
St. Petersburg State Institute of Fine Mechanics
and Optics (Technical University)

Department of Computer Technologies

A.S. Naumov, A.A. Shalyto

Elevator control system

Object-oriented programming
with explicit state selection

Project documentation

The project has been developed in the context of the
 "Foundation for open project documentation"

http://is.ifmo.ru

St. Petersburg
2003

http://is.ifmo.ru

 2

Table of Contents
INTRODUCTION ... 3
1. PROBLEM DEFINITION.. 3
2. CLASS DIAGRAM ... 4
3. "ELEVATORAUTOMATS" CLASS.. 5

3.1. DESCRIPTION .. 5
3.2. NUMERATION AND LIST OF EVENTS (E) ... 6
3.3. NUMERATION AND LIST OF INPUT VARIABLES (X) ... 6
3.4. NUMERATION AND LIST OF OUTPUT ACTIONS (Z) .. 6
3.5. "ELEVATOR CONTROL" AUTOMATON (A0).. 7

3.5.1. Description... 7
3.5.2. Link diagram.. 8
3.5.3. Transition graph .. 9

3.6. "LATEST CAR MOTION DIRECTION" AUTOMATON (A1).. 10
3.6.1. Description... 10
3.6.2. Link diagram.. 10
3.6.3. Transition graph .. 10

3.7. "CAR OPERATIONAL PANEL" AUTOMATON (A2).. 10
3.7.1. Description... 10
3.7.2. Link diagram.. 11
3.7.3. Transition graph .. 11

3.8. CALL BUTTON AUTOMATA (A11, A21, A22, A32).. 12
3.8.1. Description... 12
3.8.2. Link diagrams and transition graphs ... 12

4. "ELEVATORLOGINTERFACE" INTERFACE.. 14
4.1. DESCRIPTION .. 14
4.2. METHOD PROTOTYPES AND THEIR BRIEF DESCRIPTION ... 14

5. "ELEVATORVISUALIZERINTERACE" INTERFACE .. 15
6. "ELEVATORLOG" CLASS.. 15
7. "ELEVATORVISUALIZER" CLASS.. 16

7.1. DESCRIPTION .. 16
7.2. "CONSEQUENCES" OF BUTTON PRESSES .. 16

8. "ELEVATORAPPLET" CLASS... 17
8.1. DESCRIPTION .. 17
8.2. POSSIBLE APPLET PARAMETERS .. 17

9. PROGRAM LISTINGS .. 19
9.1. ELEVATORAUTOMATS.JAVA... 19
9.2. ELEVATORLOGINTERFACE.JAVA .. 26
9.3. ELEVATORVISUALIZERINTERFACE.JAVA .. 26
9.4. ELEVATORLOG.JAVA .. 29
9.5. ELEVATORVISUALIZER.JAVA.. 33
9.6. ELEVATORAPPLET.JAVA ... 43
9.7. INDEX.HTML.. 44

10. LOG FRAGMENTS.. 44
10.1. EXAMPLE OF A SIMPLIFIED LOG .. 45
10.2. EXAMPLE OF A FULL LOG .. 47

 3

Introduction
A SWITCH-technology has been proposed by A.A. Shalyto for the

algorithmization and programming of logic control problems. This technology was
further developed by the author together with N.I. Tukkel and applied to event and
object-oriented programs. For more details about this technology and different examples
of its usage see the following Web sites: http://is.ifmo.ru and http://www.softcraft.ru.

This technology is convenient for technical object control problems such as an
elevator control program, considered in this paper. It is so, because control logic
becomes more centralized in the source code. Another advantage of this approach is that
the code becomes isomorphic to the transition graph, by which it was constructed. It
allows to consider only transition graphs in order to understand the program logic (or
behaviour) rather than to analyze source codes.

The Java programming language has been selected for implementation so that an
application should be executed in the form of an applet. The term "aplet" is hereinafter
referred to with one "p" due to the fact that such spelling has been taken on the Web site
of http://www.sun.ru.

The object-oriented programming and the automata-based programming, used in
this paper, are called by A.A. Shalyto and N.I. Tukkel as "object-oriented programming
with explicit state selection". A peculiarity of the example is that only one of the classes
represents all the automata. This contains seven automata, each of them is one of the
methods of this class. Non-automata methods are not present in this class.

Two threads are used in the given implementation, in one of which all automata
are started.

1. Problem definition
The aim of the paper is to develop an elevator control program. For the sake of

project simplicity, the building is a 3-storey building.

There is two buttons on the panel, located on the each floor ("Up" and "Down").
Such panels located on extreme floors have only one button. In the elevator car there are
buttons indicating floor numbers and also there is a "Stop" ("S") button, when being
pressed it stops the elevator on the floor which is the nearest in the elevator moving
direction. In addition, an elevator car is equipped by a weight indicator (not displayed
visually) and a door closing timer in case of nobody being present in the car. There are
also "Come in" and "Go out" buttons that shall be pressed to come into the car and to go
out of it.

http://is.ifmo.ru
http://www.softcraft.ru
http://www.sun.ru

 4

2. Class diagram
A program, which class diagram is given in Fig. 1, consists of two parts.

The first part consists of one class and two interfaces:

• ElevatorAutomaton – a class that encapsulates the operating logic of the
elevator control system – it implements all automata (Section 3);

• ElevatorLogInterface – an interface that declares methods providing
logging of the application operation logic (Section 4);

• ElevatorVisualizerInterface – an interface that declares all input
variables and output actions (Section 5).

The second part consists of three classes:

• ElevatorLog – implements the ElevatorLogInterface interface and
provides logging of the application operation logic (Section 6);

• ElevatorVisualizer – implements the ElevatorVisualizerInterface
interface, emulates and visualises the elevator operation. It performs the
start of automata and processing of events. It implements the methods of
input variables and output actions (Section 7);

• ElevatorApplet – creates copies of the ElevatorLog and
ElevatorVisualizer classes and places them on the aplet panel
(Section 8).

This paper has shown how the control system can be separated from the object
(elevator) control. The control system is implemented by the first part of the program
and the control object is implemented by its second part.

Each of the above-listed classes and interfaces are described below, with a class
that contains automata being described in greater detail.

 5

Applet
(ElevatorApplet)

Elevator emulation and
visualization

(ElevatorVisualizer)

Record-keeping
(ElevatorLog)

Interface
Record-keeping

(ElevatorLogInterface)

Interface
Elevator emulation and

visualisation
(ElevatorVisualizerInterface)

Automata
(ElevatorAutomats)

A0, A1, A2,
A11, A21, A22, A32

Fig. 1. Class diagram

3. "ElevatorAutomats" class

3.1. Description
The class encapsulates the operation logic for the elevator control system. The

class constructor receives references to the ElevatorLogInterface and
ElevatorVisualizerInterface interfaces. Seven automata are implemented in the class,
i.e. public methods of the form of public void Ann(int e) where nn is the
automaton number, e is the event.

The state of each automaton is stored in a protected variable
protected int ynn where nn is the automaton number. The initial state of all
automata is zero. On transition graphs, the predicate of "ynn=s" verifies, whether there
is the automaton with the number of nn is in the state with the number of s.

Let us note that identical events, input variables and output actions can be used
in different automata.

 6

3.2. Numeration and list of events (e)
0 The common timer has operated

2 Switching-off of the lamp in the button (to be delivered from the A0
automaton)

3 Switching-off of the lamp in the button (to be delivered from the A0
automaton)

4 Enabling of switching-on of the lamp in the button (to be delivered from
the A0 automaton)

8 Setting of the value of "Down" (to be delivered from the A0 automaton)

9 Setting of the value of "Up" (to be delivered from the A0 automaton)

11 The "Up" button on the first floor was pressed

21 The "Up" button on the second floor was pressed

22 The "Down" button on the second floor was pressed

32 The "Down" button on the third floor was pressed

41 The "1" button in the elevator car was pressed

42 The "2" button in the elevator car was pressed

43 The "3" button in the elevator car was pressed

44 The "S" (STOP) button in the elevator car

60 Arrival at the floor

80 The doors have opened

81 The doors have closed

90 The door closing timer has operated

3.3. Numeration and list of input variables (x)
51 A weight is present in the elevator car

61 The elevator is on the 1st floor

62 The elevator is on the 2nd floor

63 The elevator is on the 3rd floor

All variables being examined by automata are declared in the
ElevatorVisualizerInterface interface (Section 5) and implemented in the
ElevatorVisualizer class (Section 7).

