode.

© 2006 by Taylor & Francis Group, LLC

Debugging Vfsm ® 255

VFSM |Pressure1 |[_ 1"(6‘(“‘| -Regulating | Starting Idle

Figure 16.3 SWMon: VFSM Pressure1 has executed one step.

VFSM (Pressure I[‘ .-"r:.“| Alldle | Starting Idle

Figure 16.4 SWMon: VFSM Pressure1 has executed one step and the timer

expired.
ALARM al STAYING Pressurel: Pressure regulating error (83.082mB 1
VFSM |Pressure1 I~ ¢+ (| -mone | Idle Starting ldle

Figure 16.5 SWMon: VFSM Pressurel has executed the second step.

shows the SWMon display after the step). The system returns to the Hold
mode and waits for the next step. In the example the next step means a
transition to the state Regulating. (Note that the actual state and some
previous states are shown by a rightwards scrolling of the right-most field.)

If we wait until the timer expires, the box Next changes and signals
now that there are Input Actions and a transition to the state Idle to be
done (Figure 16.4). We see that all changes of the inputs are observed in
the Hold mode — the next actions or transition displayed corresponds
always to the actual input situation.

After the second step the Alarm is generated (it was the announced
Input Action) and the state machine Pressurel goes to the state Idle. There
are no actions or transitions due in this moment (see Figure 16.5).

If there are no Input Actions or transitions due when we click on the
Step button the button stays marked and the Vfsm Executor will perform
the appropriate actions or transition if the corresponding condition
becomes true.

Command Files

Testing of the application is normally a long process. Using StateWORKS
Studio we are testing from the project’s beginning. Testing means a
repetition of different scenarios. This procedure is tiresome and requires

© 2006 by Taylor & Francis Group, LLC

256 ®m Modeling Software with Finite State Machines

automation. The SWTerm monitor is used for generating automated test
sequences. While running, SWTerm generates a log file SWTerm.log,
which stores all typed sequences. An example is shown in Text 16.3.
Renaming the log file to SWTerm.cmd changes it to a command file.
Of course, the command file can be also prepared and edited in any text
editor. Other file names may be used for command files if we need to
have several of them. Starting the SWTerm monitor with the argument
“-cSWTerm.cmd” instructs the program to open the command file and
realize the command in the file line by line. Each line has to be acknowl-
edged by the user.
The meanings of the commands used are:

Esw C Connect to RTDB

Esw n IL. Get the path of the (application)
SWD file

Esw o CMD Display names of CMD objects

Bsw s Main:Cmd.PeV 1 Set the 1 value (Cmd_Start) to
Main:Cmd.PeV

Esw g Main.StN Get the State name of the state

machine Main
Bsw g Pressurel:Ni:ActualPressure Get the value of
Pressurel:Ni:ActualPressure input

Bsw s Main:Cmd.PeV 2 Set the 2 value (Cmd_Stop) to
Main:Cmd.PeV
msw d Disconnect

Executing the command file as in the example in Text 16.3 will produce
the command and answers as shown in Text 16.4.

Text 16.3 The SWTerm Command File

sSw C

sw n IL.

sw o CMD

sw s Main:Cmd.PeV 1

sw g Main.StN

sw g Pressurel:Ni:ActualPressure
sw s Main:Cmd.PeV 2

sw g Main.StN

sw d

© 2006 by Taylor & Francis Group, LLC

Debugging Vfsm m 257

Text 16.4 The monitor SWTerm executing the command file

Taking commands from a command file SWTerm.cmd
to continue press Enter

g to quit program

h to display help

v to display the version

Enter command: sw c
Using default Host address (LOCALHOST) and Port number (9091)
CONNECTED

Enter command: sw n IL.
...\Projects\Examples\Pumps\Conf\Pumps. swd

Enter command: sw o CMD
CX1000:Cmd:01
Device:MyCmd

Main:Cmd

Pressurel :MyCmd
Pressure?2 :MyCmd

Enter command: sw s Main:Cmd.PeV 1
Value set

Enter command: sw g Main.StN
StN = On

Enter command: sw g Pressurel:Ni:ActualPressure
Dat = 88.2548

Enter command: sw s Main:Cmd.PeV 2
Value set

Enter command: sw g Main.StN
StN = Idle

Enter command: sw d
DISCONNECTED

Enter command:

Service Mode

While testing we like to have a possibility for simulating values which
influence a control. This feature called Service or Force mode is espe-
cially important for external input signals. StateWORKS provides a Service

© 2006 by Taylor & Francis Group, LLC

258 ®m Modeling Software with Finite State Machines

10-Unit P Pev
Auto

Val

Monitor P SwW e O |

SvM DI

Figure 16.6 Service mode for a DI object.

mode for all external I/O objects: DI, DO, NI (represented by SWIP), and
NO. Additionally the internal I/O objects CMD and VFSM can also run in
service mode allowing us to debug the Master—Slave interface. Note that
this possibility is very useful for testing parts of a project which we have
not completed.

The service mode for DI is obvious — it allows us to test the system
without its hardware digital inputs. The default mode is the Auto mode
which means the DI values are coming from the I/O handler, effectively
from the hardware. The Peripheral Value (PeV) in Figure 16.6 comes from
the hardware via the I/O handler and is passed in Auto mode (SvM =
false) to Val stored in the RTDB. In Service Mode (SvM = true) Val
gets the Service Value (SvV) set by the Monitor.

The CMD object used as interface between a Master and a Slave state
machine belongs to the Slave (CMD-IN). The service mode for CMD (see
Figure 16.7) allows switching the command value between the value set
by Master (CMD-OUT) in Auto mode and Service Value (SvV) in service
mode set in Monitor.

CMD-OUT | |
(Master VESM) -> PeV m
> CMD-IN
Val (Slave VESM)

Monitor | SyV (e O |
|

SvM

CMD

Figure 16.7 Service mode for a CMD object.

© 2006 by Taylor & Francis Group, LLC

Debugging Vfsm m 259

VESM State - |
Slave) | - m -
VFSM
Val F (Master)

Monitor [l SyV |0 |
|

M VESM

Figure 16.8 Service mode for a VFSM object.

SWIP __> PeV

(Watching circuit

Val

Monitor feee{ SyV (e—0 |

oM SWIP

Figure 16.9 Service mode for a SWIP object.

The service mode for VFSM (see Figure 16.8) means simulating the
Slave state for a Master. In the Auto mode the Master gets the Slave state.
In service mode Master gets the service value set in Monitor.

In Auto mode the SWIP Val (see Figure 16.9) comes from the super-
vising part which compares the SWIP limits with the present value of the
supervised object. In service mode the value is set in Monitor. Used for
NI object the SWIP service mode is effectively a replacement for the NI
service mode (we are less interested in the NI data value than in the
control value determined by SWIP which supervises the NI object).

For completeness, StateWORKS provides also a service mode for DO
and NO outputs. This feature is useful for testing the hardware, at least
to be sure that the cabling is correct. In Auto mode the hardware receives
via I/O handler the DO value as stored in the RTDB (see Figure 16.10).
In service mode the value passed to I/O handler is set in Monitor.

The service mode for an NO object is rather crude — it allows switching
on and off the NO output. In such a way we may pass the numerical
output value by hand.

© 2006 by Taylor & Francis Group, LLC

260 ®m Modeling Software with Finite State Machines

- _>C\>_>
PeV == 1O-Unit

Monitor —feeiiel SyV (O |

SvM D O

Figure 16.10 Service mode for a DO object.

The Role of Documentation

The software documentation is the only information source for several
groups within the company producing the product. Several tasks must be
performed in parallel to programming:

B Planning the testing of a design requires a good overview of the
software.

The product test team must create the application test plans.
Customer documentation must be written.

Product support and maintenance needs detailed information.
Further product development should not count on information
stored as code.

Because of this, complete and up-to-date software documentation is a key
requirement for all software manufacturers. The creation of this documen-
tation has to start as soon as possible to ensure that all other tasks like
test plans or customer documentation will be done in time. During
debugging several things will change: state machines, the object properties,
the command files. These changes influence other software documents
produced by cooperating teams.

The entire content of the StateWORKS application — the configuration
of a system of state machines, state transition diagrams, state transition
tables — are available as JPG or WMF files. All this information is also
produced as XML documents.

Because in StateWORKS any change in state machine behavior can be
done only “officially” in the StateWORKS Studio I.D.E., the documentation
is always up to date. There is no way to corrupt the documentation as it is
the inherent part of the development system reflecting always the actual
state of the developed application. In short, in StateWORKS the distance
to the updated documentation is very short — just one click.

© 2006 by Taylor & Francis Group, LLC

Chapter 17
What Is StateWORKS?

Compared with Specification Methods

Specification methods are code oriented; i.e., they try to specify the software.
The entry point is of course the requirements of an application, but the
specification takes into account the implementation. In rare cases, in com-
panies that can afford it, there are two specification levels: the first abstract
specification (it is something like a formalization of the customer require-
ments), which is actually the true application specification. The second
specification is then an implementation (software) specific specification.

The specification is considered an initial phase, which is good for
learning the requirements of a project and exploring the design possibil-
ities. It is not treated seriously afterwards as it does not count — only
the code counts as that is what really works. Specification is by definition
not complete, as at the beginning of the project many details are not
known and could be only defined later. Specification is also not reliable
as several difficult details are intentionally omitted assuming that they will
be solved during programming.

When programming starts, the specification begins to lose its validity
as it is not actualized: changes introduced during programming stay buried
in the code. The value of the specification as documentation is minimal
as it can not be trusted.

Working with StateWORKS the specification result is the result — there
is no programming phase that can compensate for omissions and failure
of the specification. In that case the specification must be complete.
StateWORKS specifies the behavior of an application assuming that the
control flow (behavior) is performed by a standard RTDB-based code.

261

© 2006 by Taylor & Francis Group, LLC

262 ®m Modeling Software with Finite State Machines

Compared with Agile Methods

Agile methods do without any detailed specification, assuming that it is
impossible to specify fully an application. Thus, they assume that the code
will be the specification and it will be complete if it works. It is true but
has one weak point: the specification language. Considering a program-
ming language as a specification language is a mistake, as no one later
understands the specification. The other weakness of the programming
language considered as a specification language is that behind the lan-
guage there is no model that may help us interpret the lines of code.
Without such a model it is impossible to translate (mentally) a text in the
form of a source code into a comprehensible picture describing the
behavior of software (the application). The other interpretation of an Agile
approach could be just a plain statement: software does not need any
specification; code is all — then there is no basis for any discussion.

StateWORKS avoids much intricate coding, leaving only the data acqui-
sition parts and data processing procedures. The main software path —
the control path is completely specified and the “specification language”
is positive logic algebra in the virtual environment. The model used for
behavior specification is a state machine model, which is an established
and proven means known and used over several years. Using such a
model we have a chance to produce a comprehensible specification that
can be also verified as it is based on formal mathematical principles.

In a similar fashion as for Agile methods, using StateWORKS we start
the implementation immediately, but on a higher abstraction level: in
StateWORKS the implementation means generating a specification, in Agile
methods — coding.

Application Areas

StateWORKS concepts have been applied to a wide variety of projects,
over several years. The results were discussed by Wagner et al.!3 These
have ranged from industrial controls and specialized measurement systems
to telecommunications switching and protocol handling. The projects have
not been trivial: the first implementation of the Vfsm principle was for a
semiconductor production line, using several mini-computers, in
1988-1990. It was in wide use at AT&T and later Lucent for their inter-
national telecommunications switching products and has been shown to
reduce development cost and also improve quality (the results are pre-
sented by Flora-Holmquist et al.%). The application of the Vfsm concept
for modeling technique is discussed by Mahoney et al.

© 2006 by Taylor & Francis Group, LLC

What Is StateWORKS? m 263

Because the StateWORKS tools impose a certain structure on the
software, it has sometimes been possible to successfully and rapidly
complete a project that had been thought to be impossible, on account
of its apparent complexity. If a complex project is hard to comprehend,
then coding in the classical way, with any available language, will not
make it easier to understand, and failure can result.

The full StateWORKS system with the RTDB has been in use since 1977,
and has been very successful wherever applied. StateWORKS can be used
either as a specification tool or preferably as a complete development
and execution environment. Although StateWORKS can be used in devel-
opment of any application with nontrivial control requirements, some
domains seem especially suitable for StateWORKS use. Embedded systems
are here the primary example, especially as a replacement for Program-
mable Logic Controllers (PLO).

Due to the specific hardware used, PLC systems were for a long time
isolated from the mainstream of software development. Nowadays, robust
and reliable PCs are replacing PLC hardware in many industrial applications.
Moving the old-fashioned PLC programming onto a PC is a consequence
of programming methods used in the PLC world: the use of simple
interactive programming tools without a typical burden of compiling,
linking, building, etc. plus very conformable debugging facilities. As we
discussed it in Part I (see the section PLC in Chapter 1 and the Hardness
of software section in Chapter 2) in spite of some nice features of the PLC
tools, the methods are hopelessly old-fashioned and reached their limits
some time ago. The attempts to improve them (such as the IEC-61131-3
standard) are a kind of patch, which does not change the overall bad
programming style. StateWORKS could be a good replacement in that
domain: it is not only a modern and effective development tool but also
possesses nice features, such as no software building problem, a very
comfortable debugging environment, and automated generation of docu-
mentation. Wagner® discusses the topic in detail.

Several aspects of Vfsm method, its application, and related topics are
discussed in case studies and technical notes available on the Web.”

Recommended Reading

1. Wagner, F., Wolstenholme, P., “A modern real-time software design tool:
applying lessons from Leo,” IEE Computing & Control Engineering (Feb-
ruary 2003).

2. Wagner, F., Wolstenholme, P., “Modeling and building reliable and re-usable
software,” Proceedings of the ECBS'03, Hunstville, AL, April 2003.

© 2006 by Taylor & Francis Group, LLC

264 m Modeling Software with Finite State Machines

3. Wagner, F., Wolstenholme, P., Wagner, T., “Closing the gap between soft-
ware modeling and code,” Proceedings of the ECBS'04, Brno, May 2004.

4. Flora-Holmquist, A. R., Morton, E., O’Grady, M. G., Staskauskas, M. G.,
“The virtual finite state design and implementation paradigm,” Bell Labs
Technical Journal (1997): 97-113.

5. Wagner, F., “Going beyond the limitations of IEC 61131-3,” SW Software
Technical note, 2005.

6. Mahoney, M., Tzilla, E., “Modeling platform specific attributes of a system
as crosscutting concerns using aspect-oriented statecharts and virtual finite
state machines,” paper presented at 6th International Workshop on Aspect-
Oriented Modeling, March 14, 2005, Chicago.

7. http://www .stateworks.com.

© 2006 by Taylor & Francis Group, LLC

www.stateworks.com

Appendix A

Case Studies

The www.stateworks.com Web site contains a few case studies:

Traffic Light Control
Microwave Oven Control
Gas Control

Industrial Control

Dining Philosophers Problem

We have included three of them in the following three appendices; material
from the other two was partly used in the book. The text of the included
case studies has been slightly changed and adapted to the requirements
and style of the book.

The Web site also contains several technical notes: at the time of writing
there were the following topics represented:

The Virtual Environment and Positive Logic Algebra
What Is StateWORKS?

Hierarchical systems of state machines

New version of CMD object (Commands)

String Object (STR)

How to Write a GUI for StateWORKS Applications
Standard Interface for StateWORKS Standard Executor
Debugging state machines

A flowchart is not a state machine

265

© 2006 by Taylor & Francis Group, LLC

266 m Modeling Software with Finite State Machines

Moore or Mealy model?

StateWORKS — specifying control software instead of coding
StateWORKS I0O-Unit for Velleman K8055 (or VM110) boards
Completeness of information in the virtual environment
Going beyond the limitations of IEC 61131-3

The last technical note is included as Appendix E.