3.4. Numeration and list of output actions (z)
110 Switch off the lamp in the "Up" button on the first floor

111 Switch on the lamp in the "Up" button on the first floor

210 Switch off the lamp in the "Up" button on the second floor

211 Switch on the lamp in the "Up" button on the second floor

220 Switch off the lamp in the "Down" button on the second floor

 7

221 Switch on the lamp in the "Down" button on the second floor

320 Switch off the lamp in the "Down" button on the third floor

321 Switch on the lamp in the "Down" button on the third floor

400 Switch off the lamp in the button

411 Switch on the lamp in the "1" button in the elevator car

421 Switch on the lamp in the "2" button in the elevator car

431 Switch on the lamp in the "3" button in the elevator car

441 Switch on the lamp in the "S" (STOP) button in the elevator car

500 Switch off the lamp in the elevator car

501 Switch on the lamp in the elevator car

700 Stop the elevator car

701 Start the upward motion

702 Start the downward motion

800 Automatically stop the door motion

801 Open the doors

802 Close the doors

900 Switch off the door closing timer

901 Start the door closing timer

The output actions of automata are declared in the ElevatorVisualizerInterface
interface (Section 5) and implemented in the ElevatorVisualizer class (Section 7).

3.5. "Elevator control" automaton (A0)

3.5.1. Description
It is the main elevator control automaton. It is responsible for opening and

closing of doors, motion and stop of the elevator car, switching on and off of the lamp
in the elevator car. It is the only automaton, which contains called automata, i.e. the
calls of other automata with certain events occur from the states of this automaton. For
example, the automata of A2, A11, A21, A22, A32 with the events of 2, 3, 3, 3, 3 will
be sequentially called in state 3, which is designated as A: 2(2), 11(3), 21(3), 22(3),
32(3).

A diagram of links and a transition graph for this automaton are given in Fig. 2
and Fig. 3 respectively.

The automaton on the event of e0 is started, however this event does not take
part in the transition conditions. Therefore, it is present in the link diagram and is not
present in the transition graph.

In the general case, automata are implemented as follows.

In the first switch operator, transfers and their actions are implemented.

 8

If the state is changed, then the actions in states will be implemented in the
second switch operator (or in its analogue) as well as automata with the corresponding
events will be called.

The program listings are given in Section 9.

3.5.2. Link diagram
A0

Weight indicator

The elevator is on the 1st floor

The elevator is on the 2nd floor

The elevator is on the 3rd floor
Current position

Down
Automaton A1

“Latest car motion
direction”

"1" is alight

Automaton A2
“Car operational

panel”

“2” is alight

“3” is alight

“S” is alight

The button is on
y11=1

Automaton A11
“The «Up» button on

the first floor”

x61

x62

x63

y1=1

y2=1

y2=2

y2=3

y2=4

The button is on
y21=1

Automaton A21
“The «Up» button on

the second floor”
The button is on

y22=1
Automaton A22

“The «Down» button
on the second floor”

The button is on
y32=1

Automaton A32
“The «Down» button

on the third floor”

Event handler
The common timer has operated

e0
Arrival at the floor

e60
The doors have opened

e80
The doors have closed

e81
The door closing timer has operated

e90

A weight is present in the elevator car
x51

Switch off the lamp in the elevator car
z500 The lamp in the

elevator carSwitch on the lamp in the elevator car
z501

Elevator car engine

Stop the elevator car
z700

Start the upward motion
z701

Start the downward motion
z702

Door engine

Automatically stop the door motion
z800

Open the doors
z801

Close the doors
z802

Door closing timer

Switch off the door closing timer
z900

Start the door closing timer
z901

Setting of the value of "Down"
e8

Setting of the value of "Up"
e9

Switching-off of the lamp in the button
e2

Switching-off of the lamp in the button
e3

Enabling of switching-on of the lamp in the button
e4

Automaton A1
“Latest car motion

direction”

Automaton A2
“Car operational

panel”

Automaton A11
“The «Up» button on

the first floor”

Automaton A21
“The «Up» button on

the second floor”

Automaton A22
“The «Down» button
on the second floor”

Automaton A32
“The «Down» button

on the third floor”

Switching-off of the lamp in the button
e3

Enabling of switching-on of the lamp in the button
e4

Switching-off of the lamp in the button
e3

Enabling of switching-on of the lamp in the button
e4

Switching-off of the lamp in the button
e3

Enabling of switching-on of the lamp in the button
e4

Fig. 2. A link diagram for the "Elevator control" automaton

 9

3.5.3. Transition graph

0: (x61&y11=1)|(x62&(y21=1|y22=1))|(x63&y32=1)
z700, z501

1: ((x61&(y32=1|y21=1|y22=1))|(x62&y32=1))&(y1=1)

3: (x61&(y32=1|y21=1|y22=1))|(x62&y32=1)

2: (x63&(y11=1|y21=1|y22=1))|(x62&y11=1)

1. No weight is present, the doors are
closed, the elevator is moving upwards

A1(9); z701
2. No weight is present, the doors are

closed, the elevator is moving
downwards

A1(8); z702

0. No weight is present, the doors are
closed, the elevator car is stopped

A: 11(4), 21(4), 22(4), 32(4);
z500

3. No weight is present, the doors are
opening, the elevator car is stopped

A: 2(2), 11(3), 21(3), 22(3),
32(3); z801

4. No weight is present, the doors are
opened, the elevator car is stopped

z901

e80
z800

5. No weight is present, the doors are
closing, the elevator car is stopped

z802

e90
(y2=4)|x51

z800

e81
z800

6. A weight is present, the doors are
opened, the elevator car is stopped

8. A weight is present, the doors are
opening, the elevator car is stopped

A: 2(2), 11(3), 21(3), 22(3),
32(3); z801

7. A weight is present, the doors are
closing, the elevator car is stopped

z802

e80
z800

!x51

y2=1|y2=2|y2=3

x50
z800

9. A weight is present, the doors are
closed, the elevator car is stopped

A: 11(4), 21(4), 22(4), 32(4)

e81
z800

2: (y2=2&x61)|(y2=3&(x61|x62))3: (y2=2&x63)|(y2=1&(x63|x62))

1: y2=4

C0|((y21=1)&x62)
z700

C0|((y22=1)&x62)
z700

C0 := ((y2=4)&(x61|x62|x63)))|((y2=1)&x61)|((y2=2)&x62)|((y2=3)&x63)

!x51

x51
z900

y2=4
z800

11. A weight is present, the doors are
closed, the elevator car is moving

upwards

A1(8); z702

10. A weight is present, the doors are
closed, the elevator car is moving

downwards

A1(9); z701

Fig. 3. A transition graph for the "Elevator control" automaton (A0)

 10

3.6. "Latest car motion direction" automaton (A1)

3.6.1. Description
This automaton is used for determining the necessity of stopping on an

intermediate floor. The automaton state corresponds to the direction of the latest
elevator car motion ("Up" or "Down").

The creation of such a simple automaton is connected with the fact that the
selection of the floor, on which a stop should be made, can generally be much more
difficult.

A link diagram and a transition graph for this automaton are given in Fig. 4 and
Fig. 5 respectively.

3.6.2. Link diagram
A1

Automaton A0
“Elevator control”

Setting of the value of "Down"
e8

Setting of the value of "Up"
e9

Fig. 4. A link diagram for the "Latest car motion direction" automaton

3.6.3. Transition graph
0. Down 1. Upe9

e8

Fig. 5. A transition graph for the "Latest car motion direction" automaton (A1)

3.7. "Car operational panel" automaton (A2)

3.7.1. Description
This automaton is responsible for the processing of button, being pressed on the

car operational panel, for switching button lamps on and off.

A link diagram and a transition graph for this automaton are given in Fig. 6 and
Fig. 7 respectively.

 11

3.7.2. Link diagram
A2

Weight indicator

The elevator is on the 1st floor

The elevator is on the 2nd floor

The elevator is on the 3rd floor
Current position

x61

x62

x63

Event handler
Pressing of the "1" button in the elevator car

e41
Pressing of the "2" button in the elevator car

e42
Pressing of the "3" button in the elevator car

e43
Pressing of the "S" button in the elevator car

e44

A weight is present in the elevator car
x51

Switch off the lamp in the button
z400

The buttons on the
panel

Switch on the lamp in the "1" button in the elevator car
z411

Automaton A0
“Elevator control”

No weight is present, the doors are closing, the elevator car is stopped
y0=5

A weight is present, the doors are closing, the elevator car is stopped
y0=7A weight is present, the doors are closed, the elevator car is moving

downwards y0=10

Switching-off of the lamp in the button
e2Automaton A0

“Elevator control”

Switch on the lamp in the "2" button in the elevator car
z421

Switch on the lamp in the "3" button in the elevator car
z431

Switch on the lamp in the "S" button in the elevator car
z441

Fig. 6. A link diagram for the "Car operational panel" automaton

3.7.3. Transition graph

0. The button lights have
gone out

z400

4. “S” is alight

z441

3. “3” is alight

z431

2. “2” is alight

z421

1. “1” is alight

z411

e41&x51&!x61

e42&x51&!x62

e43&x51&!x63

e44&(y0=7|y0=10|y0=11)
z400

e44&(y0=5)

e2

Fig. 7. A transition graph for the "Car operational panel" automaton (A2)

 12

3.8. Call button automata (A11, A21, A22, A32)

3.8.1. Description
The automata of A11 (the "Up" button on the first floor), A21 (the "Up" button

on the second floor), A22 (the "Down" button on the second floor), A32 (the "Down"
button on the third floor) have a similar structure. In spite of the fact that these automata
can be implemented by a single class or generated by a single basic class, it has not been
done because of the automata simplicity.