© 2006 by Taylor & Francis Group, LLC

Appendix B

Microwave Oven Control —
Use of StateWORKS
Development Tools

Topic

The control of a microwave oven is relatively simple and does not present
any challenge to the designer. We have chosen it to show the usage of real-
time database (RTDB) objects. The RTDB objects are of various types and
may realize some control functions. Correct use of these functions sim-
plifies the state machines. Some obvious examples of control functions
are counters, which count commands, events, clock pulses (timers), etc.
In this example we want to show the usage of switchpoints (Swip), which
in RTDB-based systems are used to supervise whether an object value
stays within limits.
The requirements are:

The oven has a Run pushbutton to start (apply the power) and
a Timer that determines the cooking length. Cooking can be
interrupted at any time by opening the oven Door. After closing
the Door the cooking is continued. Cooking is terminated when
the Timer elapses. When the Door is open a Lamp inside the
oven is switched on; when the Door is closed the Lamp is off.

267

© 2006 by Taylor & Francis Group, LLC

268 ®m Modeling Software with Finite State Machines

The control system has the following inputs:

B Run push button — when activated starts cooking
B Timer — while this runs keep on cooking
B Door sensor — can be HIGH (door closed) or LOW (door open)

and the following outputs:

B Power — can be HIGH (power on) or LOW (power off)
B Lamp — can be HIGH (lamp on) or LOW (lamp off)

The knobs to set the power and time-out values are irrelevant for the
control state machine. The behavior of the microwave oven control is
determined by the Run push button, Timer, and Door sensor.

First Simple Solution

The first approach is simple and we consider only the basic requirements
as listed above. We later analyze the missing control function and specify
a more complete control system.

The state transition diagram for the simple solution is shown in Figure
B.1. The details of the state transition diagram are in the ST table. To
display it you need to use the program StateWORKS Studio. For the
purposes of this study we show here only the table for the state Idle
(Figure B.2).

This simple solution has some weak points. Of course, microwave
ovens are manufactured in different flavors with slightly different controls.
Thus, we cannot analyze all possible variants we see on the market. For
the purpose of our exercise we will consider the timer. The timer usage

3

Figure B.1 First Microwave oven control: the ST diagram.

© 2006 by Taylor & Francis Group, LLC

Microwave Oven Control m 269

Entering the state the switchpoint is activated.

Opening and closing the door switches the lamp on and off.

If the Run signal becomes active and the Timeout value is not zero the state machine goes to
the state Cooking.

Idle Entry action Swip_Timeout_On
eXit action
Door_Closed Do_LampOff
Door_Open Do_LampOn
Cooking Di_Run

Figure B.2 First Microwave oven control: the ST table of the state Id/e.

is not perfect; namely, the control system always starts, even if the time-
out value is set to 0. To reset the system for the next start we have to
open and then close the door: if you do not like this, then you will find
the exercise of changing the design very educational.

More Realistic Control

To achieve a more elaborate control as shown in Figure B.3 we introduce
a condition Swip_TimeoutNotZero, which together with Di_Run (using
logical AND operation) forms the condition for the transition from the state
Idle to Cooking (see Figure B.4). A Switchpoint in the RTDB is a mechanism
for testing any numeric value, and producing a set of Control Values in
the positive-logic convention employed by StateWORKS to govern possible

Di_Run & Door_Closed & Swip_Ti..,

3 Door_Open
Cooking poking Interrupfed

Figure B.3 Microwave oven control: the ST diagram.

© 2006 by Taylor & Francis Group, LLC

270 ®m Modeling Software with Finite State Machines

Entering the state the switchpoint is activated.

Opening and closing the door switches the Lamp on and off.

If the Run button becomes active and the Timeout value is not zero the state machine goes to
the state Cooking.

Idle Entry action Swip_Timeout_On

eXit action

Door_Closed Do_LampOff

Door_Open Do_LampOn

Cooking Di_Run &
Door_Closed &
Swip_TimeoutNotZero

Figure B.4 Microwave oven control: the ST table of the state Idle.

transitions. Instead of using the Control Values directly we use control
names (see more detailed explanation later in “RTDB object” section).
Commonly, we employ names such as In_Permitted_Range,
Too_High, and Too_Low.

The specification is abstract, so we do not care at this moment how
we might get the conditions. At this moment, the Vfsm specification defines
a link to the real object in the RTDB by choosing the needed object types
and using their control values to define control names, as, for instance,
Swip_TimeoutNotZero.

Later, during the detailed system configuration, we can decide which
specific timer will be used for oven control and link its time-out value
with a parameter (set by a timer knob on the microwave oven front
paneD). That parameter, in turn, will be an object to be supervised by a
switchpoint. We may show the dependencies specified in the RTDB by
the diagram in Figure B.5.

RTDB Objects

The RTDB consists of objects. Objects are of different types; i.e., they
have different properties; specifically they have different Data and Control
Values.

A parameter object may have Data of type integer, float, string, etc. It
may also have a Control Value but we do not discuss it here as it is
irrelevant to the example. In our example Parameter stores the time-out
value, which is an integer representing the number of seconds.

© 2006 by Taylor & Francis Group, LLC

Microwave Oven Control m 271

Real signals RTDB Virtual
environment
Parameter Timer
Value from Vil Val RESET
timer knob alue alue STOP
—» (eg.105) P (counter) RUN
OVER (timeout)
Control Value Control Value | OVERSTOP N
(not used)
Switchpoint
Value
> (limits) HIGH
IN (Swip_TimeoutNotZero)
Control Value | LOW N

Figure B.5 Microwave oven control: dependencies among RTDB objects.

The timer data value is its counter output, which represents the elapsed
time from the timer start. The timer object compares continuously the counter
output with the time-out value (in this case supplied by the Parameter
object) and defines the timer Control Value. If the timer is not started yet
the Control Value is RESET. If the timer runs (the counter counts some
time pulses) the Control Value is RUN. If the counter output equals the
time-out value the Control Value is OVER.

A switchpoint object (SWIP) compares some Value with its Data Values,
which represent in this case Low and High levels according to the diagram
in Figure B.6.

In our example the Switchpoint object compares its Data (1 and a
very large number) with a Parameter value which is a time-out. The result

Value of

supervised object

High limit

Switchpoint values
Low limit / =
IN N IN
LOW, HIGH LOW
|

Switchpoint control values

Figure B.6 Microwave oven control: the switchpoint (SWIP) object generates
the control value.

© 2006 by Taylor & Francis Group, LLC

272 m Modeling Software with Finite State Machines

of this comparison is Switchpoint Control Value which may be LOW, IN,
or HIGH. As we are interested only in the value 0 of the Parameter we
use the Control Value = IN as a condition name Swip_TimeoutNotZero.
Note that the IN range includes the two limit values.

Yet Another Change

To demonstrate the flexibility of the RTDB we explain how to change the
time-out value if it is determined by a potentiometer. The potentiometer
delivers an analog signal — a voltage. So, we use a numerical input (NI)
object in the RTDB to store the voltage and then use this object as a
source of the Const value for the Timer object and as an Input for the
Switchpoint object. In other words, the only change is to replace the
Parameter with the Numeric Input.

Conclusions

A state machine determines the behavior of a control system. The com-
plexity of the state machine depends, among other factors, on the means
that are to be used to build the control system: the input/output system
(hardware interface) and the system resources (timers, counters, etc.).

The RTDB provides a set of already-prepared objects, which can
simplify the design of a control system by implementing some general
control functions. Here we have shown one of these control functions:
supervision of a certain value.

You may have noticed that the requirements as specified in the begin-
ning were not very detailed. We did that on purpose as it is often the
situation with which we are confronted in a real project. Not until we see
the first solution do we “discover” that it is not what we have expected.
Well, formally the first simple solution fulfilled the requirements. To start
a project with an incomplete specification is not desirable, but it is a
common practice and often unavoidable. Anyway, eventually we com-
pleted revision of the requirements and the second solution seems to be
more realistic.

A real project may require additional control functions. A microwave
oven usually has a rotating platform, which turns when the power is
applied: separate controls for the power and the motor may be required.
There are microwave ovens that “store” the Start signal even when the
time-out is 0: in such a case we may first push the Start button and later,
at any time, we start cooking by setting the timer. Another problem may
be the setting of the time-out value: it may be a direct digital signal, an

© 2006 by Taylor & Francis Group, LLC

Microwave Oven Control m 273

input from a keyboard, or an analog setting adjusted by a potentiometer:
these possibilities require different solutions in the RTDB. However the
details may vary, any requirements can be transformed to a neat Vfsm
specification implemented by means of the StateWORKS system.

We have used such very simple examples in order to illustrate some
of the important aspects of StateWORKS: the usage of RTDB objects. You
may play with this example using the StateWORKS simulator (SWLab).
This simulation tool, which supports the development of a control system,
can be downloaded from our site. Using StateWORKS Studio you may
change the behavior of the MWOven control and test it with SWLab.
SWLab simulates inputs and outputs and contains the Vfsm Executor. To
see what is going on, do not merely open the state machine and its states,
but investigate the “Dictionary” and “Name” pull-down menus from the
top tool-bar, as well as the open “Project” window to see how all the
objects are defined and configured.

Demo

The MWOven project can be downloaded for test. You may inspect and
change the project using the StateWORKS Studio. You may run and test
the MWOven application using SWlab and SWMon or SWTerm.

Test: start SWLab and open the MWOven.swd file. SWLab displays
then the DI inputs: Door and Run, DO outputs: Power and Lamp, and
the NI input: CookingTime. As the CookingTime is initialized to 2048
you would probably like to set it to some lower value or 0 in the beginning.
(Take no account of the scale markings, which are only intended as a
logo for a numeric setting. You can quickly alter the setting by moving
the pointer with a mouse select/move operation.) Alternatively, you may
set the Offset property of the MW:Ni:CookingTime when specifying the
RTDB objects to -2048.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC

Appendix C

Gas Control — Hierarchical
System of State Machines

Topic

The Gas example is taken from our User Manual. It has been modified
for the purpose of this case study. The changes allow the system to be
tested with SWLab, without needing SWMon although using a monitor
makes testing more comfortable.

The example is of a control system to control gas inlets of a vacuum
chamber used by semiconductor manufacturers (Figure C.1 shows the
control elements). The system contains flow control and pressure control
elements. Three flow regulators supply three different gases to the chamber
and they are controlled by a state machines Flow. The chamber is used
for a manufacturing process that requires a certain vacuum in the chamber.
The low pressure in the chamber is produced by vacuum pumps, not
shown on the diagram. Effectively, the vacuum in the chamber is deter-
mined by the pumps and the gas flow. The pressure is continuously
monitored and if it exceeds the required range the process is interrupted
and the gas flow must be discontinued.

The system as designed contains five state machines (Figure C.2): three
state machines Flow for gas flow control, the state machine Press to
monitor the vacuum in the chamber, and a state machine Gas that is a
Master, which coordinates the activities of the state machines Flow and
Press.

275

© 2006 by Taylor & Francis Group, LLC

276 ®m Modeling Software with Finite State Machines

Gas Flowl Gas Flow2 Gas Flow3 Pressure
Regulator Regulator Regulator Gauge
% ‘

Process

X

X

Vacuum chamber

Figure C.1 Gas control.

Gas3
(Gas3)

:

:

Flow 1 Flow 2 Flow 3 Pross
(Flow) (Flow) (Flow) (Press)

N4_Unit5
(Nid)

NO4_Unit7
(Nod)

DO8_Unit3
(DO8)

Figure C.2 Gas: the SMS diagram.

Flow Control

A gas flow regulator regulates the amount of gas passing through the gas
inlet. The state machine Flow sets the required value of gas flow and
monitors the true value of the flow. It is a kind of supervisor of the gas
flow regulator. The gas flow regulator is a PID regulator and corrects the
fast flow deviation. The Flow control reacts to permanent flow deviations,
which cannot be corrected by the gas flow regulator, issuing alarms and

closing the flow in emergency cases.

© 2006 by Taylor & Francis Group, LLC

Gas Control — Hierarchical System of State Machines w277

The state machine Flow accepts commands (numbers) and sets an
analog signal Flow_Ao (set value for the gas flow regulator) and a digital
signal Flow_Do (open/close valve). As a feedback from the attenuator
the state machine receives the actual gas flow values as an analog signal
Flow_Ai and a digital signal Flow_Di indicating the regulator position
(open / closed). Three commands determine regulator operations:

B Open (1): opens the gas flow by setting the High value of the
digital output Flow_Do

B Close (2): closes the gas flow by setting the Low value of the
digital output Flow_Do

B Regulate (3): sets the gas flow to the value determined by the
numerical output Flow_Ao

If the command Open has been carried out the state machine should
check whether the gas valve has been opened. If the valve does not open
after a certain time an alarm should be issued.

If the command Regulate has been carried out, the state machine
should check whether the gas flow has reached the required value. If the
flow cannot reach the value in certain time an alarm should be issued.

The actual gas flow is measured and its value delivered as an analog
input signal Flow_Ai to the control system. Normally, it is required that
the flow value stay within certain limits. If the flow value exceeds the
required range, the state machine should after some delay issue an alarm
and count this event. If it happens more than a certain number the state
machine should issue immediately the alarm if the flow value exceeds
the range.

You can find the details of the state machine Flow in its specification,
especially in the ST tables. We show here only the state transition diagram
in Figure C.3, which gives a general impression about the Flow control.

Note that the state machine Flow has two Do outputs. The output
DoValve is a control relevant output used to open/close the gas flow
valve. The output DoRegulating is only for the purpose of this case study
to show in SWLab that the gas flow value has reached the required value
(i.e., the state machine Flow is in the state Regulating).

Monitoring the Pressure

The state machine Press does not perform any true control-it does not
have any output like Do or No. It rather monitors the pressure and
represents the result to the Master with its state. Hence, the role of this
kind of state machine is to isolate the Master from measurement details

© 2006 by Taylor & Francis Group, LLC

278 ®m Modeling Software with Finite State Machines

5
Standby

Flow_LOW | FlowCe

6

Closing

CmdClose

8
Open &‘- Regulate

Regulating
X:

E:

FlowNot OK

E: X:

L

Figure C.3 Flow: the ST diagram.

and to supply the Master more abstract but truly relevant control infor-
mation, like the pressure is ok or wrong.

The actual pressure value delivered by the numerical input Ai is
controlled by a switchpoint SwipPress and by a Timer. If the measurement
is on, the timer is started. If the timer expires before the pressure (Ai)
reaches the required range Press signals the bad pressure with its state
and issues an alarm. If the pressure returns to the required value, Press
signals it with its state. Thus, during measurement Press changes among
states: Busy, PressOK, and BadPress signaling to the Master the pressure
value.

Note that similar to the state machine Flow we added an output Do,
which is irrelevant for the control but is used to switch on a lamp in
SWlab to show that the gas pressure is ok.

The state machine Press is shown in Figure C.4. The ST tables contain
the details.

© 2006 by Taylor & Francis Group, LLC

Gas Control — Hierarchical System of State Machines ® 279

Cmd_Disable

Cmd_Enable

SwipPress_IN

Timer_OVER

Cmd_Disable

4
Press OK

5
BadPress

E: X: E:

Figure C.4 Press: the ST diagram.

Gas Control

The state machine Gas has four slaves: one Press and three state machines
Flow. The slaves get commands from their Master — the state machine
Gas. The state machine Gas uses the states of its slave to supervise their
activity.

Normally, the state machine Gas would receive a command as its
primary input. As we cannot send a command from the SWLab we replace
for the purpose of the case study the Gas command by a Di: HIGH value
means command On, LOW value — command Off. The correspondence
is not 100% but it is sufficient for the example.

Considering their behavior the three state machines Flow are the same.
Therefore, we have only one type of state machine Flow in the system.
The three state machines Flow controlled by the state machine Gas are
three incarnations of the same state machine. The differences among the
state machines Flow are in their properties such as time-outs, retries, flow
set values, supervised flow limits, etc. These are just set as properties of
state machine Flow objects. Note that the Flow machine does not regulate
the flow: it merely passes an assigned parameter to the PID controller to
fix the set point. This would be exactly the same were the PID controller
to be a software package running under the same processor, rather than
an external device: the state machine Flow neither knows nor cares about
such details.