A link diagram and a transition graph for these automata are given in
Fig. 8…Fig. 15.

3.8.2. Link diagrams and transition graphs
A11

The elevator is on the 1st floor
Current position x61

Switch off the lamp in the button
z110 The «Up» button on

the first floorSwitch on the lamp in the button
z111

Switching-off of the lamp in the button
e3Automaton A0

“Elevator control” Enabling of switching-on of the lamp in the button
e4

Fig. 8. A link diagram for the "Up" button of the first floor" automaton

0. Availability

2. The button is off

z110

e11

e3&x61

1. The button is on

z111

e4

Fig. 9. A transition graph for the "Up" button of the first floor" automaton (A11)

 13

A21

The elevator is on the 2nd floor
Current position x62

Switch off the lamp in the button
z210 The «Up» button on

the second floorSwitch on the lamp in the button
z211

Switching-off of the lamp in the button
e3Automaton A0

“Elevator control” Enabling of switching-on of the lamp in the button
e4

Fig. 10. A link diagram for the "Up" button of the second floor" automaton

0. Availability

2. The button is off

z210

e21

e3&x62

1. The button is on

z211

e4

Fig. 11. A transition graph for the "Up" button of the second floor" automaton (A21)

A22

The elevator is on the 2nd floor
Current position x62

Switch off the lamp in the button
z220 The «Down» button

on the first floorSwitch on the lamp in the button
z221

Switching-off of the lamp in the button
e3Automaton A0

“Elevator control” Enabling of switching-on of the lamp in the button
e4

Fig. 12. A link diagram for the "Down" button of the second floor" automaton

0. Availability

2. The button is off

z220

e22

e3&x62

1. The button is on

z221

e4

Fig. 13. A transition graph for the "Down" button of the second floor" automaton (A22)

 14

A32
The elevator is on the 3rd floor

Current position x63
Switch off the lamp in the button

z320 The «Down» button
on the third floorSwitch on the lamp in the button

z321

Switching-off of the lamp in the button
e3Automaton A0

“Elevator control” Enabling of switching-on of the lamp in the button
e4

Fig. 14. A link diagram for the "Down" button of the third floor" automaton

0. Availability

2. The button is off

z320

e32

e3&x63

1. The button is on

z321

e4

Fig. 15. A transition graph for the "Down" button of the third floor" automaton (A32)

4. "ElevatorLogInterface" interface

4.1. Description
This interface declares logging methods. The interface methods are used by the

ElevatorAutomats class.

4.2. Method prototypes and their brief description
Let us give some method prototypes and their descriptions:

• public void begin (int aut, int state, int event) – adds
a record into the log about a start of the aut automaton in the state of state
with the event of event. It is called from the ElevatorAutomats class;

• public void trans (int aut, int old_state, int
new_state) – adds a record into the log about a transfer of the aut
automaton from the state of old_state into the state of new_state. It is
called from the ElevatorAutomats class;

• public void end (int aut, int state, int event) – adds a
record into the log about the aut automaton’s completion of processing of the
event of event in the state of state. It is called from the ElevatorAutomats
class;

• public void input (int num, String str, boolean ret) –
adds a record into the log about a poll of the input variable of num со with the
narrative of str. The input variable value is ret. This function shall be called
from methods of the class implementing the ElevatorVisualizerInterface
interface;

 15

• public void action (int num, String str) – adds a record into
the log about execution of the output action of num with the narrative of str.
This function shall be called from methods of the class implementing the
ElevatorVisualizerInterface interface;

• public void error (int aut, String err) – adds a record into
the log about an error of err occurred during operation of the automaton of
aut. It is called from the ElevatorAutomats class;

• public void log (String str) – adds a line of str into the log.

The use of the log allows to "instantly" find errors in the program logic.

5. "ElevatorVisualizerInterace" interface
This interface declares methods, which are used to examine the input variables

of the form public boolean xnn() where nn is the input variable number and
for generating the output actions of the form public void znn() where nn is the
output action number. These methods are used by the ElevatorAutomats class.

If it is required to modify the program, the class implementing this interface
shall call a method of ElevatorLogInterface.input()in the methods of
polling input variables and a method of ElevatorLogInterface.action()in
the methods of generating output actions.

6. "ElevatorLog" class
This class implements the ElevatorLogInterface interface and mantains logging

of the application operation. The log (Fig. 16) is generated by records, which are
automatically added into the list (java.awt.List class). The log details are
regulated by a set of flags shown in Fig. 16 (java.awt.Checkbox classes). Due to
the fact that the A0 automaton is started by the common timer, it is necessary to switch
off the start and completion of the automata operation as well as the input variable
polling in order to prevent permanent logging.

Fig. 16. Logging

 16

The log fragments are given in Section 10.

7. "ElevatorVisualizer" class

7.1. Description
This class implements the ElevatorVisualizerInterface interface, and it is the

main class for elevator emulation and its visualisation.

The class also implements the library interface of
java.awt.event.MouseListener. The method of public void
mousePressed(MouseEvent e) processes of the mouse button clicks at the
cursor position on the visualisation area and adds events into the queue implemented by
the java.util.Vector class.

In addition, the class implements the library interface of
java.lang.Runnable. The method of public void run() contains an
"infinite" cycle, which, in case of the availability of an event in the queue, will start the
corresponding automaton with such event or change the internal variables of the class
copy, for example a Boolean variable determining the presence of a weight in the
elevator car. Then one "tick" of the elevator operation is emulated and, if necessary, the
automata with the corresponding events will be called. After that, the A0 automaton will
be called with the event of e0 (common timer operation) and the visualisation area will
be re-drawn.

It implements the functions of input variable and output actions.

7.2. "Consequences" of button presses
A button press is processed in the

public void mousePressed(MouseEvent e) method and adds the
following events to the queue:

• 11 – "Up" button on the first floor;

• 21 – "Up" button on the second floor;

• 22 – "Down" button on the second floor;

• 32 – "Down" button on the third floor;

• 41 – "1" button in the elevator car;

• 42 – "2" button in the elevator car;

• 43 – "3" button in the elevator car;

• 44 – "S" button in the elevator car;

• 50 – go out from the car (right arrow);

• 51 – come into the car (left arrow).
Fig. 17 shows an elevator operation visualiser. The buttons located near the

elevator allow to call the elevator car from the corresponding floor. The visualiser lamp
corresponds to the lamp in the elevator car. It does not shine if the doors are closed and
the car is empty. In addition, there is an operational panel in the elevator car. The timer

 17

shows how much time is left to the door closing and the indicator shown the direction of
possible person’s motion direction (from the car or to the car).

Fig. 17. Elevator operation visualisation

8. "ElevatorApplet" class

8.1. Description
This class extends the library class java.applet.Applet and overrides the

methods public void init() and public void destroy().

The first method creates copies of the classes of ElevatorLog (record-keeping) –
a log variable and ElevatorVisualizer (elevator emulation and visualisation) – a vis
variable, which are inherited from the library class of java.awt.Canvas. They are
located in the applet area.

An additional thread, in which a copy of the ElevatorVisualizer class is started,
is created in the main applet execution thread.

In the second method, the additional thread gets stopped.

A method of public int getParamInt(String param, int def)
is determined, which tries to obtain the applet parameter of param, round it to a integer
number and return the result. In case of a failure, the default value of def is returned.

8.2. Possible applet parameters
The ElevatorLog class uses the following parameter:

• LOG_HEIGHT – the logging area height in pixels. The default value is
410.

The ElevatorVisualizer class uses the following parameters:

• DELAY – a delay between the system emulation "ticks" in milliseconds.
The default value is 50.

 18

• DOORS_TIMER_MAX – the number of waiting "ticks" before closing
of the doors. The default value is 30.

• DOORS_MOVE – the elevator door movement at opening/closing of the
doors for one "tick" in pixels. The default value is 2.

• DOORS_MAX – the maximal movement of the elevator doors at
opening. It shall be multiple to the DOORS_MOVE value and be within
the range of 20-40. The default value is 30.

• ELEVATOR_MOVE – the movement of the elevator car during the
up/down motion for one "tick" in pixels. It shall divide 100 without a
remainder. The default value is 2.

 19

9. Program listings

9.1. ElevatorAutomats.java
/**
 * Encapsulates elevator control automata
 */
public class ElevatorAutomats
{
 protected ElevatorVisualizerInterface vis;
 protected ElevatorLogInterface log;

 ElevatorAutomats(ElevatorVisualizerInterface vis,
 ElevatorLogInterface log)
 {
 this.vis = vis;
 this.log = log;
 }

 protected int y0 = 0;
 /**
 * Automaton A0
 */
 public void A0(int e)
 {
 int y_old = y0;
 boolean xx61;
 boolean xx62;
 boolean xx63;
 log.begin(0, y0, e);
 switch (y0)
 {
 case 0:
 xx61 = vis.x61();
 xx62 = vis.x62();
 xx63 = vis.x63();
 if ((xx61 && y11 == 1) ||
 (xx62 && (y21 == 1 || y22 == 1)) ||
 (xx63 && y32 == 1))
 { vis.z700(); vis.z501(); y0 = 3; }
 else if (((xx61 &&
 (y32 == 1 || y21 == 1 || y22 == 1))

|| (xx62 && y32 == 1)) && y1 == 1)
 { y0 = 1; }
 else if ((xx63 &&
 (y11 == 1 || y21 == 1 || y22 == 1))

|| (xx62 && y11 == 1))
 { y0 = 2; }
 else if ((xx61 &&
 (y32 == 1 || y21 == 1 || y22 == 1))

|| (xx62 && y32 == 1))
 { y0 = 1; }
 break;

 case 1:
 case 2:
 if ((vis.x61() && y11 == 1) ||
 (vis.x62() && (y21 == 1 || y22 == 1))

 || (vis.x63() && y32 == 1))
 { vis.z700(); vis.z501(); y0 = 3; }
 break;

 20

 case 3:
 if (e == 80)
 { vis.z800(); y0 = 4; }
 break;

 case 4:
 if (e == 90)
 { y0 = 5; }
 else if (vis.x51())
 { vis.z900(); y0 = 6; }
 break;

 case 5:
 if (e == 81)
 { vis.z800(); y0 = 0; }
 else if (y2 == 4 || vis.x51())
 { vis.z800(); y0 = 3; }
 break;

 case 6:
 if (y2 == 1 || y2 == 2 || y2 == 3)
 { y0 = 7; }
 else if (!vis.x51())
 { y0 = 4; }
 break;

 case 7:
 if (e == 81)
 { vis.z800(); y0 = 9; }
 else if (y2 == 4)
 { vis.z800(); y0 = 8; }
 else if (!vis.x51())
 { vis.z800(); y0 = 3; }
 break;

 case 8:
 if (!vis.x51())
 { y0 = 3; }
 else if (e == 80)
 { vis.z800(); y0 = 6; }
 break;

 case 9:
 xx61 = vis.x61();
 xx62 = vis.x62();
 xx63 = vis.x63();
 if (y2 ==4)
 { y0 = 8; }
 else if ((y2 == 2 && xx61) ||
 (y2 == 3 && (xx61 || xx62)))
 { y0 = 10; }
 else if ((y2 == 2 && xx63) ||
 (y2 == 1 && (xx63 || xx62)))
 { y0 = 11; }
 break;

 case 10:
 xx61 = vis.x61();
 xx62 = vis.x62();
 xx63 = vis.x63();
 if ((y2 == 4 && (xx61 || xx62 || xx63)) ||
 (y2 == 1 && xx61) || (y2 == 2 && xx62)
 || (y2 == 3 && xx63) || (y21 == 1 && xx62))

 21

 { vis.z700(); y0 = 8; }
 break;

 case 11:
 xx61 = vis.x61();
 xx62 = vis.x62();
 xx63 = vis.x63();
 if ((y2 == 4 && (xx61 || xx62 || xx63)) ||
 (y2 == 1 && xx61) || (y2 == 2 && xx62) ||
 (y2 == 3 && xx63) || (y22 == 1 && xx62))
 { vis.z700(); y0 = 8; }
 break;

 default:
 log.error(0, "unknown state");
 }

 if (y_old != y0)
 {
 log.trans(0, y_old, y0);
 switch (y0)
 {
 case 0:
 A11(4); A21(4); A22(4); A32(4);
 vis.z500();
 break;

 case 1:
 A1(9);
 vis.z701();
 break;

 case 2:
 A1(8);
 vis.z702();
 break;

 case 3:
 A2(2); A11(3); A21(3); A22(3); A32(3);
 vis.z801();
 break;

 case 4:
 vis.z901();
 break;

 case 5:
 vis.z802();
 break;

 case 7:
 vis.z802();
 break;

 case 8:
 A2(2); A11(3); A21(3); A22(3); A32(3);
 vis.z801();
 break;

 case 9:
 A11(4); A21(4); A22(4); A32(4);
 break;

 22

 case 10:
 A1(9);
 vis.z701();
 break;

 case 11:
 A1(8);
 vis.z702();
 break;
 }
 }
 log.end(0, y0, e);
 }

 protected int y1 = 0;
 /**
 * Automaton A1
 */
 public void A1(int e)
 {
 int y_old = y1;
 log.begin(1, y1, e);
 if (y1 == 0 && e == 9) y1 = 1;
 else if (y1 == 1 && e == 8) y1 = 0;
 if (y_old != y1)
 log.trans(1, y_old, y1);
 log.end(1, y1, e);
 }

 protected int y2 = 0;
 /**
 * Automaton A2
 */
 public void A2(int e)
 {
 int y_old = y2;
 log.begin(2, y1, e);
 switch (y2)
 {
 case 0:
 boolean xx51 = vis.x51();
 if (e == 41 && xx51 && !vis.x61())
 { y2 = 1; }
 else if (e == 42 && xx51 && !vis.x62())
 { y2 = 2; }
 else if (e == 43 && xx51 && !vis.x63())
 { y2 = 3; }
 else if (e == 44 && y0 == 5)
 { y2 = 4; }
 break;

 case 1:
 case 2:
 case 3:
 if (e == 44 && (y0 == 7 || y0 == 10 || y0 == 11))
 { vis.z400(); y2 = 4; }
 else if (e == 2)
 { y2 = 0; }
 break;

 case 4:
 if (e == 2)
 { y2 = 0; }
 break;

 23

 default:
 log.error(0, "unknown state");
 }

 if (y_old != y2)
 {
 log.trans(2, y_old, y2);
 switch (y2)
 {
 case 0:
 vis.z400();
 break;

 case 1:
 vis.z411();
 break;

 case 2:
 vis.z421();
 break;

 case 3:
 vis.z431();
 break;

 case 4:
 vis.z441();
 break;
 }
 }
 log.end(2, y2, e);
 }

 protected int y11 = 0;
 /**
 * Automaton A11
 */
 public void A11(int e)
 {
 int y_old = y11;
 log.begin(11, y11, e);
 switch (y11)
 {
 case 0:
 if (e == 11)
 { y11 = 1; }
 else if (e == 3 && vis.x61())
 { y11 = 2; }
 break;

 case 1:
 if (e == 3 && vis.x61())
 { y11 = 2; }
 break;

 case 2:
 if (e == 4)
 { y11 = 0; }
 break;
 }

 24

 if (y_old != y11)
 {
 log.trans(11, y_old, y11);
 if (y11 == 1) vis.z111();
 else if (y11 == 2) vis.z110();
 }
 log.end(11, y11, e);
 }

 protected int y21 = 0;
 /**
 * Automaton A21
 */
 public void A21(int e)
 {
 int y_old = y21;
 log.begin(21, y21, e);
 switch (y21)
 {
 case 0:
 if (e == 21)
 { y21 = 1; }
 else if (e == 3 && vis.x62())
 { y21 = 2; }
 break;

 case 1:
 if (e == 3 && vis.x62())
 { y21 = 2; }
 break;

 case 2:
 if (e == 4)
 { y21 = 0; }
 break;
 }

 if (y_old != y21)
 {
 log.trans(21, y_old, y21);
 if (y21 == 1) vis.z211();
 else if (y21 == 2) vis.z210();
 }
 log.end(21, y21, e);
 }

 protected int y22 = 0;
 /**
 * Automaton A22
 */
 public void A22(int e)
 {
 int y_old = y22;
 log.begin(22, y22, e);
 switch (y22)
 {
 case 0:
 if (e == 22)
 { y22 = 1; }
 else if (e == 3 && vis.x62())
 { y22 = 2; }
 break;

 25

 case 1:
 if (e == 3 && vis.x62())
 { y22 = 2; }
 break;

 case 2:
 if (e == 4)
 { y22 = 0; }
 break;
 }

 if (y_old != y22)
 {
 log.trans(22, y_old, y22);
 if (y22 == 1) vis.z221();
 else if (y22 == 2) vis.z220();
 }
 log.end(22, y22, e);
 }

 protected int y32 = 0;
 /**
 * Automaton A32
 */
 public void A32(int e)
 {
 int y_old = y32;
 log.begin(32, y32, e);
 switch (y32)
 {
 case 0:
 if (e == 32)
 { y32 = 1; }
 else if (e == 3 && vis.x63())
 { y32 = 2; }
 break;

 case 1:
 if (e == 3 && vis.x63())
 { y32 = 2; }
 break;

 case 2:
 if (e == 4)
 { y32 = 0; }
 break;