© 2006 by Taylor & Francis Group, LLC

280 ®m Modeling Software with Finite State Machines

MyCmd_Off | Press_BadPress

Flow1_Busy | Flow2”BUSY | Flow...

Press_PressOK

MyCmd_On

Figure C.5 Gas3: the ST diagram.

The state transition diagram in Figure C.5 shows that the behavior of
the state machine Gas is relatively simple as the detailed control problems
on the device level are handled by Press and Flow state machines.

The details of Gas control can be seen in its specification, especially
in the ST tables. Note that the Input names in the state machine Gas are
defined as complex expressions. This feature of StateWORKS makes the
state machine specification very comprehensible, hiding the complexity
of the transition conditions behind expressive names. For instance:

B Flow_StandbyANDPress_Off means: “all state machines Flow
are in the Standby state AND state machine Press is in the Off
state” and replaces the following logical expression:

Press_Off AND Flowl_Standby AND Flow2_Standby
AND Flow3_Standby.

B Flowl_BUSY means: “state machine Flowl is in the Busy or
FlowNotOk state” and replaces the following logical expression:

Flowl_Busy OR Flowl_FlowNotOk.

Conclusions

The Gas control system with its five state machines is a typical example
of a hierarchical system of state machines. The Master (Gas) and its Slaves
(3xFlow and Press) communicate using a command-state interface: the

© 2006 by Taylor & Francis Group, LLC

Gas Control — Hierarchical System of State Machines ® 281

Master sends commands and supervises the reaction of Slaves to its
commands by monitoring their states.

The case study also illustrates how such a system deals with numerical
data. Although we have taken pains to point out that real data, particularly
numerical data, is kept out of the state machine specifications generated
when designing with StateWORKS, the control system does, of course,
need to handle such data, such as pressure and flow settings.

Demo

You find the Gas project in the Samples dictionary (there are few variants
of it there; the discussion in this case study applies to the Gas3 project)
if you install StateWORKS Studio. Look at the state machines and system
specifications using StateWORKS Studio and run it using SWLab and
SWMon or SWTerm.

If you set Gas:Di:Cmd HIGH (switch to left) Gas state machine goes
to OnBusy state and sends to all Flow state machines the command
Regulate. The input values of the measurement instruments are simu-
lated by Ni. The correct, expected values are:

B Press:Ni:ActualPressureValue in the range 322-415
B FlowN:Ni:ActualFlowValue in the range 1000-1200

The values result from the (arbitrary chosen) properties (scale factor, etc.)
for these elements. The values and properties for all Flow objects are the
same.

Do lamps signal if the set values (states) are achieved. The values of
outputs No for Flow valves will be then set to 750.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC

Appendix D

Dining Philosophers
Problem

Example

There are some variants of this problem. One of them reads:

There are five philosophers sitting at a round table who do
nothing but think and eat. Between each philosopher there is a
single fork. In order to eat, a philosopher must have both forks.

This problem is used to discuss multi-process synchronization problems,
like deadlocks and starvation. You get these problems if you put some
restrictions on the way a philosopher grabs for a fork, for instance, first
on the right and then waits for the fork on the left. But here I do not
want to model synchronization problems — so I realize the working
system where a philosopher starts eating if both forks at his sides are
free. As this example has been invented as a Christmas gift to study
starvation would not be a proper topic.
Actually, T took the wording from:

http://www.codeproject.com/csharp/FSMdotNet.asp?target=
state%7Cmachine&select=691061&df=100&forumid=
29430&fr=16.5#xx091061xx

283

© 2006 by Taylor & Francis Group, LLC

www.codeproject.com

284 m Modeling Software with Finite State Machines

where I took part in a discussion about state machines. You may find it
interesting to compare the effort you need if you code something and
use a ready-made execution system like StateWORKS.

A philosopher’s behavior is simulated by a state machine represented
by the state transition diagram in Figure D.1.

The eating time and thinking time are defined by separate timers. The
forks are represented by XDA objects.

To simulate the problem we need then five state machines, one for
each philosopher (see Figure D.2). The state machines are not a system
of state machines; they are just five separate state machines. The depen-
dencies among philosophers (state machines) come into being as they

Thinking_OVER

4

Eating_OVER Thinking

X:

S

Figure D.1 Dining Philosophers: the ST diagram.

o, O O O O
DiningPh:02 DiningPh:03 DiningPh:04 DiningPh:05
(DiningPh) (DiningPh) (DiningPh) (DiningPh)
9. O QO O O

Figure D.2 Dining Philosophers: the SMS diagram.

© 2006 by Taylor & Francis Group, LLC

Dining Philosophers Problem m 285

use common forks (a left fork of one philosopher is the right fork of the
neighboring philosopher).

Running the Example

The DiningPhilosophers example is available for download on our Web
site. You may try it if you possess StateWORKS development tools. You
may run the SWLab with the DiningPhilosophers example and monitor
the system using SWMon, SWQuick, or SWTerm. The system uses digital
outputs to indicate thinking philosophers: if a Do is on the philosopher
thinks; otherwise he eats or is hungry. In SWMon you may change the
time-out values for thinking and eating but I can assure you that for any
combination of time-out values no philosopher will starve (well, assuming
that you do not use very large values).

© 2006 by Taylor & Francis Group, LLC

Appendix E

Going Beyond
the Limitations
of IEC 61131-3

Introduction

We start with an analysis of an example taken from the IEC document,!
which specifies the 61131-3 standard for programming PLC (Programmable
Logic Controllers). The example uses the terms: states and transitions; i.e.,
it suggests the use of the state machine concept in PLC design. The
example is then realized as a state machine using StateWORKS, illustrating
how the functionality can be completed and improved.

Comparing the StateWORKS solution with the approach presented in
the IEC document we may formulate some reflections about the evolution
taking place in the PLC world and suggest further changes encouraging
a transition from intuitive to model-based design.

GRAVEL Example from IEC 61131 Document —
Critical Analysis

The description of the control problem from the IEC document begins:

A control system is to be used to measure an operator-specified
amount of gravel from a silo into an intermediate bin, and to
convey the gravel after measurement from the bin into a truck.

287

© 2006 by Taylor & Francis Group, LLC

288 ®m Modeling Software with Finite State Machines

CONTROL PANEL
INDICATORS PUSH BUTTONS
(Lamps) ON
CONTROL SYSTEM ON OFF
TRUCK ON RAMP ACKNOWLEDGE
SILO EMPTY FILL
CONVEYOR RUNNING LOAD
LAMP TEST
Silo empty* limit switch 2-DIGIT BCD:
éuo valve DISPLAY THUMBWHEEL
BIN LEVEL SET POINT
SIREN
L,Bin empty* limit switch SILO EMPTY

Bin valve

limit switch

Figure E.1 Gravel system.

The required operations can be specified referring to Figure E.1.

The description suggests the designed system uses momentary-action
pushbuttons (like keyboard buttons, i.e., they have one stable position).
The JOG button is not shown on the console panel; we assume that it is
mounted somewhere close to the conveyor and used in emergency and
service cases.

The requirements are: the ON button switches on the automatic control,
the OFF button stops it. If the automatic control is on, the FILL button
starts filling the bin. The filling terminates automatically if the required
(set by a thumbwheel) amount of gravel is in the bin. When the bin is
filled and the truck is on the ramp (detected by a limit switch), the LOAD
button switches on the truck loading: the conveyor motor is started and
after a while when it reaches the full speed the dumping of the bin
contents begins. When the bin is empty (detected by a limit switch) the
conveyor runs still for a while, so that the entire load of gravel is loaded
onto the truck. At any time the loading can be stopped and reinitialized
if the truck leaves the ramp or if the automatic control is off.

The automatic control “on” and the presence of the truck on the ramp
are each to be signaled by a lamp. The conveyor running and silo empty
are to be signaled by a blinking lamp. In addition a siren is to signal that
the silo is empty. The siren can be acknowledged by a button for a certain
time: if the silo stays empty, the siren will be restarted.

The implementation does not mention explicitly the concept of state
machines but uses the word “state” and “transition.” Thus, it is relatively

© 2006 by Taylor & Francis Group, LLC

Going Beyond the Limitations of IEC 61137-3 ® 289

2
Fill_PB & Control_X @ Level CTR_Q

Not_Fill_PB] Not_Control_X

Run_Out_Timer_OVER _
Not_Control_X | Ng Not_Control_X | Not| Truck_On_Ramp

Bin_Empty_Ls

Figure E.2 IEC Gravel state machine: the ST diagram.

easy to identify the main state machine in the design. The control system
is realized as SFC (Structured Function Chart) using ST (Structured Text)
language elements. The SFC has two representations: a text (the actual
program) and a graph (a kind of flowchart with symbols of logical elements
like gates and flip-flops).

The states are declared with the keyword STEP, the initial state with
INITIAL_STEP and the transition with TRANSITION. Hence the initial step
looks like:

INITIAL_STEP START ; END_STEP
TRANSITION FROM START TO FILL_BIN
:= FILL_PB & CONTROL.X ; END_TRANSITION

Analyzing the SFC program we identify four state machines or we could
also say three state machines and one combinational system. The first
state machine (let us call it Gravel) is programmed under the title “Major
operating states” and is shown in Figure E.2. This state machine changes
its state as triggered by inputs but does not control anything directly (well,
the declaration:

:= TIMER.T >= RUN_TIME:

effectively starts the timer and waits for the time-out to perform the
transition).

To keep the correspondence between the code in the ICE document
and the state transition diagram as close as possible we use the original
variable names from the IEC document. The meaning of the names, which
might be confusing for the reader, is as follows:

© 2006 by Taylor & Francis Group, LLC

290 ®m Modeling Software with Finite State Machines

Control_X -> Automatic Control is On
Not_Control_ X -> Automatic Control is Off
Fill_PB -> FILL PushButton is pressed
Not_Fill_PB -> FILL PushButton is not pressed
Level_Ctrl_Q -> Required level in Bin is reached

Other names are more or less understandable.

If there is a “major system” we would expect there will be some “other
systems” too. No, the second state machine (let us call it Control) is
programmed under the title “Control state sequencing” and is shown in
Figure E.3. This state machine remembers the last pushed button ON or
OFF, and its state is used in the combinational system as well as in the
state machine Gravel in logical conditions. The Control state machine
implements the conveyor motor control and switching of the blinking
lamp signaling that the silo is empty. A section drawn as two delay
components assures the blink timer function, and could be considered as
a state machine having only two states.

The combinational system (let us call it Actions) decodes the situation
using the states of the state machines plus inputs and determines outputs.
The entire control system is shown in Figure E.4.

Some comments about the implementation:

B The use of the FILL push button is not clear. If it is a 1-position
pushbutton then the operator has to push the button all the time
during the filling; when the operator removes his or her finger
from the button, filling will be interrupted and the system returns
to the state Start. The other solution would be to use a 2-position
button.

B The control of the silo valve is shown in SFC but is missing in the
program (should be opened in the state Fill_Bin and closed
otherwise).

B The control of the bin valve is shown in SFC but missing in the
program (should be opened in the state Dump_Bin and closed
otherwise).

1

Control_Off On_PB & Not_Off PB

Figure E.3 IEC Control state machine: the ST diagram.

© 2006 by Taylor & Francis Group, LLC

Going Beyond the Limitations of [EC 61137-3 ® 291

Action

(IEC_Action)

A A{

Gravel

(IEC_Gravel)

—

Blink Control
(IEC_Blink) (IEC_Control)

Figure E.4 The IEC Gravel control system as SFC.

The control of the siren signaling empty silo is shown in SFC in
such a way that a hardware designer would not accept it (a flip-
flop with both R and S inputs active and assuming that the input
R wins). The implementation in the program is so complex we
can only believe that it works.

The test of the conveyor lamp is missing.

The design has some weak points. For instance, when loading is
started it cannot be interrupted but the entire content of the bin
must be loaded onto the truck. The other not so nice solution is
that if the run-out is interrupted and the conveyor starts again the
run-out time is calculated always from the beginning.

The problem mentioned in the previous point may be truly unpleas-
ant in case of limit switch malfunctions. For instance, if the
BinEmpty sensor does not work there is no way to reach the initial
Start state except by restarting the system.

There are no precautions for detecting and reacting to various
malfunctions.

There is no way to switch off the siren if the silo is empty: the
siren whine can be only interrupted for a while.

The last comment relates to the syntax of the SFC representation.
I would have never managed to understand the functioning of ST
language elements: Blink, Blank, and Pulse without the SFC dia-
gram. And that was only understandable for me because of my
hardware background that T still have not forgotten. I cannot save
myself a (rthetorical) question why PLC programmers do not protest
against that kind of user-unfriendly syntax. In general it makes an

© 2006 by Taylor & Francis Group, LLC

292 ®m Modeling Software with Finite State Machines

odd impression to keep at all costs a hardware diagram that should
explain a totally unreadable program.

Omissions discussed above are typical for sunny-day-scenarios where we
implement the sequences that should happen. The unexpected situation
will be dealt with later in some way: often by code.

A State Machine as a Replacement for Markers

PLC programming has always used markers to store information about
the past. Markers are equivalent to flags in code. The problem with markers
is the same as with any flags: they are difficult to control if their number
increases. The form of the control system in the example corresponds
directly to the concept of markers: the steps (i.e., states) are in effect
treated as a better way to organize markers. But effectively, the code
defines a state machine.

A code in the IEC document is developed in the following way: we
design a state machine that reflects a certain “sequence.” Then we build
a combinational circuit, which is built using the state of the state machine
and inputs. The problem lies in the understanding and design of the
“sequence.” Such state machines are used but only rarely, under special
circumstances. Readers who look at the case study “TrafficLight control”
on our Web site would discover there exactly that kind of solution. For
the TrafficLight control we use a state machine whose sense is to reflect
the position and the movement direction of a train in the controlled zone.
If we know that information, we can decide about the traffic light: it must
be on if at least one TrafficLight state machine signals that the train moves
toward the crossing (there is a separate state machine for any train in the
controlled zone). The solution is simple and the design of the “sequence”
is obvious. Those state machines are so-called parser state machines —
we come back to that topic later in Conclusions where we present the
state machine classification in more detail.

Most control systems are not so homogeneous considering their behav-
ior. It is very difficult to find the actual “sequence” that assures that the
outputs of the control system can be defined as a set of combinational
Boolean equations. In the example, the sequence has been found but as
we pointed out in the analysis it covers only the sunny-day-scenario: the
full functionality requires additional effort. Therefore the normal and
recommended way is to design a state machine that includes explicit
output actions. This is not just a cosmetic change. The analyzed example,
as presented, is a simple control problem. Simple problems can be solved
using any method, intuitively rather than by developing a method-based

© 2006 by Taylor & Francis Group, LLC

Going Beyond the Limitations of IEC 61137-3 ® 293

strategy; anything will do. The true difficulties in a design arrive with
increasing complexity of the control requirements.

The state machine approach requires the conviction that by knowing
the state (supported by inputs when using a Mealy model) all outputs or
other activities are determined. In other words, when designing a state
machine we think in terms of the states: in any state we decide what to
do and when to change the state. With the approach presented in the
IEC document, the state machine is a supporting instrument only. If a
designer of such a “marker” state machine decides for some reason to
change the state machine he has to go through the entire combinational
part trying to understand how the change influences the output conditions.
The separation between the actions and the state machine makes the
design difficult. The astonishing factor is that this difficulty is self-imposed,;
it is only a question of proper understanding of the role of a state machine
in the system design.

The marker approach also weighs on the general approach. If we look
at the program (textual SFC) it is a typical program. We change a state,
we do something in the state, other actions are done in the combinational
part. It may and it will work after some time: it is a question of how
many hours we put into testing it. But it is very difficult to conquer a
complex problem in such a way: it becomes more and more difficult to
see all the dependencies.

So, we are now coming to the next problem. When designing complex
control systems we need several state machines that communicate among
themselves. If we need several state machines with exactly the same
behavior we can do it with a “copy and paste” method; it is not a very
attractive perspective. We cannot achieve a clear structure in such a coded
solution.

In any case, we find this arrangement great progress in comparison
with markers but we also understand the resistance that PLC programmers
have against true understanding of a state machine. Unfortunately, they
do not understand the vitally important distinction between using markers
and using states.

GRAVEL Example as a State Machine

To support the criticisms from the previous section we have designed the
control system using StateWORKS, treating the state machine as the central
point of the design. To make it comparable we just took the state machine
Gravel from the document as the basis. The entire system is shown in
Figure E-5. In addition to the Main Gravel state machine it contains four
other state machines:

© 2006 by Taylor & Francis Group, LLC

294 m Modeling Software with Finite State Machines

GravelMy
(GravelMy)

RN
{ {] I

Control Conveyor ConveyorLamp SiloLamp

(Control) (Conveyor) (Blink) (Blink)

Figure E.5 Gravel control system: the SMS diagram.

B We retained the Control state machine to transform the push
buttons ON and OFF into easier-to-use states: On and Off. Alter-
natively we could have used the state machine as a Master that
sends the commands: Cmd_On and Cmd_Off to the Gravel state
machine.

B There are two blinking lights required. We used for that purpose
a standard state machine Blink, which we have in our library. The
state machine Blink is controlled by three commands: Cmd_Off,
Cmd_On, and Cmd_Blink. We use two incarnations of that state
machine: SiloLamp and ConveyorLamp, which receive commands
from the state machine Gravel.

B We moved the conveyor control to a separate state machine Con-
veyor. In this example it is not really necessary but we wanted
just to support the idea of decomposing a control system into a
set of specialized state machines. The Conveyor state machine does
the complete motor control function: triggered by commands from
the Gravel state machine or by a JOG pushbutton. If the control
of the conveyor becomes more difficult or different, we just change
the design of that state machine but the Gravel state machine will
stay unchanged.

The heart of the system is the state machine Gravel, which controls all
actions. The state transition diagram of the Gravel state machine shown
in Figure E.6 is very similar to the original state machine in the IEC
document.

We tried to improve the original state machine by adding things where
we had found fault with the implementation in the IEC document. We
made the improvements under the assumption that we can use only the
existing hardware: sensors, actuators, as well as pushbuttons and lamps
on the console panel. Hence, we could make changes only to the control
sequences. We have changed the following items:

© 2006 by Taylor & Francis Group, LLC

Going Beyond the Limitations of IEC 61137-3 ® 295

ill_PB | Not_Control_X
5

Load_Wait

Level CTR_HIGH

E:

Load_PB & (Control_X & Truck_O...

Runout_Timer_OVER

Not_Control_X | Not| Truck_On_Ramp

Not_Control_X | Not. ick_On_Ramp

8

Run_Out Bin_Empty_Ls & Level_Ctr_LOW

Rin_In_Timer_OVER
X:

Figure E.6 My Gravel state machine: the ST diagram.

B We assumed that the FILL pushbutton is actually a momentary
pushbutton exactly as the other buttons. The two additional states,
To_Start and To_Fill_Bin, realize the required flip-flop effect.

®m If the conveyor run-out is interrupted and later restarted, the run-
out timer is not restarted but started from the already counted
value. This arrangement shortens the run-out time, which otherwise
is unnecessarily long. It could be improved further: we could
decrease the run-out time by subtracting a value that results from
the repeated run-in phase.

B The transition from the state Dump_Bin to Run_Out depends not
only on the Bin_Empty limit switch but also on the supervision of
the gravel level in the bin. This is an additional security, which
guards against malfunction of the limit switch.

B The pushbutton LAMP TEST now tests all the lamps.

B The siren whining is limited to a few times only (a constant in the
configuration, which can be changed at any time). After the third
ACKNOWLEDGMENT the siren stays silent independently of the
state of the silo limit switch. It “recovers” if the silo becomes “not
empty” again.

The difference between the implementation in the IEC document and the
state machine above is that the latter contains all actions that are under
its control. Figure E.7 shows as an example the state transition table of
the state Run_In.

© 2006 by Taylor & Francis Group, LLC

296 ®m Modeling Software with Finite State Machines

Run_In Entry action ConveyorCmd_On
ConveyorLampCmd_Blink
Rin_In_Timer_ResetStart

eXit action Rin_In_Timer_Stop
Dump_Bin Run_In_Timer_OVER
Load_Wait Not_Control_X|

Not_Truck_On_Ramp

Figure E.7 My Gravel: the ST table of the state Run_In.

When entering the state, the commands Cmd_On are sent to the
Conveyor and ConveyorLamp state machines and the timer Run_In_Timer
is restarted. When the timer elapses the state machine goes to the state
Dump_Bin. Before the timer elapses the state machine may return to the
state Load_Wait if the automatic control is switched off or the truck leaves
the ramp. Leaving the state (independently of the destination state) the
Run_In_Timer is stopped as the timer loses its meaning in other states.

There are still a few items missing or that should be corrected:

B Malfunction of limit switches should be signaled to the operator
by an alarm but it would require an alarm display or additional
warning lamp(s) on the console.

B The return to the initial state Start in case of a limit switch
malfunction is not possible. Rearranging the role of the existing
switches could allow it: the ON button could force the return to
the state Start and the LOAD button could be used to stop the
conveyor in states: Run_In, Dump_Bin, and Run_Out. Another
possibility would be to expand the functionality of the ON button:
pressing the button longer (e.g., 5 seconds), being treated as a
break of loading, forces a return to the state Start. Those revisions
would require approval from the client.

These further changes would make a good exercise for interested readers.

All details of the Gravel control system can be found in the State WORKS
project Gravel on our Web site. The results can be tested using SWLab
and SWMon. All case studies and tools may be downloaded from
www.stateworks.com.

© 2006 by Taylor & Francis Group, LLC

www.stateworks.com

Going Beyond the Limitations of IEC 61137-3 ®m 297

Conclusions

Even the half-hearted use of the state machine concept in PLC program-
ming is a useful step forward, from the intuitive way of programming by
coding, to programming that is based on control system modeling. The
way it is presented in the IEC example is still influenced by the “marker”
way of thinking, which makes it less attractive for PLC programmers.
Missing a concept of a system of state machines limits the use of state
machines in PLC programming to very simple examples.

The major flaw in the IEC example is that the state machine is not
considered a real solution for the application control flow. The state
machine is used to store some information about the situation, which
covers the sunny-day-scenario, while the details of system malfunctions
are left for the programmer: the programmer will arrange it in some way.
Problems caused by rarely occurring malfunctions are the essence of the
designer’s real task: the full advantages of correct state machine use are
seen by solving those truly difficult control sequences with relative ease.

Several criteria can be used for classification of state machines. For
instance, the Moore and Mealy model definitions come from the educational/
scientific world. Taking the application criteria into consideration we would
rather speak about parser (in automata theory it is also called acceptor
or recognizer) and control (in automata theory it is called also transducer)
state machines.

The parser state machines match strings (in general symbols); i.e., they
follow a sequence of states with the purpose of detecting a certain string
pattern. In practice, they do nothing else while changing the states and
the concept of output actions does not make sense for them.

A specific variant of a parser state machine transforms changes of input
signals into a set of states that can then be used by simple decoding to
determine outputs. Such situations occur relatively seldom and are char-
acterized by a specific homogenization of the control requirements, which
happens only for rather simple control systems.

Both variants of parser state machines are special cases of state
machines, finding little application in industrial control because there are
not many situations where they may be used.

The control state machines are actual state machines used in practical
applications. They consist of states that determine output actions. With
control state machines we are able to specify behavior of any complexity,
especially by using a system of state machines.

Thinking about solving a control problem by serious use of state
machines allows us to use for this purpose StateWORKS Studio. With that
tool we can solve the problem and test the solution. If we are sure that it

© 2006 by Taylor & Francis Group, LLC

298 ®m Modeling Software with Finite State Machines

works we can then code it. An automatic translation from the StateWORKS
Studio specification to an SFC program is also imaginable, why not? The
best solution would be, of course, to use the StateWORKS run-time system
and avoid the code generation.

If the control system runs anyway on a PC (it is the case when using
Beckhoff hardware) the use of StateWORKS run-time systems seems to
be the natural choice. A simulation of a PLC run-time system on a PC
would be in that case rather difficult to justify.

If readers study the example carefully they will see that a complete
solution — within imposed limits — is presented, and not just a simplified
one. It is our conviction that the complete solution to the complete
problem must be produced by the design methods used, and all its
behavioral features must be presented very clearly to the designer, without
hiding major aspects in code or elsewhere. If StateWORKS is used, the
designer is encouraged — one might almost say forced — to adopt a
very healthy design methodology, thus ensuring that the software will be
highly reliable in service.

Testing with SWLab

As SWLab has only eight digital input switches, they are used as push-
buttons: ON, OFF; ACKNOWLEDGE, FILL, LOAD; as limit switches:
BinEmpty, SiloEmpty; and as an optical sensor TruckOnRamp. The two
additional inputs — LAMP_TEST and JOG — are accessible in monitors
(SWLab, SWQuick, or SWTerm).

SWLab has eight digital output lamps. It is sufficient for the example
and we use them for the four indicators: CONTROL_ON, TR_ON_RAMP,
SILO_EMPTY, CONV_RUNNING; and for the four outputs: SiloSiren, Silo-
Valve, BinValve, ConveyorMotor.

From the four analog inputs that SWLab has we need only one:
GravelLevel.

The rest of the objects used: timers, gravel SetPoint as a parameter,
switchpoint GravelSwip to detect the gravel level in the bin, as well as
state machines and their commands are accessible in State WORKS monitors.

Recommended Reading

1. International Standard IEC 61131-3, 2nd ed. 2003-0.

© 2006 by Taylor & Francis Group, LLC

Appendix F

Traffic Light Control —
Design of the
Hardware Solution

Discussing the hardware solution for a Traffic light control (see Figure 5.2)
we have skipped the creation of Boolean equations for the D flip-flops.
The Karnaugh tables for the flip-flops inputs, shown in Table F.1 and
Table F.2, are based on the state coding as set in Table 5.1 (see Design
example — traffic light control in Chapter 5).

299

© 2006 by Taylor & Francis Group, LLC

300 ®m Modeling Software with Finite State Machines

Karnaugh Tables of D Flip-Flops

Table F.1
XM

Q,0Q,Q, 00 01 11 10
000 0|-1-10
001 0|-1-10
011 110 -] -
010 010])-] -
110 -l -1 -] -
111 - - -] -
101 0 -1-11
100 T)-1-11
D,

© 2006 by Taylor & Francis Group, LLC

Q,Q,Q, 00 01 11

000
001
011
010
110
111
101
100

XM

10
0|-|-]0
11-1-1]0
0|11|-1]-
1111 -
0|-|-]0
0|-|-]0

D1

Table F.2 Karnaugh Table
of the Output Signal Y

Q,
0

Q,Q,
00 o1 11 10
0| 1 | 1 1
0| 0| - -
Y

XM
Q,Q,Q, 00 01 11 10
000 [O]-|-]1
001 |0|-|-|1
o1 |o|1|-]-
010 |0 |1|-]-
10 |- |-]-]-
M| -] -] -
101 [0]-]-[1
100 [0 -|-[1

DO

Appendix G

Coding Finite

State Machine —
Vending Machine
Counter Example

// VendingMachine.cpp

//

// The program demonstrates the use of a coded state

// transition table for implementation of a state machine.
// When running the Console asks for Input.

// Values: 5 and 10 cause the state machine change the
// state according to the state transition table in the
// Figure 4.3 (chapter 4), other values are ignored.

// In state Stop (value 25 is reached) any value different
// than 5 or 10 changes the state to Start and the exercise
// can be repeated.

#include "stdafx.h"
#include "stdio.h"

using namespace std;

301

© 2006 by Taylor & Francis Group, LLC

302 m Modeling Software with Finite State Machines

enum eState

{
Start, Five, Ten, Fifteen, Twenty, Stop
Y
char* sState[Stop+l] =
{"Start", "Five", "Ten", "Fifteen", "Twenty",
enum eInput
{
coinb, coinl0O, coin
}i
eState transition[Stop+1][coin+l] =
{7/ "coin5" "coinlO" "coin"
/*Start*/ {Five, Ten, Start},
/*Five*/ {Ten, Fifteen, Five},
/*Ten*/ {Fifteen, Twenty, Ten},
/*Fifteen*/ {Twenty, Stop, Fifteen},
/*Twenty*/ {Stop, Twenty, Twenty},
/*Stop*/ {Stop, Stop, Start}
i
int _tmain(int argc, _TCHAR* argvl[])
{
eState iState = Start;
eInput iInput;
int iTemp;
cout << endl << "Input = ";
cin >> iTemp;
while (iTemp != 'qg')
{
switch (iTemp)
{
case 5:
iInput = coinb;
break;
case 10:
iInput = coinl0;
break;

© 2006 by Taylor & Francis Group, LLC

"Stop"};

Coding Finite State Machine ®m 303

default:
iInput = coin;
break;
}
iState = transition[iState] [iInput];

cout << sState[iState] << endl;
cout << endl << "Input = ";
cin >> iTemp;

}

return O0;

© 2006 by Taylor & Francis Group, LLC

Appendix H

IOD File of the
StandardUnit

H ...\Standard\Conf\StandardUnit.iod

B # Name Object List Type Description

1 Par_DIl1Name 11 must-not-be-changed
2 Al_ReadDiError 4 must-not-be-changed
3 Al_ReadXdaError 4 must-not-be-changed
4 Al_ReadNiError 4 must-not-be-changed
5 Al_ReadDatError 4 must-not-be-changed
6 Al WriteDoError 4 must-not-be-changed
7 Al_WriteCmdError 4 must-not-be-changed
8 Al _WriteNoError 4 must-not-be-changed
9 Al_WriteTabError 4 must-not-be-changed

10 Cmd 2

11 Di_0 5
12 Di_1 5
13 Di_2 5

14 Di_3 5
15 Di_4 5
16 Di_5 5

305

© 2006 by Taylor & Francis Group, LLC

306 ®m Modeling Software with Finite State Machines

17 Di_6 5

18 Di_7 5
19 Do_0 6
20 Do_1 6
21 Do_2 6
22 Do_3 6
23 Do_4 6
24 Do_5 6
25 Do_6 6
26 Do_7 6
27 Ni_O0 8
28 Ni_1 8
29 Ni_2 8
30 Ni_3 8
31 No_0 7
32 No_1 7
33 No_2 7
34 No_3 7

35 Dat_1 15
36 Dat_2 15
37 Xda_0 10
38 Xda_1 10
39 Tab 19

40 Par_PollingTime 11 must-not-be-changed
C # Name Cmd List Value
1 STDC_Cmd1l 1
2 STDC_Cmd2 2
3 STDC_Cmd3 3
4 STDC_Cmd4 4

© 2006 by Taylor & Francis Group, LLC

Appendix |
StateWORKS Projects

A Project

A StateWORKS project covers two specifications:

B state machine (VFSM) and UNIT types
B system

Both specifications are separate and may be made in any sequence. The
VFSM and UNIT type are abstract specifications. The state machine spec-
ification defines a new object of a type VFSM. The UNIT specification
defines a new object of a type UNIT.

The system specification is a specification of the RTDB using all
available objects in the project: the predefined objects and the project
specific VFSM and UNIT objects.

Specifications produce several files. All those files are stored in a
common project folder with a default name Conf; the user may define
any folder path.

The projects may be organized in the following directory structure:

Projects
ProjectNamel (contains *.prj file)
Conf (contains *.swd file and all *.iod, *.str, *.h files)
Xml (contains *.xml, vfsmml.xsl, vfsmml.dtd files)
Graphics (contains *.jpg or *.wmf files)

307

2006 by Taylor & Francis Group, LLC

308 m Modeling Software with Finite State Machines

ProjectNameN
Conf
Xml
Graphics
VFSM (contains all *.fsm)
UNIT (contains all *.unt)

We recommend this kind of arrangement as it makes easier the re-use of
VFSM and UNIT types in several projects.