 }
 if (y_old != y32)
 {
 log.trans(32, y_old, y32);
 if (y32 == 1) vis.z321();
 else if (y32 == 2) vis.z320();
 }
 log.end(32, y32, e);
 }
}

 26

9.2. ElevatorLogInterface.java
/**
 * Interface of the log-maintaining class
 */
public interface ElevatorLogInterface
{
 /**
 * Beginning of automaton operation
 */
 public void begin(int aut, int state, int event);
 /**
 * Transfer between the states
 */
 public void trans(int aut, int old_state, int new_state);
 /**
 * Ending of automaton operation
 */
 public void end(int aut, int state, int event);
 /**
 * Input variable polling
 */
 public void input(int num, String str, boolean ret);
 /**
 * Execution of an action
 */
 public void action(int num, String str);
 /**
 * Error message
 */
 public void error(int aut, String err);
 /**
 * Output of the line into the log
 */
 public void log(String str);
}

9.3. ElevatorVisualizerInterface.java
/**
 * Interface of the elevator operation emulator
 * and visualiser. It determines all input
 * variable and output actions being used in the problem
 */
public interface ElevatorVisualizerInterface
{
 /**
 * Input variable: a weight is present in the elevator car
 */
 public boolean x51();

 /**
 * Input variable: the elevator is on the 1st floor
 */
 public boolean x61();

 /**
 * Input variable: the elevator is on the 2nd floor
 */
 public boolean x62();

 27

 /**
 * Input variable: the elevator is on the 3rd floor
 */
 public boolean x63();

 /**

 * Output action:
 * switch off the lamp in the «Up» button on the first floor

 */
 public void z110();

 /**
 * Output action:

 * switch on the lamp in the «Up» button on the first floor
 */

 public void z111();

 /**

 * Output action:
 * switch off the lamp in the «Up» button on the second floor

 */
 public void z210();

 /**

 * Output action:
 * switch on the lamp in the «Up» button on the second floor

 */
 public void z211();

 /**

 * Output action:
 * switch off the lamp in the «Down» button on the second floor

 */
 public void z220();

 /**

 * Output action:
 * switch on the lamp in the «Down» button on the second floor

 */
 public void z221();

 /**

 * Output action:
 * switch off the lamp in the «Down» button on the third floor

 */
 public void z320();

 /**

 * Output action:
 * switch on the lamp in the «Down» button on the third floor

 */
 public void z321();

 /**
 * Output action: switch off the lamp in the button
 */
 public void z400();

 /**
 * Output action: switch on the lamp in the “1” button
 */
 public void z411();

 28

 /**
 * Output action: switch on the lamp in the “2” button
 */
 public void z421();

 /**
 * Output action: switch on the lamp in the “3” button
 */
 public void z431();

 /**
 * Output action: switch on the lamp in the “S” button
 */
 public void z441();

 /**
 * Output action: switch off the lamp in the elevator car
 */
 public void z500();

 /**
 * Output action: switch on the lamp in the elevator car
 */
 public void z501();

 /**
 * Output action: stop the elevator car
 */
 public void z700();

 /**
 * Output action: start the upward motion
 */
 public void z701();

 /**
 * Output action: start the downward motion
 */
 public void z702();

 /**
 * Output action: automatically stop the door motion
 */
 public void z800();

 /**
 * Output action: open the doors
 */
 public void z801();

 /**
 * Output action: close the doors
 */
 public void z802();

 /**
 * Output action: switch off the door closing timer
 */
 public void z900();

 29

 /**
 * Output action: start the door closing timer
 */
 public void z901();
}

9.4. ElevatorLog.java
import java.awt.Checkbox;
import java.awt.List;
import java.awt.Panel;
import java.awt.event.ItemListener;
import java.awt.event.ItemEvent;
import java.util.Calendar;
import java.util.GregorianCalendar;
import java.util.Vector;

/**
 * Realisation of the log-maintaining class
 */
public class ElevatorLog
 extends Panel
 implements ElevatorLogInterface, ItemListener
{
 protected boolean logBegin;
 protected boolean logTrans;
 protected boolean logEnd;
 protected boolean logInput;
 protected boolean logAction;
 protected Vector logAut;

 protected int HEIGHT;
 final static int HEIGHT_DEFAULT = 410;

 protected List logList = new List();
 protected Checkbox chLogBegin, chLogEnd, chLogTrans, chLogInput,
 chLogAction, chLogA0, chLogA1, chLogA2, chLogA11, chLogA21,
 chLogA22, chLogA32;
 protected ElevatorApplet mainApplet;

 ElevatorLog(ElevatorApplet appl)
 {
 mainApplet = appl;
 HEIGHT = mainApplet.getParamInt("LOG_HEIGHT",
 HEIGHT_DEFAULT);
 setSize(450, HEIGHT);
 setLayout(null);
 logList.setBounds(0, 0, 450, HEIGHT-100);
 add(logList);
 chLogBegin = new Checkbox("Automata start");
 chLogBegin.setBounds(10, HEIGHT-100, 200, 20);
 chLogBegin.addItemListener(this);
 add(chLogBegin);
 chLogTrans = new Checkbox("Automata state modification");
 chLogTrans.setBounds(10, HEIGHT-80, 200, 20);
 chLogTrans.addItemListener(this);
 add(chLogTrans);
 chLogEnd = new Checkbox("Completion of automata operation");
 chLogEnd.setBounds(10, HEIGHT-60, 200, 20);
 chLogEnd.addItemListener(this);
 add(chLogEnd);
 chLogInput = new Checkbox("Input variable polling");
 chLogInput.setBounds(10, HEIGHT-40, 200, 20);

 30

 chLogInput.addItemListener(this);
 add(chLogInput);
 chLogAction = new Checkbox("Output actions");
 chLogAction.setBounds(10, HEIGHT-20, 200, 20);
 chLogAction.addItemListener(this);
 add(chLogAction);
 chLogA11 = new Checkbox("A11");
 chLogA11.setBounds(220, HEIGHT-100, 40, 20);
 chLogA11.addItemListener(this);
 add(chLogA11);
 chLogA21 = new Checkbox("A21");
 chLogA21.setBounds(220, HEIGHT-80, 40, 20);
 chLogA21.addItemListener(this);
 add(chLogA21);
 chLogA22 = new Checkbox("A22");
 chLogA22.setBounds(220, HEIGHT-60, 40, 20);
 chLogA22.addItemListener(this);
 add(chLogA22);
 chLogA32 = new Checkbox("A32");
 chLogA32.setBounds(220, HEIGHT-40, 40, 20);
 chLogA32.addItemListener(this);
 add(chLogA32);
 chLogA0 = new Checkbox("A0");
 chLogA0.setBounds(270, HEIGHT-100, 40, 20);
 chLogA0.addItemListener(this);
 add(chLogA0);
 chLogA1 = new Checkbox("A1");
 chLogA1.setBounds(270, HEIGHT-80, 40, 20);
 chLogA1.addItemListener(this);
 add(chLogA1);
 chLogA2 = new Checkbox("A2");
 chLogA2.setBounds(270, HEIGHT-60, 40, 20);
 chLogA2.addItemListener(this);
 add(chLogA2);
 logAut = new Vector();
 }

 /**
 * Processing of the "Flag management" external event
 */
 public void itemStateChanged(ItemEvent e)
 {
 boolean enable = ((Checkbox)e.getSource()).getState();
 if (e.getSource().equals(chLogBegin))
 {
 log("Log automata start: " +
 enable);
 logBegin = enable;
 }
 else if (e.getSource().equals(chLogTrans))
 {
 log("Log automata state modification: " +
 enable);
 logTrans = enable;
 }
 else if (e.getSource().equals(chLogEnd))
 {
 log("Log automata operation completion: " +
 enable);
 logEnd = enable;
 }

 31

 else if (e.getSource().equals(chLogInput))
 {
 log("Log input variable polling: " +
 enable);
 logInput = enable;
 }
 else if (e.getSource().equals(chLogAction))
 {
 log("Log output actions: " +
 enable);
 logAction = enable;
 }
 else if (e.getSource().equals(chLogA0))
 logAutChange(0, enable);
 else if (e.getSource().equals(chLogA1))
 logAutChange(1, enable);
 else if (e.getSource().equals(chLogA2))
 logAutChange(2, enable);
 else if (e.getSource().equals(chLogA11))
 logAutChange(11, enable);
 else if (e.getSource().equals(chLogA21))
 logAutChange(21, enable);
 else if (e.getSource().equals(chLogA22))
 logAutChange(22, enable);
 else if (e.getSource().equals(chLogA32))
 logAutChange(32, enable);
 }

 /**
 * Error message
 */
 public void error(int aut, String err)
 {
 write("! A" + aut + ": ERROR: " + err);
 }