Specification of State Machines

Specification of a state machine begins with definitions of the virtual
environment, which comprises three sets of names: Input, Output, and
State. The names directories may be changed, reduced, and expanded at
any time on demand. The Input and Output names are created on
predefined object types plus the states and commands of slaves (VFSM)
included in the project.

The specified state machine is a new object type and can be used for
a system (RTDB) specification exactly as for predefined object types.

The results of the specification are in three files:

B JOD: contains list of Object Names (B section), Input Names
(I section), Output Names (O section), States Names (S section),
and CMD Names (C section)

B STR: contains the behavior specification of the state machine

B H: is a C/C++ h-file containing the same information as the 10D
file but as C enumerations

The 10D and STR files are read by the RTDB-based runtime system. The
H file is used by programming of I/O handlers or output functions. All
files are text files and can be read by any text editor. Their content must
not be changed by hand. All files are unique for any VFSM object of that
type used in the project; in other words, they exist only once for all VFSM
instances of that type (the behavior of a state machine of a given type
stays the same — only the objects used by the state machine instances
are different).

Note that a state machine specification is completely independent from
a system specification; it is actually a definition of behavior in a virtual
environment.

2006 by Taylor & Francis Group, LLC

StateWORKS Projects m 309

Specification of UNITs

Specification of a UNIT means definition of an object list. The list may
contain any number of predefined (RTDB) object types.

The specified UNIT is a new object type and can be used by a system
(RTDB) specification exactly as for other object types.

The results of the specification are two files:

B JOD: contains list of Object Names (B section) and CMD Names
(C section)

B H: a C/C++ h-file containing the same information as the 10D file
as C enumerations

The 10D files are read by the RTDB-based runtime system. The H file is
used by programming of I/O handlers or output functions. All files are text
files and can be read by any text editor. Their content must not be changed
by hand. All files are unique for any UNIT object of that type used in the
project; in other words, they exist only once for all UNIT instances of that
type.

Note that a UNIT specification is completely independent of a system
specification; it is actually a definition of object lists that might be used
to organize the access to I/O handlers and output functions.

System Specification

The system specification is a specification of objects used by the project.
It should contain at least all objects needed by state machines, 1I/O
handlers, and output functions. In addition, we may add any objects we
need for storing application data. Several of those additional objects are
indirectly linked with the state machines; for instance, if the SWIP object
used in a state machine requires limits defined by parameters we specify
PAR objects for that purpose (which do not belong to the state machine).

The specification covers definitions of object properties, which for
several objects means a definition of links between objects:

Master and slave state machines (VFSM and CMD)

UNIT lists

Control values (states) of counted objects for event counters (ECNT)
Parameters (PAR, DAT) for: timers (TD time-out, switchpoints
(SWIP) limits and input, numerical outputs (NO) output, tables
(TAB) list, strings (STR) input, and regular expression source.

2006 by Taylor & Francis Group, LLC

310 m Modeling Software with Finite State Machines

Only if all those properties are defined do we get the entire picture of
the system, among others, the System of State Machines (SMS) diagram.
The result of the system specification is a configuration file SWD.

Note that although a system specification is not completely independent
of the state machine and UNIT specifications it may be done at any time.
For an application for which the I/O system is well defined we may
specify all input and output objects that are expected to be needed in
the application. Such an RTDB may be used as the application in a first
instance, just to test the hardware before or in parallel to creation of the
behavior (state machine) specifications, which will be added later.

Documentation

There are several ways to study a State WORKS project. Probably the easiest
way is to load the project into the StateWORKS Studio where we can
access and display all details of specifications: state machines, UNITs, and
system.

The specification results — SMS diagram, ST diagrams, ST tables —
can be saved as *.jpg or *.wmlf files to be included in documents. Similarly,
all specification files are text files and can be displayed or included in
various documents.

XML files represent also a specific form of documentation. There are
XML files for all state machines as well as a general file that contains the
entire knowledge about the project: all state machines, UNITs, and system
configuration. The XML files are generated automatically when building
the entire system of state machines in a default subfolder of the project
directory Xml. The automatically attached files vfsmml.xsl and vfsmml.dtd
allow their content to be displayed in any Web browser. These files can
be taken as guidance and a new XSL file edited, to create special versions
of documentation, or for converting a StateWORKS project for entry to
some other application.

Testing with SWLab and Monitors

The developed system can be tested using the simulator SWLab. SWLab
is an application built on the RTDB. Therefore state machine behavior is
modeled in SWLab exactly as in the ultimate application. The main
advantage of using SWLab is its user interface, which simulates the basic
I/0s: 8 digital inputs (DD), 8 digital outputs (DO), 4 numerical inputs (NI),
and 4 numerical outputs (NO). An application that wants to use the
simulated I/Os must be built with standard UNITs of a type: DIS, DOS,

2006 by Taylor & Francis Group, LLC

StateWORKS Projects m 311

NI4, and NO4. Of course, the limited number of I/Os limits the use of
simulated I/Os to rather simple applications; e.g., all examples discussed
in the book can be tested with SWLab. Therefore the examples are built
with the standard UNITs for SWLab.

We may use SWLab to test applications that require any number of
I/Os of any sort. In such a case we just ignore the SWLab user interface
with the simulated I/Os and change the I/Os directly in the RTDB using
Monitors; StateWORKS development system has three: SWMon, SWTerm,
and SWQuick.

The ultimate test will be done using an application that is built (similarly
to SWLab) on the RTDB but contains the true I/O handlers that realize
the hardware interface.

In any case, in testing, the central role is played by Monitors. These
monitors allow us to have access to all objects used in the systems: state
machines, commands, alarms, timers, parameters, counters, switchpoints,
output functions, etc. To list the most important features we may:

B Watch the cooperation among state machines using the command/
state interface.

B Change the values of several objects trying to identify all imaginable
control problems.

B Watch the objects in different relations: all, state machine (VFSM),
or UNIT.

B Start several monitors to watch the system from different perspec-
tives at the same time.

B Investigate the state machine problems using run or step mode.

B Debug errors using trace and command file.

Monitors also play a very important role while supervising the operating
control system — they provide information which we might get using a
code debugger in a programmed application.

Documentation of Examples

In the following appendices we provide documentation of all projects that
contain the state machines discussed in the book. The characteristic of a
project above shows that the documentation of StateWORKS specification
is created automatically but it is voluminous. To provide all created files
and diagrams in a printed form would greatly expand the appendices and
the book. Therefore we limit the printed matter to the most important
diagrams that explain the solution, supported by a description containing
some essential information. The size of the explanation is adjusted to the

2006 by Taylor & Francis Group, LLC

312 m Modeling Software with Finite State Machines

difficulty of the problem. We have concentrated especially on description
of testing: test routines are not part of the automatically created documen-
tation, but they are important when analyzing a project, especially if done
by another person. Normally, various command files and log files would
be generated during testing, and preserved with the other documentation.

The complete projects are available on the Internet (www.state-
works.com). The StateWORKS Studio software provided on the Internet
allows analysis of the examples to the last details, including making and
studying changes if the reader wishes to do that. (You can download the
projects and software from www.stateworks.com. As a buyer of the book
you are entitled to free registration of the software, which can then be
used without a time limit. To register, use the serial number printed on
the inside of the book’s back cover.)

2006 by Taylor & Francis Group, LLC

http://www.stateworks.com
http://www.stateworks.com

Appendix |

Vending Machine
Counter Project

The behavior of the vending machine counter is described by the state
transition diagram in Figure J.1. It covers only the sunny-day-scenario:
that is, it reacts to coins of 5 and 10 values. To achieve a functioning
system that can be tested using SWLab we decided to use as a coin-input
the XDA object. The object will have three values: 5, 10, and 0, which
are used for creating the Input names: 5, 10, and Done. In such a way
we are able to simulate the coin: after a valid coin value 5 or 10 the
value 0 terminates that coin signaling that the next coin is awaited. The
Done value in the state Stop causes a return to the state Start, which
allows a repetition of the test.

In addition to the starting state Start and terminating state Stop the
state machine has four state pairs like Ten_Busy and Ten. The state
Ten_Busy means that the actual coin increased the counter value to 10;
the state 7en means that the last coin has been “consumed” and the state
machine is waiting for the next coin. The ST tables for those states are
shown in Figure J.2 and Figure J.3. Other state pairs have a similar content.
The entire project can be executed with SWLab. The values for the coin-
input could be set in any StateWORKS Monitor.

313

© 2006 by Taylor & Francis Group, LLC

314 m Modeling Software with Finite State Machines

Figure J.1 VendingMachineCounter: the ST diagram.

Ten_Busy Entry action
eXit action
Ten Done

Figure J.2 VendingMachineCounter: the ST table of the state Ten_Busy.

Ten Entry action
eXit action

Fifteen_Busy 5

Twenty_Busy 10

Figure J.3 VendingMachineCounter: the ST table of the state Ten.

© 2006 by Taylor & Francis Group, LLC

Appendix K

Pedestrian Traffic
Light Project

The System

The requirements are formulated in 7he requirements section in Chapter 8
(see also Figure 8.6). The control system Pedestrian shown in Figure K.1
contains:

B State machine PedestrianLight of a type Pedestrian
B UNITs: DI8:01 of a type DI8 and DO8:01 of a type DOS8

The State Machine of Type Pedestrian

The state transition diagram is shown in Figure K.2.

The table Always and the state Init are irrelevant and do not contain
any expressions. The state machine deviates slightly from the model
discussed in Example — Pedestrian traffic lights in Chapter 8:

B The additional state MyInit has been introduced to delay the access
to Hardware required by the I/O handler. If the system is tested
with SWLab, that state is actually unnecessary.

B Fach Do has separate set and reset output signals according to flip-
flop features of RTDB DO objects.

315

© 2006 by Taylor & Francis Group, LLC

316 m Modeling Software with Finite State Machines

PedestrianLight
(Pedestrian)

DI8:01 DO8:01
(DiB) (DO8)

Figure K.1 The Pedestrian control system.

7
Green_Red

E:

X:

Ti_Green_OVER

E:

Figure K.2 Pedestrian traffic light: the ST diagram.

Testing with SWLab

As the requirements for pedestrian crossing lights are well defined in
Example— Pedestrian traffic lights in Chapter 8, testing should not present
any problem. Starting SWLab we see the button Di_Request and the
crossing lights: Do_CRed, Do_CYellow, Do_CGreen for the car traffic and
Do_PRed, Do_PGreen for the pedestrian. For the first 20 seconds after
start the Di_Request is disabled but we may activate it — this will be
stored and when the time elapses the crossing lamps work as desired.
Actually we do not need a monitor but we may start SWMon to watch
the behavior of all objects, especially those that cannot be seen on the

© 2006 by Taylor & Francis Group, LLC

Pedestrian Traffic Light Project m 317

SWLab user interface, such as states of the state machine Pedestrian and
four timers. For completeness we describe the role of the timers:

B Ti_Disabled: determines the dead time after pedestrian green light
(default 20 seconds).

B Ti_Green: determines the green light for pedestrian (default 10
seconds).

B Ti_Init: determines the delay after start-up (default 0.1 second).

B Ti_Yellow: determines the yellow light for car traffic (default 3
seconds).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC

Appendix L

Pumps Supervision
Project

The System

The control requirements have been formulated in the Example - Pumps
supervision system section in Chapter 9. Several parts of the project have
been discussed in the book. The complete system shown in Figure L.1
contains:

A state machine of a type Main: Main

Two state machines of a type Pressure: Pressurel and Pressure2
A state machine of a type Device: Devicel

UNITs for I/O simulation in SWLab: DO8:01 of a type DOS8, DI8:01
of a type DI8, NO4:01 of a type NO4, NI4:01 of a type NI4
UNITs for output functions of a type OfuLimit: OfuLimit:01 and
OfuLimit:02

The state machine types Main and Pressure have been discussed exhaus-
tively in Part II (see Example — Pressure supervision in Chapter 8 and
Example — Pumps supervision system in Chapter 9). Hence, we show
below for completeness only the SMS diagrams of Main and Pressure and
limit our description to the state machine Device.

319

© 2006 by Taylor & Francis Group, LLC

320 ®m Modeling Software with Finite State Machines

Main
(Main)
Pressure2 Pres;ure1 Device1
Pressure Device
(Pressure) () ()

O O
OfuLimit:02 OfuLimit:01
(OfuLimit) (OfuLimit)

Figure L.1 The Pumps system: the SMS diagram.

The Main State Machine

The state transition diagram is shown in Figure L.2.

The State Machine of Type Pressure

The state transition diagram is shown in Figure L.3. The system uses two
of them.

The State Machine of Type Device

The state transition diagram is shown in Figure L.4.

The state machine Device is a simplified but typical example of
switching something on and off with a feedback from the controlled
device.

© 2006 by Taylor & Francis Group, LLC

Pumps Supervision Project m 321

o PressureStarte

Cmd_g

Cmd_Stop ating & Pressur...

Cmd_Start & Pressure1_Regulati...

md_Stop | Device_Error | Preg

Figure L.2 Pumps: the Main ST diagram.

6

PumpError

Pop_TooHot

4

Regulating
E:

X:

Press_TooHigt' | Press_TooLow

Figure L.3 Pumps: the Pressure ST diagram.
The state machine has one busy state: Starting and 3 done states: Idle,

Running, and Error. The Init state does not play any role: the system
starts in /nmit state and goes immediately to the state Idle, where it waits

© 2006 by Taylor & Francis Group, LLC

322 m Modeling Software with Finite State Machines

3

Di_NotReady | Ti_OVER Starting

MyCmd_Off Running
E:

Figure L.4 Pumps: the Device ST diagram.

for the command Cmd_On. Receiving the command Cmd_On the state
machine goes to the state Starting:

On entering the state the output Do is set to On and the command is
cleared. In addition, the Ti timer is started to guard the state machine
against deadlock — the state machine waits here for the feedback Di from
the device. If the feedback is Ready the state machine goes to the state
Running; otherwise (NotReady or Ti_OVER) it goes to the state Error.
The process may be interrupted by the command Cmd_0Of £, which returns
the state machine to the state Idle. Ti_OVER and NotReady feedback
generate corresponding alarms as Input Actions.

State Rumnning is a final required state: the device is running. A
command Cmd_Off switches off the device (in the state Idle). The
feedback from the device is not checked, which may cause problems. To
be completely on the safe side we should introduce a busy state Off _Busy,
which controls the situation in a similar way to the state Starting by
switching on the device (Do Off, timer and feedback). The state Idle in
the current solution may signal the master wrong information if the device
has not switched off for some reason.

State Error: we do nothing there (note that the alarm has been sent
already on leaving the state Starting; otherwise we would need two error
states). The state is used to signal the master about problems with Device:
the information does not contain details (reasons) about malfunctions —
those were handled (Alarms) by the state machine Device.

© 2006 by Taylor & Francis Group, LLC

Pumps Supervision Project m 323

Testing with SWLab

In SWLab we have access to all inputs:

B Pump temperature sensors represented by switches: Pressurel:Di:
PumpTooHot and Pressure2:Di:PumpTooHot

B Device ready sensor represented by two switches: Device:Di:Ready
and Device:Di:NotReady

B Actual pressure values represented by analog potentiometers:
Pressurel:Ni:ActualPressure and Pressure2:Ni:ActualPressure

and we may watch all outputs:

B Pressure ok signals represented by LEDs: Pressurel:Do:PressureOk
and Pressure2:Do:PressureOk

B Device On state represented by: Device:On

B Required pressure values represented by gauges: Pressurel:No:
RequiredPressure and Pressurel:No:RequiredPressure

If we want to investigate all details of the control, monitors are very
helpful. Testing of Pumps systems is quite complex and demonstrates well
control problems that may occur in industrial practice.

By testing we have to take into consideration all dependencies that
originate from links in the project and other decisions taken by design
particularly:

B The switchpoints: Pressurel:Swip:ActualPressure_Supervison and
Pressure2:Swip:ActualPressure_Supervison supervise, respectively,
Pressurel:Ni:ActualPressure and Pressure2:Ni:ActualPressure.

B Default limits for switchpoints are 0 values as they are calculated
by calling output functions.

B The pressure values Pressurel:No:RequiredPressure and Pressure2:
No:RequiredPressure are determined by parameters correspondingly:
Pressurel:Par:RequirePressure and Pressure2:Par:RequirePressure.

B The event counters Pressurel:Ecnt:Counter and Pressure2:Ecnt:
Counter count the state Error of correspondingly state machines:
Pressurel and Pressure2.

All this information has been defined in the project and is available in
the configuration file Pumps.swd.

© 2006 by Taylor & Francis Group, LLC

324 m Modeling Software with Finite State Machines

Other sources of information regarding the links between real values
and names in virtual environment used by state machines specification
are included in IOD files for state machine types: Main, Pressure, and
Device.

Of course, starting the project Pumps in StateWORKS Studio is the
easiest way to display, investigate, and change those values and links.

© 2006 by Taylor & Francis Group, LLC

Appendix M

Output Function
CalcLimits()

// FILE NAME : ofulimit.cpp

//

// CREATION : 23-0ct-2003

//

// EDIT HISTORY

//

// SUMMARY

// Impementions of the user written output funtions.
//

#include "OfuLimit.h"

#include "vsofun.h"
#include "vspar.h"
#include "vsswip.h"

const int 1DEV_DEFAULT = 1;
const float fDEV_DEFAULT = 0.05;

const 1int 1INCORRECT OWNER = O0;
const int 1RESULT OK = 1;
const int 1iWRONG_PARAMETERS = 2;

325

© 2006 by Taylor & Francis Group, LLC

326 ®m Modeling Software with Finite State Machines

int CalcLimit (CItem* pOwner, int nVO)
/*
The CalcLimit () function is used by an OFun object

to calculate limits for SWIP object which supervises
a value.

Specifying the SWIP object the LimitLow and LimitHigh
values should be left as default (By_Value = 0).
The CalcLimit () function called by the OFun object
will set the required wvalue.

The objects required by the CalcLimit() function are
specified in the Unit OfuLimit.unt:

- Swip: the SWIP object

- Par_Value: the reference value for limits calcu-

lation. It maybe a float or int type.

- Par Deviation: the actual limit. It must be a
string in the form: x, x%, where x is an integer
or a float number.

The function awaits the parameter wvalue nvVO=1.

The limits are calculated as:

LowLimit = Par Value - x
HighLimit = Par_Value + x
or
LowLimit = Par_Value - 0.0l*x*ParValue

HighLimit = Par_Value + 0.0l*x*ParValue

The function returns:

0: if the Function Owner (state machine) 1s not
correct.

1: if the calculation results are correct.
2: if the function parameter is not correct.
*/

if (!pOwner) return iINCORRECT_OWNER;

if (nvo == 1)
{

© 2006 by Taylor & Francis Group, LLC

Output Function CalcLimits() m 327

C_PAR* pPar = (C_PAR¥*) (pOwner->
GetAssItem (LIMB_Par_Value)) ;

C_PAR* pParDev = (C_PAR*) (pOwner->
GetAssItem (LIMB_Par_Deviation)) ;
C_SWIP* pSwip = (C_SWIP*) (pOwner->
GetAssItem (LIMB_Swip)) ;

if ((pPar == NULL) ||
(pPar->GetType() != IT _PAR) ||
(pSwip == NULL) ||
(pSwip->GetType () != IT_SWIP)

)
return iINCORRECT_OWNER;

float fDev = £fDEV_DEFAULT;
float fval = pPar->fGetDatal() ;

if (pParDev != NULL)

{

string sDev = pParDev->stGetDatal();
int iPos = sDev.find('%');

if (iPos < 0)

{ // Par_Deviation is an integer
fDev = atof(sDev.c_str());

}

else

{ // Par_Deviation is a string expressing the
// limits as % of Par_Value

sDev = sDev.substr (0, iPos) ;
fDev = 0.0l*atof(sDev.c_str())*fval;
}
float fLimH = fval + £fDev;
float fLimL = fval - fDev;
pSwip->SetLimits (fLimL, fLimH) ;
}
return 1RESULT_OK;
}

return 1iWRONG_PARAMETERS;
} // End of CalcLimit

© 2006 by Taylor & Francis Group, LLC

Appendix N
Traffic Light Project

The System

The control requirements have been formulated in Example — Traffic
light control in Chapter 9. Several parts of the project have been discussed
in the book. The complete system for two rails shown in Figure N.1 contains:

B Four state machines of a type Light: Light:0:Left, Light:0:Right,
Light:1:Left, and Light:1:Right

B A state machine of a type Flash: Flash

B A state machine of a type TrafficLight: TrafficLight

B UNITs for I/O simulation in SWLab: DO8:Unit3 of a type DOS,
DI8:Unitl of a type DIS.

The Flash State Machine

The state transition diagram is shown in Figure N.2.
The objects are represented by:

Cmd: Flash:Cmd of a type CMD
Light: Flash:Do:Light of a type DO
Timerl: Flash:Ti:Timerl of a type TI
Timer2: Flash:Ti:Timer2 of a type TI

The time-outs are constant values defined as timer properties.

329

© 2006 by Taylor & Francis Group, LLC

330 ®m Modeling Software with Finite State Machines

TrafficLight
(TrafficLight)
AA AA
ight:OLe Lght:O:igt Light:1:Left Light:1:Right
A BE JE==
¥
Flash
(Flash)
] |

O 000
DOB8:Unit3 DI8:Unit1
(DO8) (018)

Figure N.1 The TrafficLight system.

2 Timer2_OVER

Light_Off

Init always

E: X:

Timer1_OVER & Cmd_Enable

Figure N.2 TrafficLight: the Flash ST diagram.

The TrafficLight State Machine

This is a combinational control system whose behavior is described by
the table Always in Figure N.3.
The objects are represented by:

Di_Light: Traffic:Di:Light of a type DI
Left_1: Light:0:Left of a type VFSM
Left_2: Light:1:Left of a type VFSM
Right_1: Light:0:Right of a type VFSM

© 2006 by Taylor & Francis Group, LLC

Traffic Light Project m 331

B Right_2: Light:1:Right of a type VFSM
B Do_Light: Traffic:Do:Light of a type DO
B Flash: Flash:Cmd of a type CMD

The TRAFFICLIGHT state machine is in fact a combinatorial systems "decoding" states of
LIGHT state machines to produce signals which switch on/off the red and yellow flashing light.

The used .._LightOn, .._LightOff, .._FlashEnable and .._FlashDisable names represent complex
conditions - OR expressions of LIGHT states (see Input Name Dictionary). In these complex
expressions the set of states: Coming, Approaching, ApprPresent, Present, AllPresent
LeavePresent is represented only by a state Coming. This simplification can be done as this
sequence of states is always entered via the state Coming (see state transition diagram).

Always Di_Light_On | Do_Light_On
Left_1_LightOn |
Right_1_LightOn |
Left_2_LightOn |
Right_2_LightOn

Always Di_Light_Off & Do_Light_Off
Left_1_LightOff &
Right_1_LightOff &
Left_2_LightOff &
Right_2_LightOff

Always Left_1_FlashEnable & Flash_Cmd_Enable
Right_1_FlashEnable &
Left 2 FlashEnable &
Right_2_FlashEnable

Always Left_1_FlashDisable | Flash_Cmd_Disable
Right_1_FlashDisable |
Left_2_FlashDisable |
Right_2_FlashDisable

Figure N.3 TrafficLight: the table Always.

The Light State Machine

The state transition diagram is shown in Figure N.4 (a copy of Figure 9.23
in section Light in Chapter 9).

There are four state machines of a type Light. For the state machine
Light:0:Left the objects are represented by:

B Sensor_1: Light:0:Di:L of a type DI

B Sensor_2: Light:0:Di:R of a type DI
B Sensor_M: Light:0:Di:M of a type DI

© 2006 by Taylor & Francis Group, LLC

D71 ‘dnoin swouerq % J0[Ae L, 9 9007 O

Light2_NoTrain & Delay_OVER

2
DelayStart
X:

4

Delay_OVER

Light2_Coming Disabled

Unexpected

W J0suag [| Josusg

10

AllPresent
E:

LeavPresent

E:

Figure N.4 TrafficLight: the Light ST diagram.

SauUIYDBN 91B1S DUUL{ YUM dIeM)OS SuljopON m TES

Traffic Light Project ®m 333

B Reset: Light:Di:Reset of a type DI (common for all Light state
machines)

B Timer: Light:0:Left:Ti:Timer of a type TI

B Delay: Light:0:Left:Ti:Delay of a type TI

B Al ActiveSensor: Light:0:Al:ActiveSensor of a type AL (common for
both Light:0:Left and Light:1:Right state machines)

B Al _MissingSensor: Light:0:Al:MissingSensor of a type AL (common
for both Light:0:Left and Light:1:Right state machines)

B Al_UnexpectedSensor: Light:0:Al:UnexpectedSensor of a type AL
(common for both Light:0:Left and Light:1:Right state machines)

B Light2: LightO:Right of a type VFSM (the state machine for the other
direction)

The objects for the other three state machines can be defined similarly
and are found in the configuration file.

In addition there is one object used indirectly by all Light state
machines:

B Light:Par:Timeout of a type PAR (defines time-outs for all Light
Timers)

Note the naming convention: the Sensorl and Sensor2 are numbered
because for one direction they are a L(eft) sensor and for the other
direction a R(ight) sensor. Therefore, for the state machine specification
we use a neutral number as the specification is valid for both directions.
The true sensors used in the state machine instances get then the meaning
corresponding to the actual direction.

Testing with SWLab

In SWLab we have access to all input/output objects that are in that case
digital inputs and outputs only. Hence, we can test the system without a
monitor, especially when we are very familiar with requirements. Of
course, we need a monitor if we want to watch all participating objects:
alarms, timer, and the state machines.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC

Appendix O
DI_DO Project

The Project

The project shown in Figure O.1 contains:

B A state machine of a type Tank: Tank:01

B A state machine of a type Test_DI_DO: Test_DI_DO:01

B UNITs for I/O simulation in SWLab: DO8:01 of a type DOS8, DI8:01
of a type DI8

The State Machine Test DI DO

This is a combinational control system whose behavior is described by
the table Always in Figure O.2. To test the system we have to start SWLab
and a monitor, e.g., SWMon. The objects are represented by:

B Button: a switch Button of a type DI
B LED: a lamp LED of a type DO

The role of the UNKNOWN value can be observed well after start-up of the
SWLab when neither of the conditions is due because the application has
not yet received any signal change and the VI is empty (apart from always
containing the entry always). Note that we may in SWLab simulate the
value UNKNOWN of the digital input: right mouse double-click or start-up
options (see SWLab Help for details).

335

© 2006 by Taylor & Francis Group, LLC

336 m Modeling Software with Finite State Machines

Tank:01 Test_DI|_DO:01
(Tank) (Test_DI_DO)
g) e)

Figure O.1 The DI_DO system.

Always Button_LOW LED_On

Always Button_HIGH LED_Off

Figure 0.2 Test_DI-DO example: the table Always.

Depending on the start options after start-up, VI of DI_DO_Test will
contain the value {1} (1 means always) or {1, 3} and the DI Button
should display the value UNKNOWN or 0.

Activating Button introduces a corresponding entry into VI. Of course,
after the first activation VI will always contain either the entry {1, 3} (3 =
Di_LOW) or {1, 2} (2 = Di_HIGH) because each change of the DI input
will cause a corresponding change in VI. The values of Input names can
be found in the DI_DO_D.IOD file.

The State Machine Tank

This is a combinational control system whose behavior is described by the
table Always in Figure O.3. The requirements have been defined in Setting
and clearing the Boolean output are two different actions in Chapter 11.

Always DiWaterHigh_HIGH DoValve_Close

Always DiWaterHigh_LOW & DoValve_Open
DiWaterLow_LOW

Figure O.3 Tank state machine: the table Always.

© 2006 by Taylor & Francis Group, LLC

DI_DO Project m 337

The objects are represented by:

B DiWaterHigh: a switch DiWaterHigh of a type DI
B DiWaterLow: a switch DiWaterLow of a type DI
B DoValve: a lamp Do_Valve of a type DO

After starting the inputs of the state machine Tank, DiWaterHigh and
DiWaterLow are either UNKNOWN or 0. Their first change in SWLab sets
their value to 1. Due to the flip-flop feature of the output object DO the
Do_Valve opens (1) if both inputs are LOW (0). Do_Valve is closed (0) if
both inputs are HIGH (1) (effectively only DiWaterHigh plays a role —
DiWaterLow must be HIGH in such a situation).

The reader may decide what to do if the inputs are UNKNOWN or what
should be done if the “impossible” situation occurs: DiWaterHigh=HIGH
and DiWaterLow=LOW.

© 2006 by Taylor & Francis Group, LLC

Appendix P

Other_Inputs Project

The Project

The project shown in Figure P.1 contains:

A state machine of a type Test_DAT: Test_DAT

A state machine of a type Test_SWIP: Test_SWIP

A state machine of a type Test_STR: Test_STR

UNITs: DI8 and DOS8 to simulate digital inputs and display digital
outputs in SWLab.

The State Machine Test DAT

This is a combinational control system whose behavior is described by
the table Always in Figure P.2. To test the system we have to start SWLab
and SWMon. The objects are represented by:

B Dat: Dat:01 of a type DAT
B Di: a switch Di:ClearDo of a type DI
B LED: a lamp LED:DAT_CHANGED of a type DO

After start the DAT object (Dat:01) is in a state INIT. Any change of DAT
value is signaled by its state CHANGED. If the DAT state is used by another

object (like in this example as an Input in Swip:01), that state is consumed
and the DAT object goes immediately to the state DEF. The CHANGED

339

© 2006 by Taylor & Francis Group, LLC

340 m Modeling Software with Finite State Machines

Test_DAT
(Test_DAT)

— !

Test_SWIP Test_STR

(Test_SWIP) (Test_STR)

Figure P.1

The Other_Inputs system.

Always

Dat_ CHANGED

LED_Dat_Changed

Always

Di_HIGH

LED_Off

Figure P.2 Test_DAT state machine: the table Always.

state is used to switch on the LED:DAT_CHANGED. Thus, the lighting of
LED:DAT_CHANGED proves that the condition CHANGED has been present
for a while even if we have seen nothing in SWMon. We can see the state
changes by switching on Trace or disconnecting for a while the Dat:01
object from the Swip:01l. To repeat the exercise we can switch the
LED:DAT_CHANGED using the DI input Di:ClearDo.

The State Machine Test SWIP

This is a state machine whose behavior is described by the ST diagram
in Figure P.3. The state MyInit has only one function: to enable the
switchpoint (see Figure P.4). After start-up the state machine always goes
from the state Init to the state Mylnit.

Always

always

Figure P.3 Test_SWIP: the ST diagram.

© 2006 by Taylor & Francis Group, LLC

Other_Inputs Project ® 341

My nit Entry action Swip_On

eXit action

Figure P.4 Test_SWIP: the ST table of the state Mylnit.

Always Swip_IN LED_In

Always Swip_HIGH | Swip_LOW LED_High_or_Low

Figure P.5 Test_SWIP: the table Always.

Control of the LED, which is the main goal of the test, is specified in
the table Always (see Figure P.5).
The objects are represented by:

B Dat: Dat:01 of a type DAT
B Swip: Swip:01 of a type SWIP
B LED: a lamp LED:SWIP_IN of a type DO

To test the system we have to start SWLab and SWMon. After start the
SWIP object (Swip:01) is in the state LOW as its limits are Low Limit = 4,
Limit High = 7, and the DAT object data (Dat:01) supervised by the
switchpoint equals 0. Changing the DAT data we may watch the changes
of SWIP state; the value IN is signaled by the LED:SWIP_IN.