 /**
 * Beginning of automaton operation
 */
 public void begin(int aut, int state, int event)
 {
 if (logBegin)
 aut(aut, "{ A" + aut + ": being in the state " + state +
 " has been started with the event of e" + event);
 }

 /**
 * Transfer between the states
 */
 public void trans(int aut, int old_state, int new_state)
 {
 if (logTrans)

aut(aut, "T A" + aut + ": has transferred from the ” +
“state of " + old_state + " to the state of " + new_state
);

 }

 32

 /**
 * Ending of automaton operation
 */
 public void end(int aut, int state, int event)
 {
 if (logEnd)

aut(aut, "} A" + aut + ": has completed processing of “ +
“the event of e" + event + " in the state of " + state);

 }

 /**
 * Input variable polling
 */
 public void input(int num, String str, boolean ret)
 {
 if (logInput)
 write("> x" + num + " - " + str + " - return " + ret);
 }

 /**
 * Execution of an action
 */
 public void action(int num, String str)
 {
 if (logAction)
 write("* z" + num + " - " + str);
 }

 /**
 * Output of the line into the log
 */
 public void log(String str)
 {
 write("# " + str);
 }

 protected void write(String str)
 {
 Calendar cal = new GregorianCalendar();
 String hr = "" + cal.get(Calendar.HOUR_OF_DAY);
 while (hr.length() < 2) { hr = "0" + hr; }
 String mn = "" + cal.get(Calendar.MINUTE);
 while (mn.length() < 2) { mn = "0" + mn; }
 String sc = "" + cal.get(Calendar.SECOND);
 while (sc.length() < 2) { sc = "0" + sc; }
 String ms = "" + cal.get(Calendar.MILLISECOND);
 while (ms.length() < 3) { ms = "0" + ms; }
 logList.add(hr + ":" + mn + ":" + sc + "." + ms + " " +
 str);
 logList.makeVisible(logList.getItemCount()-1);
 }

 protected void aut(int aut, String str)
 {
 if (logAut.contains(new Integer(aut)))
 write(str);
 }

 protected void logAutChange(int aut, boolean enable)
 {
 log("Log A" + aut + " automaton: " + enable);
 Integer a = new Integer(aut);

 33

 if (enable)
 {
 if (!logAut.contains(a))
 logAut.addElement(a);
 }
 else
 {
 logAut.removeElement(a);
 }
 }

}

9.5. ElevatorVisualizer.java
import java.applet.Applet;
import java.awt.Color;
import java.awt.Canvas;
import java.awt.Graphics;
import java.awt.List;
import java.awt.MediaTracker;
import java.awt.Image;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.util.Vector;

/**
 * Realisation of the elevator emulator and visualiser
 */
public class ElevatorVisualizer
 extends Canvas
 implements ElevatorVisualizerInterface, MouseListener, Runnable
{
 final static int DELAY_DEFAULT = 50;
 protected int DELAY;
 final static int DOORS_TIMER_MAX_DEFAULT = 30;
 protected int DOORS_TIMER_MAX;
 final static int DOORS_MAX_DEFAULT = 30;
 protected int DOORS_MAX;
 final static int DOORS_MOVE_DEFAULT = 2;
 protected int DOORS_MOVE;
 final static int ELEVATOR_MOVE_DEFAULT = 2;
 protected int ELEVATOR_MOVE;
 final static int ELEVATOR_1_FLOOR = 0;
 final static int ELEVATOR_2_FLOOR = 100;
 final static int ELEVATOR_3_FLOOR = 200;
 protected Vector events = new Vector();
 protected int doorsPosition = 0;
 protected int elevatorPosition = 0;
 protected int doorsMove = 0;
 protected int elevatorMove = 0;
 protected boolean isLampOn;
 protected int doorsTimer = -1;
 protected int panelState = 0;
 protected boolean xx51;
 protected boolean zz11, zz21, zz22, zz32;
 protected ElevatorApplet mainApplet;
 protected Image imBackground,
 imElevatorWallPaper,
 imElevatorDoor,
 imMan,
 imSkeleton,
 imLampOff,

 34

 imLampOn,
 imDoorsTimer,
 im3DownOn,
 im2UpOn,
 im2DownOn,
 im1UpOn,
 imPanel0,
 imPanel1,
 imPanel2,
 imPanel3,
 imPanelS,
 imGoLeft,
 imGoRight;

 protected ElevatorLogInterface log;
 protected ElevatorAutomats aut;

 ElevatorVisualizer(ElevatorApplet appl,
 ElevatorLogInterface log)
 {
 mainApplet = appl;
 setSize(370, 310);
 addMouseListener(this);
 aut = new ElevatorAutomats(this, log);
 this.log = log;
 DELAY = mainApplet.getParamInt("DELAY", DELAY_DEFAULT);
 DOORS_TIMER_MAX = mainApplet.getParamInt("DOORS_TIMER_MAX",
 DOORS_TIMER_MAX_DEFAULT);
 DOORS_MAX = mainApplet.getParamInt("DOORS_MAX",
 DOORS_MAX_DEFAULT);
 DOORS_MOVE = mainApplet.getParamInt("DOORS_MOVE",
 DOORS_MOVE_DEFAULT);
 ELEVATOR_MOVE = mainApplet.getParamInt("ELEVATOR_MOVE",
 ELEVATOR_MOVE_DEFAULT);

 // Download of all graphical fragments
 MediaTracker t = new MediaTracker(this);
 imBackground = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "Background.gif");
 t.addImage(imBackground, 0);
 imElevatorWallPaper = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "ElevatorWallPaper.gif");
 t.addImage(imElevatorWallPaper, 0);
 imElevatorDoor = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "ElevatorDoor.gif");
 t.addImage(imElevatorDoor, 0);
 imMan = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "Man.gif");
 t.addImage(imMan, 0);
 imSkeleton = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "Skeleton.gif");
 t.addImage(imSkeleton, 0);
 imLampOff = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "LampOff.gif");
 t.addImage(imLampOff, 0);
 imLampOn = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "LampOn.gif");

 35

 t.addImage(imLampOn, 0);
 imDoorsTimer = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "DoorsTimer.gif");
 t.addImage(imDoorsTimer, 0);
 im3DownOn = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "3DownOn.gif");
 t.addImage(im3DownOn, 0);
 im2UpOn = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "2UpOn.gif");
 t.addImage(im2UpOn, 0);
 im2DownOn = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "2DownOn.gif");
 t.addImage(im2DownOn, 0);
 im1UpOn = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "1UpOn.gif");
 t.addImage(im1UpOn, 0);
 imPanel0 = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "Panel0.gif");
 t.addImage(imPanel0, 0);
 imPanel1 = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "Panel1.gif");
 t.addImage(imPanel1, 0);
 imPanel2 = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "Panel2.gif");
 t.addImage(imPanel2, 0);
 imPanel3 = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "Panel3.gif");
 t.addImage(imPanel3, 0);
 imPanelS = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "PanelS.gif");
 t.addImage(imPanelS, 0);
 imGoLeft = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "GoLeft.gif");
 t.addImage(imGoLeft, 0);
 imGoRight = mainApplet.getImage(
 mainApplet.getDocumentBase(),
 "GoRight.gif");
 t.addImage(imGoRight, 0);
 try
 {
 t.waitForID(0);
 }
 catch (InterruptedException e)
 {
 }
 }

 /**
 * Processing of "Mouse click" events

 * and their addition to the queue
 */
 public void mousePressed(MouseEvent e)
 {

 36

 int x = e.getX();
 int y = e.getY();
 if (x>=111 && x<=143 && y>=64 && y<=96)
 addEvent(32);
 else if (x>=111 && x<=143 && y>=108 && y<=140)
 addEvent(21);
 else if (x>=111 && x<=143 && y>=168 && y<=200)
 addEvent(22);
 else if (x>=111 && x<=143 && y>=211 && y<=243)
 addEvent(11);
 else if (x>=297 && x<=332 && y>=23 && y<=58)
 addEvent(43);
 else if (x>=297 && x<=332 && y>=61 && y<=96)
 addEvent(42);
 else if (x>=297 && x<=332 && y>=100 && y<=135)
 addEvent(41);
 else if (x>=297 && x<=332 && y>=138 && y<=173)
 addEvent(44);
 else if (x>=177 && x<=242 && y>=238 && y<=288)
 addEvent(51);
 else if (x>=291 && x<=356 && y>=233 && y<=283)
 addEvent(50);
 }
 public void mouseReleased(MouseEvent e) {}
 public void mouseClicked(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}

 public void update(Graphics g)
 {
 paint(g);
 }

 /**
 * Visualisation area generation
 */
 public void paint(Graphics g0)
 {
 Image im = createImage(370, 310);
 Graphics g = im.getGraphics();

 g.drawImage(imBackground, 0, 0, this);
 if (doorsPosition > 0)
 {
 g.drawImage(imElevatorWallPaper,
 3, 202 - elevatorPosition, this);
 if (xx51)
 {
 g.drawImage(imMan,
 25, 210 - elevatorPosition, this);
 g.drawImage(imGoRight, 295, 235, this);
 }
 else
 g.drawImage(imGoLeft, 179, 209, this);
 }
 g.drawImage(imElevatorDoor,
 3, 202 - elevatorPosition,
 44 - doorsPosition, 303 - elevatorPosition,
 doorsPosition, 0, 40, 101, this);
 g.drawImage(imElevatorDoor,
 44 + doorsPosition, 202 - elevatorPosition,
 85, 303 - elevatorPosition,
 0, 0, 40 - doorsPosition, 101, this);
 g.drawImage(imSkeleton, 0, 0, this);

 37

 if (isLampOn)
 {
 g.drawImage(imLampOn, 200, 10, this);
 switch (panelState)
 {
 case 0:
 g.drawImage(imPanel0, 280, 13, this);
 break;
 case 1:
 g.drawImage(imPanel1, 280, 13, this);
 break;
 case 2:
 g.drawImage(imPanel2, 280, 13, this);
 break;
 case 3:
 g.drawImage(imPanel3, 280, 13, this);
 break;
 case 4:
 g.drawImage(imPanelS, 280, 13, this);
 break;
 }
 }
 else
 {
 g.drawImage(imLampOff, 200, 10, this);
 g.drawImage(imPanel0, 280, 13, this);
 }
 if (doorsTimer >-1)
 {
 g.drawImage(imDoorsTimer, 170, 110, this);
 g.setColor(new Color(127, 200, 127));
 g.fillArc(197, 147, 47, 47,
 90, 360*doorsTimer/DOORS_TIMER_MAX);
 }
 if (zz11)
 g.drawImage(im1UpOn, 113, 214, this);
 if (zz21)
 g.drawImage(im2UpOn, 113, 112, this);
 if (zz22)
 g.drawImage(im2DownOn, 113, 174, this);
 if (zz32)
 g.drawImage(im3DownOn, 113, 70, this);

 g0.drawImage(im, 0, 0, this);
 }

 /**
 * Main visualiser operating cycle
 */
 public void run()
 {
 while (true)
 {

// Sampling of an event from the queue
 int ev = getNextEvent();

 // Processing of the event selected
 switch (ev)
 {
 case 11:
 // Call of the A11 automaton with the event of 11
 aut.A11(11);

break;

 38

 case 21:
 aut.A21(21);
 break;

 case 22:
 aut.A22(22);
 break;

 case 32:
 aut.A32(32);
 break;

 case 41:
 case 42:
 case 43:
 case 44:
 if (isLampOn)
 aut.A2(ev);
 break;

 case 50:
 case 51:
 if (doorsPosition > 0)
 xx51 = (ev == 51);
 break;
 }

 // Automata calls by flags to be generated by the elevator
 if (doorsTimer >-1)
 doorsTimer--;

 if (doorsTimer == 0)
 aut.A0(90);

 boolean flag = doorsPosition > 0 &&
 doorsPosition < DOORS_MAX ;

 doorsPosition += doorsMove;
 if (flag && doorsPosition == DOORS_MAX)
 aut.A0(80);

 if (flag && doorsPosition == 0)
 aut.A0(81);

 flag = elevatorPosition != ELEVATOR_1_FLOOR &&
 elevatorPosition != ELEVATOR_2_FLOOR &&
 elevatorPosition != ELEVATOR_3_FLOOR;

 elevatorPosition += elevatorMove;
 if (flag && (elevatorPosition == ELEVATOR_1_FLOOR ||
 elevatorPosition == ELEVATOR_2_FLOOR ||
 elevatorPosition == ELEVATOR_3_FLOOR))
 aut.A0(60);

 aut.A0(0);

 repaint();

 39

 try
 {
 Thread.sleep(DELAY);
 }
 catch (InterruptedException e)
 {
 break;
 }
 }

}

 /**
 * Add an event to the queue
 */
 synchronized public void addEvent(int ev)
 {
 events.addElement(new Integer(ev));
 }

 /**
 * Retrieve an event from the queue
 */
 synchronized protected int getNextEvent()
 {
 int ev = 0;
 if (!events.isEmpty())
 {
 ev = ((Integer)events.firstElement()).intValue();
 events.removeElementAt(0);
 }
 return ev;
 }

 /**
 * Input variable: a weight is present in the elevator car
 */
 public boolean x51()
 {
 log.input(51, "a weight is present in the elevator car", xx51
);
 return xx51;
 }

 /**
 * Input variable: the elevator is on the 1st floor
 */
 public boolean x61()
 {
 boolean ret = elevatorPosition == ELEVATOR_1_FLOOR;
 log.input(61, "the elevator is on the 1st floor", ret);
 return ret;
 }

 /**
 * Input variable: the elevator is on the 2nd floor
 */
 public boolean x62()
 {
 boolean ret = elevatorPosition == ELEVATOR_2_FLOOR;
 log.input(62, "the elevator is on the 2nd floor", ret);
 return ret;
 }

 40

 /**
 * Input variable: the elevator is on the 3rd floor
 */
 public boolean x63()
 {
 boolean ret = elevatorPosition == ELEVATOR_3_FLOOR;
 log.input(63, "the elevator is on the 3rd floor", ret);
 return ret;
 }

 /**
 * Output action:
 * switch off the lamp in the «Up» button on the first floor
 */
 public void z110()
 {
 log.action(110,

 "switch off the lamp in the \”Up\” button on the first
floor”);
 zz11 = false;
 }

 /**
 * Output action:
 * switch on the lamp in the «Up» button on the first floor
 */
 public void z111()
 {
 log.action(111,
 "switch on the lamp in the \”Up\” button on the first
floor”);
 zz11 = true;
 }

 /**
 * Output action:
 * switch off the lamp in the «Up» button on the second floor
 */
 public void z210()
 {
 log.action(210,
 "switch off the lamp in the \”Up\” button on the second
floor”);
 zz21 = false;
 }

 /**
 * Output action:
 * switch on the lamp in the «Up» button on the second floor
 */
 public void z211()
 {
 log.action(211,
 "switch on the lamp in the \”Up\” button on the second
floor”);
 zz21 = true;
 }

 /**
 * Output action:
 * switch off the lamp in the «Down» button on the second floor
 */
 public void z220()
 {

 41

 log.action(220,
 "switch off the lamp in the \”Down\” button on the second
floor”);
 zz22 = false;
 }

 /**
 * Output action:
 * switch on the lamp in the «Down» button on the second floor
 */
 public void z221()
 {
 log.action(221,
 "switch on the lamp in the \”Down\” button on the second
floor”);
 zz22 = true;
 }

 /**
 * Output action:
 * switch off the lamp in the «Down» button on the third floor
 */
 public void z320()
 {
 log.action(320,
 "switch off the lamp in the \”Down\” button on the third
floor”);
 zz32 = false;
 }

 /**
 * Output action:
 * switch on the lamp in the «Down» button on the third floor
 */
 public void z321()
 {
 log.action(321,
 "switch on the lamp in the \”Down\” button on the third
floor”);
 zz32 = true;
 }

 /**
 * Output action: switch off the lamp in the “1” button
 */
 public void z400()
 {
 log.action(400, "switch off the lamp in the \"1\" button");
 panelState = 0;
 }

 /**
 * Output action: switch on the lamp in the "1" button
 */
 public void z411()
 {
 log.action(411, "switch on the lamp in the \"1\" button");
 panelState = 1;
 }

 /**
 * Output action: switch on the lamp in the "2" button
 */
 public void z421()

 42

 {
 log.action(421, "switch on the lamp in the \"2\" button");
 panelState = 2;
 }

 /**
 * Output action: switch on the lamp in the "3" button
 */
 public void z431()
 {
 log.action(431, "switch on the lamp in the \"3\" button");
 panelState = 3;
 }

 /**
 * Output action: switch on the lamp in the "S" button
 */
 public void z441()
 {
 log.action(441, "switch on the lamp in the \"S\" button");
 panelState = 4;
 }

 /**
 * Output action: switch off the lamp in the elevator car
 */
 public void z500()
 {
 log.action(500, "switch off the lamp in the elevator car");
 isLampOn = false;
 }

 /**
 * Output action: switch on the lamp in the elevator car
 */
 public void z501()
 {
 log.action(501, "switch on the lamp in the elevator car");
 isLampOn = true;
 }

 /**
 * Output action: stop the elevator car
 */
 public void z700()
 {
 log.action(700, "stop the elevator car");
 elevatorMove = 0;
 }

 /**
 * Output action: start the upward motion
 */
 public void z701()
 {
 log.action(701, "start the upward motion");
 elevatorMove = ELEVATOR_MOVE;
 }