The State Machine Test STR

This is a state machine whose behavior is described by the ST diagram in
Figure P.6. The entire control is specified in the state Mylnit (Figure P.7).

always
Always

Figure P.6 Test_STR: the ST diagram.

© 2006 by Taylor & Francis Group, LLC

342 m Modeling Software with Finite State Machines

My Init Entry action Str_On
eXit action
Cmd_Set Str_Set
MyCmd_Clear

Figure P.7 Test_STR: the ST table of the state Mylnit.

The objects are represented by:

B Cmd: Cmd:TestSTR of a type CMD
B Str: Str:Command of a type STR

Indirectly the state machine also requires:

B Input string for the Str:Command object: Par:Input of a type PAR
B Destination objects for the Str:Command: Par:Command and
Par:DeviceNumber, both of a type PAR

To test this we do not use the elements of the SWLab user interface —
the objects can be accessed only from a Monitor. The test should show
the functioning of the STR object. After start-up the state machine goes
always from the state Init to the state MyInit. The control task is simple:
the command Set should enable the STR object for another matching
process.

The regular expression RE = (Start|Stopl 1+)([0-9]+) defines two
components:

B The strings “Start” and “Stop” followed by spaces — if matched,
the string will be copied into the object Par:Command.

B The integer representing the device number — if matched, the
number is copied into the object Par:DeviceNumber. In that case
the string representing the device number will be automatically
converted into integer according to the destination type
(Par:DeviceNumber).

Any change of the Par:Input content results in a change of STR state. In
the beginning it should be in the state INIT. After the first change it goes
to MATCH or NOMATCH. With the Cmd:Set we activate the STR for the
next operation — it goes to the state DEF. If we enter a proper string

© 2006 by Taylor & Francis Group, LLC

Other_Inputs Project m 343

into the Par:Input object (e.g., “Start 5”), STR goes to the state MATCH.
Note that the matching process is case sensitive and only strings that equal
regular expression match.

To understand fully the functioning of the state machines used in tests
we also need the project configuration. Below we show only the config-
uration of the STR string and the cooperating PAR objects:

//Configuration for Par object(s)

PAR Name = "Par:Command"

Cat = "PP"

Format = "string"

Unit = " "

Initvalue = "0"

PAR Name = "Par:DeviceNumber"
Cat = "PP"

Format = "int"

Unit = " "

LimitLow = O

LimitHigh = 0
InitValue = 0

PAR Name = "Par:Input"
Cat = "PP"

Format = "string"
Unit = " "

InitvValue = ""

//Configuration for Str object(s)

STR Name = "Str:Command"

Input = "Par:Input"

RegularExpression = " (Start|]+|Stop[1+) ([0-9]+)"
Substringl = "Par:Command"

Substring2 = "Par:DeviceNumber"

© 2006 by Taylor & Francis Group, LLC

Appendix Q
Other_Outputs Project

The Project

The project shown in Figure Q.1 contains:

B A state machine of a type Test_NO: Test_NO:01
B A state machine of a type Test_AL: Test_AL:01
B UNITs NO4 and DIS8 to simulate outputs and inputs in SWLab

The State Machine Test NO

This is a state machine whose behavior is described by the ST diagram
in Figure Q.2. The ST tables in Figure Q.3, Figure Q.4, and Figure Q.5
contain the details of the state machine behavior.

The objects are represented by:

B Cmd: Cmd:Test_NO of a type CMD
B NOI1: No:01 of a type NO
B NO02: No:02 of a type NO

The state machine demonstrates the possible use of the NO object. The
state machine has 2 NO objects: two of them are after the start-up in the
state OFF passing the value 0 to its output (their Out Data are PAR objects)
and the third NO object passes to the output the value 20 as its Out Data
is the TAB object (the index of the TAB object is initialized to 0, which
selects the Par:01). Let us make a few exercises:

345

© 2006 by Taylor & Francis Group, LLC

346 m Modeling Software with Finite State Machines

i :

Test_NO:01 Test_AL:01
(Test_NO) (Test_AL)

O @,
NO4 DI8
(NO4) (Dig)

Figure Q.1 The Other_Outputs system.

Cmd_No_Off

Cmd_No_Off

Figure Q.2 Test_NO: the ST diagram.

Off Entry action No1_Off
No2_Off
eXit action
SetNO Cmd_No2_Set
OnNO Cmd_No1_On

Figure Q.3 Test_NO: the ST table of the state Off.

© 2006 by Taylor & Francis Group, LLC

Other_Outputs Project m 347

SetNO Entry action No2_Set
eXit action
Off Cmd_No_Off

Figure Q.4 Test_NO: the ST table of the state SetNO.

OnNO Entry action No1_On
eXit action
Off Cmd_No_Off

Figure Q.5 Test_ NO: the ST table of the state OnNO.

First we send the command Cmd_Nol On: the state machine
Test_No:01 goes to the state OnNO where it sends the command Nol_On.
The Nol:01 object goes to the state CHANGED and from that moment if
we change Output (Par:01) the No:0lobjects passes the new data to its
output.

Receiving the command Cmd_No_Off the state machine Test_No:01
goes to the state Off where it sends the command No_Of £ to all NO objects
which go to the state OFF passing the value 0 their outputs.

If the state machine Test_No:01 goes to the state SetNO it sends there
the command Set to No:02 object, which passes the actual Out Data to
its output. From this moment this value stays at the output until the
command Set will be repeated, i.e., until the state machine leaves the
state SetNo and returns to it.

Testing TAB Object

The project can be also used to demonstrate the use of the TAB object.
The required objects are:

© 2006 by Taylor & Francis Group, LLC

348 m Modeling Software with Finite State Machines

B Tab of a Type TAB
B Par:01, Par:02, Par:03, Par:04 of a type PAR
B No:3 of a type NO

We do not need any state machine for the test. We want only to show the
typical use of the TAB object as a demultiplexer delivering to the output
(linked to the NO object) several data values. After start-up the data of
the NO object No:03, which uses Tab as Out Data, is set to the value 20
(Par:01) as the default index of the TAB object type is 0. Changing indexes
of Tab from 0 to 3 we get the corresponding data of parameters: Par:01
through Par:04 to No:03 output.

To understand fully the test we need also the project configuration.
Below we show only the configuration of the TAB configuration:

//Configuration for Tab object(s)

TAB Name = "Tab"
Tab[0] = "Par:01"
Tab[l] = "Par:02"
Tab[2] = "Par:03"
Tab[3] = "Par:04"

The State Machine Test_AL

This is a state machine whose behavior is described by the ST diagram
in Figure Q.6. The ST tables in Figure Q.7, Figure Q.8, and Figure Q.9
contain the details of the state machine behavior. The test has been
described in section Example in Chapter 13.

AlarmComing

AlarmStaying
E:

Figure Q.6 Test_AL: the ST diagram.

© 2006 by Taylor & Francis Group, LLC

Other_Outputs Project m 349

Init Entry action

eXt action

Cmd_AI3 Al3_Staying
AlarmComing Di1_HIGH
AlarmStaying Di2_HIGH

Figure Q.7 Test_AL: the ST table of the state Init.

AlarmComing Entry action Al1_Coming
eXit action Al1_Going
Init Di1_LOW

Figure Q.8 Test_AL: the ST table of the state AlarmComing.

AlarmStaying Entry action Al2_Staying
eXit action
Init Di2_LOW

Figure Q.9 Test_AL: the ST table of the state AlarmStaying.

To understand fully the example we need also information from the
configuration file shown below:

//Configuration for Al object(s)

AL Name = "Al:01"

Cat = 1

Text = "This is Al:01 alarm"

AL Name = "Al:02"

Cat = 2

Text = "No:01 has changed: %No:01"

© 2006 by Taylor & Francis Group, LLC

350 ®m Modeling Software with Finite State Machines

AL Name = "Al:03"
Cat = 4
Text = "IDS_TEXT"

//Configuration for No object(s)

NO Name = "No:01"
Format = "float"
Unit = "mBar"
ScaleMode = "Lin"
ScaleFactor = 1
Offset = 0
OutData = "Par:01"

© 2006 by Taylor & Francis Group, LLC

Appendix R

Counters Project

The Project

The project shown in Figure R.1 contains:

A state machine of a type Test_CNT: Test_CNT

A state machine of a type Test_ECNT: Test_ECNT

A state machine of a type Test_UDC: Test_UDC:01
UNITs: DI8:01 and DO8:01 to simulate inputs in SWLab

The State Machine Test CNT

This is a state machine whose behavior is described by the ST diagram
in Figure R.2. The ST tables are shown in Figure R.3, Figure R.4, Figure R.5,
and Figure R.6.

After start-up the state machine waits in the state /nit for initialization
by Di HIGH, which starts the counter and forces the state machine to go
to the state Start. The state machine never returns to the state Init.

To test the system we have to start SWLab and SWMon. The objects
are represented by:

B Cnt:01 of a type CNT
B DiCountedByCnt of a type DI
B LED:Cnt_OVER of a type DO

351

© 2006 by Taylor & Francis Group, LLC

352 m Modeling Software with Finite State Machines

l

Test_CNT Test_ECNT Test_UDC
(it G0 Test_ECNT
oS (Test_ECNT) (Test_UDC)
DO8:01 DI8:01
(DO8) (Di8)

Figure R.1 The Counters system.

Di_HIGH

Figure R.2 Counters: the Test CNT ST diagram.

Init Entry action

eXit action

Di_HIGH Cnt_Restart
Start Di_HIGH

Figure R.3 Test_CNT: the ST table of the state Init.

The CNT object has to count changes (to HIGH) of a digital input
Di:CountedByCnt. After start-up the state machine is in the state Init. The
first change of Di:CountedByCnt to HIGH starts the counter (in the Input

© 2006 by Taylor & Francis Group, LLC

Counters Project m 353

Start Entry action LED_Off
eXit action
Count Di_HIGH

Figure R.4 Test_CNT: the ST table of the state Start.

Count Entry action Cnt_Inc
eXit action

Stop Cnt_OVER & Di_LOW

Start Di_LOW

Figure R.5 Test_CNT: the ST table of the state Count.

Stop Entry action LED _On
Cnt_Restart
eXit action
Start Di_HIGH

Figure R.6 Test_CNT: the ST table of the state Stop.

Action) and changes the state to Start. On entering the state Start the
output LED:Cnt_OVER is switched off (at that first entry it has been
initialized to off). The state machine continues the state changes (Di is
HIGH) going to the state Count where it sends the Inc command to the
counter. On Di LOW it returns to the state Start. The next Di HIGH means
a transition to the state Count and the counter increments and so on. This
switching between these two states last until the counter reaches the
expiration value and goes to its state OVER. The counter OVER causes a

© 2006 by Taylor & Francis Group, LLC

354 m Modeling Software with Finite State Machines

transition to the state Stop where LED:Cnt_OVER is switched on signaling
the expiration and the counter is restarted. The next Di HIGH causes a
transition to the state Start and the counting will be repeated.

We have to be careful in specifying the transition in the state Coumnt:
the transition condition Cnt_OVER to the state Stop would not work. It
will cause an immediate transition to Count if Di is HIGH (which generates
Cnt_OVER). This in turn will cause a further transition to the state Start
and the state machine will loop through the states: Start—Count—Stop. If
we use the Cnt_OVER and Di_LOW condition the transition to the state
Stop is delayed until Di is LOW. We note also that the sequence of Transition
expressions in the table is relevant.

The State Machine Test ECNT

This is a combinational control system whose behavior is described by
the table Always in Figure R.7.
The Relevant objects are represented by:

Test_ECNT:Cmd of a type CMD
Ecnt:0lof a type ECNT
DiCountedByEcnt of a type DI
LED:Ecnt_OVER of a type DO

To understand the test we need also information from the configuration
file below:

//Configuration for Ecnt object(s)
ECNT Name = "Ecnt:01"

Const = 5

Input = "Di:CountedByEcnt"
UpValue = 1

Always Cmd_RestartEcnt LED_Off
Ecnt_Restart

Always Ecnt_ OVER LED_On
MyCmd_Clear

Figure R.7 Test_ECNT state machine: the table Always.

© 2006 by Taylor & Francis Group, LLC

Counters Project m 355

The State Machine Test UDC

This is

a state machine whose behavior is described by the ST diagram

in Figure R.8. The control is specified mainly in the table Always (see Figure
R.9). The state Start (Figure R.10) is used only to enable the switchpoints.

To test the system we have to start SWLab and SWMon. The objects
used by the state machine are represented by:

Swip_for_UDC:01 of a type SWIP
Swip_for_UDC:02 of a type SWIP
LED:Udc_5 of a type DO
LED:Udc_InRange of a type DO

Init
I
Always aways

Figure R.8 Test_UDC: the ST diagram.

Always Swip_Five Do_High

Always Swip_LOW | Swip_HIGH Do_Low

Always Swip2_IN Do2_High

Always Swip2_LOW | Swip2_HIGH Do2_Low
Figure R.9 Test_UDC: the table Always.

Start Entry action Swip_On

Swip2_On

eXit action

Figure R.10 Test_UDC: the ST table of the state Start.

© 2006 by Taylor & Francis Group, LLC

356 ®m Modeling Software with Finite State Machines

Indirectly the state machine is linked with objects:

B Udc:01 of a type UDC
B Par:UDCLimiLow of a type PAR
B Par:UDCLimiHigh of a type PAR

As we have not provided any loading of PP parameters after start-up for
both PAR objects that define the SWIP limits stay UNDEF. This in turn
causes the Swip_for_UDC:02 to switch also to the state UNDEF. The
supervision of the Udc:01 counter is effectively disabled until the param-
eters are set to a new value.

To understand the test we also need information from the configuration

file below:

//Configuration for Swip object(s)
SWIP Name = "Swip_for_UDC:01"
Input = "Udc:01"

LimitLow = 5
LimitHigh = 5

SWIP Name = "Swip_for_UDC:02"
Input = "Udc:01"
LimitLow = "Par:UDCLimitLow"
LimitHigh = "Par:UDCLimitHigh"

//Configuration for Udc object(s)

UDC Name = "Udc:01"

Unit = "<none>"

UpInput = "Test_ CNT"

UpValue = 4

DownInput = "Di:UdcDownInput"
DownValue = 1

ClearInput = "Di:UdcClearInput"

ClearvValue = 0

© 2006 by Taylor & Francis Group, LLC

Appendix S

Attributes of
RTDB Objects

IAtt_None RIRIM[R|RIM|IM|IRIM|IM|IRIM[M|M|R|RIM|M| M

.Val IAtt_Value RIRIM|R[RIMIM|[RIM|[M|R|{M|M|M|R MM M
.SvM | IAtt_ServiceMode M[IM|[-|-[M[M]|-]|-|M]|- O I I I -
.SvV | IAtt_ServiceValue MIM|-[-[M[M]|-]|-|M]|- O I I I -
.PeV [IAtt_PeripheralValue | R {M| - | - |R|R |- |- [R]|- O I R R I -
VI IAtt_VI Rl -1|-|-1--1-1-1-1-1-1-1-/-1-/1-1-1-1-
StN IAtt_StateName R|{-|R|[R|[-|-|R|R|R|-|R|-|[R|R|R|-|]R|R -
AlL | IAtt_AssocltemList R|-|-|R[-|-|-|-|-1-1-1-1-1-1-|R|-]|- R
Typ | IAtt_TypeName R{-|-|R[-[--|-1-|-1-1-1-1-1]-|[R[-1]-+- R
.CnC [IAtt_CountConstant | - | - |[M| - | - -|-|-|--|-|-]-|M|-|-[M] - -
.CnR | IAtt_CountRegister -l -|R{-1-1-1-1-1-1-1-1- IRl -1]-|R] - -
.Cat | IAtt_Category Sl - IR -] IR -] -
.Frm | IAtt_Format -!-!'-/-/-/-|R|R|]-]-|R|-|-]-|R|-]-]|R -
.Uni | IAtt_PhysicalUnit -/-|R|-|-|-|R|R|-|-|R|-|-]-|R|-]-]|R -
.LiL IAtt_LimitLow -l - -1l -|RIM[-|R[-]-|-1-|-]-]- -
.LiH [IAtt_LimitHigh - - - - - - IM - R - - - - -] -
357

© 2006 by Taylor & Francis Group, LLC

358 m Modeling Software with Finite State Machines

IVa [IAtt_InitValue -l - - - - -]--]-|RY|- o -
.Dat | IAtt_DataValue -l-1-/-1-|-|R|R|[R|-|M
Txt IAtt_Text -l -l -IR|--1-1-1-1-1-
Ack [IAtt_Acknowledge SO R S VY2 IR S S e e e
.Tim | IAtt_Time -l -1 -|Rl-1-1-1-1-1-1-1-
.ScF | IAtt_ScaleFactor -l - -l -] -|R|IR|-|-1]-]-
.Ofs | IAtt_Offset -l - -l - -IR|IR]|-|-1]-]-
.ScM | IAtt_ScaleMode -l --f-l-|IRIR|-]-1-]-
Lst IAtt_List RIR|-|-|-|-1-|-|--1|-]|-
.PAd | IAtt_PhysAddr N I I I D L I (e B R B
.Com | IAtt_CommPort N I D R I e
Trc | IAtt_Trace MIMIMIM[M[MIM[M|M|[M|M|[M
.RMo | IAtt_RunMode M- --]-1-1-1-1-1-1-1-+
NSt | IAtt_NextStep Rl -1|-|-1-|-1-1-1-1-1-1-
Note: - = none, R = read only, M = read/write, W = write only.

© 2006 by Taylor & Francis Group, LLC

Appendix T

StateWORKS Tools
and Components

StateWORKS Studio

StateWORKS Studio (SWStudio) is an Integrated Development Environment
that is used to specify and test single state machines and systems of state
machines. SWStudio consists of two parts: SWEdit and Project Manager.
SWEdit is a state machine editor to create and modify state machines,
UNIT types, and string resources. Project Manager is used to specify the
RTDB (detailed description can be found in the manual!). An introduction
to the use of StateWORKS development tools is in the user’s guide.? The
Web site? is also a good source of information about all aspects of
StateWORKS development environment and runtime system.

State Machine Specification

For a state machine specification a state transition (ST) diagram and ST
tables are used. The specification is done in a virtual environment, which
is defined by RTDB objects foreseen for the state machine. The definitions
of the required objects are placed in the I/O Object Dictionary. The bases
of the specification are Input Name Dictionary and Output Name Dictio-
nary defined on values of RTDB objects. The required states are defined
in the State Name Dictionary. Using those Dictionaries, states and their
transitions and actions are defined. The result of the state machine spec-
ification is a new VFSM object type.

359

© 2006 by Taylor & Francis Group, LLC

360 ®m Modeling Software with Finite State Machines

UNIT Specification

UNITs are defined in a table. The specification is done using an RTDB
UNIT-object type foreseen as interface between the RTDB and I/O Han-
dlers or Output functions. The result of the specification is a new UNIT
object type.

String Resource Specification

String resources are replacements for Windows resource IDs, which are
used for internationalization. The specification is done in a table (IDS and
corresponding string). The result of the specification is used by a StateWORKS
runtime system for internationalization of text alarms.

Definition of Object Properties

Objects are created and their properties are specified in Project Manager.
The specified objects define the RTDB.

Definition of System of State Machines

By specification of VFSM objects, properties links (command and state)
are established. Those links define the system of state machines. The
system can be displayed in the State Machines System (SMS) diagram.

Building

By Building the specification results are transformed into several files
located in the destination folders:

B Configuration: RTDB configuration (SWD), state machine and UNIT
definition (IOD and H), state machine behavior (STR), string
resources (SRC and resource.h), system specification for embedded
application (CPP)

B XML: state machine descriptions (XML) and entire project descrip-
tion (PRJ.XML)

B Graphics: diagrams and tables of all state machines and a system
diagram (JPG or WMF)

Building of incomplete systems is possible.

© 2006 by Taylor & Francis Group, LLC

StateWORKS Tools and Components ® 361

Testing

The system can be tested at any phase of the specification (i.e., when
incompletely specified) using Tools commands to start: SWLab, SWMon,
SWTerm, and SWQuick. The logging files SULOG.TXT and TRACE.TXT
are stored in the Configuration folder.

StateWORKS Simulation

SWLab is an RTDB-based Windows application whose user interface
contains typical inputs and outputs used in industrial control:

Eight switches to simulate digital inputs
Eight LED to simulate digital outputs
Four slides to simulate analog inputs
Four gauges to simulate analog outputs

The SWLab inputs and outputs are available if the system configuration
contains standard UNITs: DIS, DOS8, NI4, and NO4.

SWLab can also be used to test systems without simulated input/outputs:
all objects are accessible in monitors.

At SWLab start a SULOG.TXT file is created, which contains information
about missing or erroneous objects and their properties.

StateWORKS Monitors

SWStudio contains three different monitors.

B SWMon is the most powerful monitor, which allows watching and
manipulating several RTDB objects at the same time. All attributes
are displayed and can be changed if writable. Several object views
are provided: VFSM or UNIT related as well as user defined. Trace
mode and Debug mode are at hand.

B SWTerm is a terminal monitor. All activities (commands and system
answers) are logged. Commands can be written on terminal console
or taken from a command file. That monitor is used for repeated
testing with command files.

B SWQuick is a simple monitor used to access a single object at a
time. The monitor is very handy and gives a quick overlook of all
object properties.

© 2006 by Taylor & Francis Group, LLC

362 m Modeling Software with Finite State Machines

StateWORKS Runtime Systems

The RTDB can be used to build control applications. SWLab is an example
of a standard runtime system, used for testing. The list of standard runtime
systems includes:

B WinStExec: an RTDB-based Windows application with built-in stan-
dard I/O-Handler (with DLL interface) plus some specific I/O-
Handlers (Serial and USB).

B StExec: a variant of WinStExec but terminal based.

B LinuxExec: a variant of WinStExec running under a Linux operating
system.

B StateWORKS can also be used in disk-less RTOS environments.

Recommended Reading

1. SW Software: StateWORKS. Reference Manual for the Class Library.
2. SW Software: StateWORKS Development Tools. User’s Guide.
3. www.stateworks.com.

© 2006 by Taylor & Francis Group, LLC

www.stateworks.com

	Modeling Software with Finite State Machines: A Practical Approach
	Preface
	Source Code
	Document Conventions
	Trademarks, Registered Marks

	About the Authors
	Contents

	Part I THE PROBLEMS OF SOFTWARE
	Chapter 1 Evolution of Software Development
	Introduction
	Programming Languages
	A Little History
	BASIC Catastrophe
	C++
	PLC
	Script or Macro Notations
	There Are Many Languages

	Methods
	Basic Knowledge
	Specifying or Not?
	CASE Tools
	UML
	Agile Methods
	Behavior Modeling

	Development Tools
	Recommended Reading

	Chapter 2 The Price of Weakness
	Software Development Costs
	Programming as a Hobby
	Small Software Projects
	Large Software Projects
	Hardness of Software
	Ease of Creating New Macro Languages
	Do We Need So Many Programming Languages?
	The Specifics of Programming Languages
	The Specifics of a Software Project
	Software Is Expensive

	Maintenance Costs
	Software Errors
	Software Changes
	In Code We Trust
	The Costs of Software Errors

	The Programmers' World
	A Programmer in a Project
	The Software Project Leader

	Examples of Disasters
	Recommended Reading

	Chapter 3 Software as Engineering?
	Methods
	Fascination with Graphics
	Visual Basic Chaos
	Object- Oriented Design Illusion
	UML Illusion
	Formal Methods
	CASE Tools — Value for Money?
	Programming or Specification Languages?

	Development Cycle
	Prototyping
	Specification
	Software Development Steps
	Software Documentation
	Testing and Debugging
	Maintenance and Support
	Human Factors
	Summary

	Education Requirements
	Who Is a Programmer?
	Education as the Basis of Skill
	Missing Skill — Examples

	Conclusions
	Recommended Reading

	Part II FINITE STATE MACHINES
	Chapter 4 Introduction, Definitions, and Notation
	Finite State Machine
	State Machine Models and Presentations
	Transition Matrix
	State Transition Diagram
	Outputs (Actions)
	Moore and Mealy Model
	State Transition Table
	Example

	Recommended Reading

	Chapter 5 Hardware Applications
	Introduction
	Limited to Boolean Signals
	Design Example — Traffic Light Control
	EPROM- Based Implementations
	FPLA- or CPLD- Based Implementations

	Conclusions
	Recommended Reading

	Chapter 6 Software Specific
	Introduction
	Data and Control Flow
	Any Class of Signal May " Contain" the Control Value
	Digital Input
	Command Input
	Numerical Input
	Parameter
	Data Processing Result
	Timer
	State Machine
	External and Internal Signals
	What about Outputs?
	Digital Output
	Command Output
	Numerical Output
	Data Processing Output
	Timer
	Summary

	Event- Driven Software
	Event as a Control Signal

	State Machine or Combinational System?
	Models of a Finite State Machine
	Application- Based State Machine Models
	State Machine Execution Models

	Coding as a Universal Solution
	Table- Driven Software to Reduce Coding Effort
	Limits of the Coded Solutions
	Recommended Reading

	Chapter 7 Misunderstandings about FSM
	Historical Background
	Software Systems
	Event- Driven Model
	Parser Problem
	State Explosion
	Signal Lifetime
	State Machine Size
	Interface between State Machines

	A Flowchart Is Not a State Machine
	Flowchart
	Example
	What Is a Flowchart For?

	Inventions
	Conclusions
	Recommended Reading

	Chapter 8 Designing a State Machine
	A State Machine Models Behavior
	Mealy or Moore Models
	Actions (Entry, Input, Exit, Transition)
	Defining States
	Acknowledgment Principle (Busy and Done States)
	The Role of a Timer
	Error States and Alarms
	Completeness of the Design
	Hiding Control Information

	Example — Pedestrian Traffic Lights
	The Requirements
	The Specification
	The Specification Must Be Understandable

	Example — Pressure Supervision
	The Requirements
	The Specification
	The Output Function
	The State Transition Diagram

	Conclusions

	Chapter 9 Systems of State Machines
	Mastering Complexity
	The Partitioning Criteria
	The Communication Interface among State Machines
	The Handshaking Rule
	The (Hierarchical) Structure of the Control System
	Design Procedure
	Locality of the Control Problems
	Up- Down or Bottom- Up Design
	Deadlocks
	Loops
	Sins
	Design Rules

	Example — Pumps Supervision System
	Task Definition
	The First Approach
	The Second Trial
	The Ultimate Solution

	Example — Traffic Light Control
	Task Definition
	" Obvious" Solution
	The Ultimate Control
	Light
	TrafficLight
	Flash
	System for Two- Track Railway
	Summary

	Conclusions
	Implementation
	Designing a State Machine
	Designing a System of State Machines

	Part III STATEWORKS: PRINCIPLES AND PRACTICE
	Chapter 10 StateWORKS
	Virtual Environment and Vfsm
	The StateWORKS Development Environment
	Positive Logic Algebra
	The Vfsm Execution Model
	Objects
	State Machine Defines Object Control Values
	Signal Lifetime
	Behavior Specification
	System Specification

	The StateWORKS Execution Environment
	RTDB- Based Runtime System
	Output Function
	I/ O Handler
	User Interface

	Recommended Reading

	Chapter 11 Digital Input and Output
	A Digital Input Has Three Control Values
	Example

	Setting and Clearing the Boolean Output Are Two Different Actions
	DI and DO Properties
	Recommended Reading

	Chapter 12 Other Inputs
	Input Data (DAT)
	Control Values
	Example
	Properties

	Getting the Control Value (SWIP)
	Actions
	Control Values
	Example
	Properties

	NI Object as an Extension of DAT Type
	Control Values
	Properties

	PAR Object as a Specific Variant of DAT Type
	Control Values
	Properties

	String (STR) as a Specific Variant of SWIP
	Actions
	Control Values
	Example
	Properties

	Recommended Reading

	Chapter 13 Other Outputs
	Output Data (NO)
	Actions
	Example
	Properties

	Output Demultiplexer (TAB)
	Actions
	Example

	Alarms (AL)
	Actions
	Properties
	Example

	Recommended Reading

	Chapter 14 Counters
	A Simple Counter (CNT)
	Actions
	Control Values
	Example
	Properties

	An Event Counter (ECNT)
	Example
	Properties

	A Timer (TI)
	Properties

	An Up/ Down Counter (UDC)
	Actions
	Control Values
	Properties
	Example

	Recommended Reading

	Chapter 15 VFSM and Its Interfaces
	Virtual Finite State Machine Interfaces
	A Virtual Finite State Machine (VFSM)
	Hiding Specification Details

	A Command (CMD)
	Properties

	An Interface to I/ O Handler (UNIT)
	An Interface to a User- Written Function (OFUN)
	Example
	Properties

	Just XDA
	Memory for OFUN
	Internal Value as a Control Value

	Recommended Reading

	Chapter 16 Debugging Vfsm
	Testing a Vfsm Application
	System Consistency
	Trace
	Debugging Mode (VFSM)
	Command Files
	Service Mode
	The Role of Documentation

	Chapter 17 What Is StateWORKS?
	Compared with Specification Methods
	Compared with Agile Methods
	Application Areas
	Recommended Reading

	Appendix A Case Studies
	Appendix B Microwave Oven Control — Use of StateWORKS Development Tools
	Topic
	First Simple Solution
	More Realistic Control
	RTDB Objects
	Yet Another Change
	Conclusions
	Demo

	Appendix C Gas Control — Hierarchical System of State Machines
	Topic
	Flow Control
	Monitoring the Pressure
	Gas Control
	Conclusions
	Demo

	Appendix D Dining Philosophers Problem
	Example
	Running the Example

	Appendix E Going Beyondthe Limitations of IEC 61131-3
	Introduction
	GRAVEL Example from IEC 61131 Document — Critical Analysis
	A State Machine as a Replacement for Markers
	GRAVEL Example as a State Machine
	Conclusions
	Testing with SWLab
	Recommended Reading

	Appendix F Traffic Light Control —Design of the Hardware Solution
	Appendix G Coding Finite State Machine — Vending Machine Counter Example
	Appendix H IOD File of the Standard Unit
	Appendix I StateWORKS Projects
	A Project
	Specification of State Machines
	Specification of UNITs
	System Specification
	Documentation
	Testing with SWLab and Monitors
	Documentation of Examples

	Appendix J Vending Machine Counter Project
	Appendix K Pedestrian Traffic Light Project
	The System
	The State Machine of Type Pedestrian
	Testing with SWLab

	Appendix L Pumps Supervision Project
	The System
	The Main State Machine
	The State Machine of Type Pressure
	The State Machine of Type Device
	Testing with SWLab

	Appendix M Output Function CalcLimits()
	Appendix N Traffic Light Project
	The System
	The Flash State Machine
	The TrafficLight State Machine
	The Light State Machine
	Testing with SWLab

	Appendix O DI_DO Project
	The Project
	The State Machine Test_ DI_ DO
	The State Machine Tank

	Appendix P Other_Inputs Project
	The Project
	The State Machine Test_ DAT
	The State Machine Test_ SWIP
	The State Machine Test_ STR

	Appendix Q Other_Outputs Project
	The Project
	The State Machine Test_ NO
	Testing TAB Object
	The State Machine Test_ AL

	Appendix R Counters Project
	The Project
	The State Machine Test_ CNT
	The State Machine Test_ ECNT
	The State Machine Test_ UDC

	Appendix S Attributes of RTDB Objects
	Appendix T StateWORKS Tools and Components
	StateWORKS Studio
	State Machine Specification
	UNIT Specification
	String Resource Specification
	Definition of Object Properties
	Definition of System of State Machines
	Building
	Testing

	StateWORKS Simulation
	StateWORKS Monitors
	StateWORKS Runtime Systems
	Recommended Reading