 /**
 * Output action: start the downward motion
 */
 public void z702()
 {

 43

 log.action(702, "start the downward motion");
 elevatorMove = -ELEVATOR_MOVE;
 }

 /**
 * Output action: automatically stop the door motion
 */
 public void z800()
 {
 log.action(800, "automatically stop the door motion");
 doorsMove = 0;
 }

 /**
 * Output action: open the doors
 */
 public void z801()
 {
 log.action(801, "open the doors");
 doorsMove = DOORS_MOVE;
 }

 /**
 * Output action: close the doors
 */
 public void z802()
 {
 log.action(802, "close the doors");
 doorsMove = -DOORS_MOVE;
 }

 /**
 * Output action: switch off the door closing timer
 */
 public void z900()
 {
 log.action(900, "switch off the door closing timer");
 doorsTimer = -1;
 }

 /**
 * Output action: start the door closing timer
 */
 public void z901()
 {
 log.action(901, "start the door closing timer");
 doorsTimer = DOORS_TIMER_MAX;
 }
}

9.6. ElevatorApplet.java
import java.applet.Applet;

/**
 * Applet
 */
public class ElevatorApplet
 extends Applet
{
 protected ElevatorVisualizer vis;
 protected Thread visThread;
 protected ElevatorLog log;

 44

 public int getParamInt(String param, int def)
 {
 String temp = getParameter(param);
 if (temp == null)
 return def;
 try {
 return Integer.parseInt(temp);
 }
 catch (NumberFormatException e)
 {
 return def;
 }
 }

 public void init()
 {
 setLayout(null);
 log = new ElevatorLog(this);
 vis = new ElevatorVisualizer(this, log);
 vis.setLocation(0, 0);
 add(vis);
 log.setLocation(370, 0);
 add(log);
 visThread = new Thread(vis);
 visThread.start();
 }

 public void destroy()
 {
 visThread.stop();
 }
}

9.7. index.html
<!-- An aplet starting HTML-file -->
<HTML>
<BODY>
<APPLET CODE="ElevatorApplet.class" WIDTH=820 HEIGHT=310>
<PARAM NAME="DELAY" VALUE="50">
<PARAM NAME="DOORS_TIMER_MAX" VALUE="30">
<PARAM NAME="DOORS_MAX" VALUE="30">
<PARAM NAME="DOORS_MOVE" VALUE="2">
<PARAM NAME="ELEVATOR_MOVE" VALUE="2">
<PARAM NAME="LOG_HEIGHT" VALUE="310">
</APPLET>
</BODY>
</HTML>

10. Log fragments
The following notation conventions are used in the logs:

– a click on log management flags;

T – automaton transfer;

* – output actions;

{ – beginning of automaton operation;

 45

} – ending of automaton operation;

> – input variables.

In the logs given below, only numbers are indicated for the states whereas the
state descriptions are not specified in order to reduce the log size.

Each log reflects the following script:

• the elevator car is called by pressing the button on the first floor;

• the lamp in the elevator car comes on at the door opening moment;

• a person comes into the doors being opening;

• the "3" button is pressed on the car operational panel;

• upon full opening of the doors, they will close again and the elevator car
will move upwards;

• the "Down" button is pressed on the second floor and the lamp in it
comes on;

• the elevator car is passing by the second floor and reached the third floor;

• the doors get open on the third floor and the person goes out;

• the timer for automatic door closing gets started;

• upon operation of the timer, the doors get closed;

• at the door closing moment, the lamp in the elevator car goes out;

• the elevator goes to the second floor;

• the doors get open on the second floor, the lamp in the elevator car
comes on and the lamp in the "Down" button goes out;

• the timer for automatic door closing gets started;

• upon operation of the timer, the doors get closed;

• at the door closing moment, the lamp in the elevator car goes out.

10.1. Example of a simplified log
20:36:17.354 # Log automata state modification: true
20:36:18.145 # Log output actions: true
20:36:18.876 # Log A11 automaton: true
20:36:19.587 # Log A21 automaton: true
20:36:19.878 # Log A22 automaton: true
20:36:20.478 # Log A32 automaton: true
20:36:21.189 # Log A0 automaton: true
20:36:21.530 # Log A1 automaton: true
20:36:21.930 # Log A2 automaton: true
20:36:23.933 T A11: has transferred from the state of 0 to the state
of 1
20:36:23.933 * z111 - switch on the lamp in the «Up» button on the
first floor
20:36:23.933 * z700 - stop the elevator car
20:36:23.943 * z501 - switch on the lamp in the elevator car
20:36:23.943 T A0: has transferred from the state of 0 to the state of
3
20:36:23.943 T A11: has transferred from the state of 1 to the state
of 2

 46

20:36:23.953 * z110 - switch off the lamp in the «Up» button on the
first floor
20:36:23.953 * z801 - open the doors
20:36:24.724 * z800 - automatically stop the door motion
20:36:24.724 T A0: has transferred from the state of 3 to the state of
4
20:36:24.724 * z901 - start the door closing timer
20:36:24.734 * z900 - switch off the door closing timer
20:36:24.734 T A0: has transferred from the state of 4 to the state of
6
20:36:27.068 T A2: has transferred from the state of 0 to the state of
3
20:36:27.068 * z431 - switch on the lamp in the "3" button
20:36:27.088 T A0: has transferred from the state of 6 to the state of
7
20:36:27.098 * z802 - close the doors
20:36:27.869 * z800 - automatically stop the door motion
20:36:27.869 T A0: has transferred from the state of 7 to the state of
9
20:36:27.889 T A11: has transferred from the state of 2 to the state
of 0
20:36:27.899 T A0: has transferred from the state of 9 to the state of
10
20:36:27.909 T A1: has transferred from the state of 0 to the state of
1
20:36:27.919 * z701 - start the upward motion
20:36:28.490 T A22: has transferred from the state of 0 to the state
of 1
20:36:28.490 * z221 - switch on the lamp in the «Down» button on the
second floor
20:36:32.986 * z700 - stop the elevator car
20:36:32.986 T A0: has transferred from the state of 10 to the state
of 8
20:36:33.006 T A2: has transferred from the state of 3 to the state of
0
20:36:33.016 * z400 - switch off the lamp in the button
20:36:33.026 T A32: has transferred from the state of 0 to the state
of 2
20:36:33.036 * z320 - switch off the lamp in the «Down» button on the
third floor
20:36:33.056 * z801 - open the doors
20:36:33.577 T A0: has transferred from the state of 8 to the state of
3
20:36:33.587 * z801 - open the doors
20:36:33.868 * z800 - automatically stop the door motion
20:36:33.868 T A0: has transferred from the state of 3 to the state of
4
20:36:33.888 * z901 - start the door closing timer
20:36:35.420 T A0: has transferred from the state of 4 to the state of
5
20:36:35.420 * z802 - close the doors
20:36:36.151 * z800 - automatically stop the door motion
20:36:36.151 T A0: has transferred from the state of 5 to the state of
0
20:36:36.171 T A32: has transferred from the state of 2 to the state
of 0
20:36:36.181 * z500 - switch off the lamp in the elevator car
20:36:36.191 T A0: has transferred from the state of 0 to the state of
2
20:36:36.201 T A1: has transferred from the state of 1 to the state of
0
20:36:36.221 * z702 - start the downward motion
20:36:38.745 * z700 - stop the elevator car
20:36:38.755 * z501 - switch on the lamp in the elevator car

 47

20:36:38.765 T A0: has transferred from the state of 2 to the state of
3
20:36:38.775 T A21: has transferred from the state of 0 to the state
of 2
20:36:38.795 * z210 - switch off the lamp in the «Up» button on the
second floor
20:36:38.805 T A22: has transferred from the state of 1 to the state
of 2
20:36:38.825 * z220 - switch off the lamp in the «Down» button on the
second floor
20:36:38.835 * z801 - open the doors
20:36:39.616 * z800 - automatically stop the door motion
20:36:39.626 T A0: has transferred from the state of 3 to the state of
4
20:36:39.646 * z901 - start the door closing timer
20:36:41.168 T A0: has transferred from the state of 4 to the state of
5
20:36:41.178 * z802 - close the doors
20:36:41.909 * z800 - automatically stop the door motion
20:36:41.919 T A0: has transferred from the state of 5 to the state of
0
20:36:41.939 T A21: has transferred from the state of 2 to the state
of 0
20:36:41.949 T A22: has transferred from the state of 2 to the state
of 0
20:36:41.969 * z500 - switch off the lamp in the elevator car

10.2. Example of a full log
The log fragments accurately repeating in time have been manually replaced by

dots.
20:37:46.091 # Log automata start: true
20:37:46.402 # Log automata state modification: true
20:37:46.722 # Log automata operation completion: true
20:37:47.053 # Log input variable polling: true
20:37:47.343 # Log output actions: true
20:37:47.994 # Log A11 automaton: true
20:37:48.285 # Log A21 automaton: true
20:37:48.665 # Log A22 automaton: true
20:37:48.956 # Log A32 automaton: true
20:37:49.587 # Log A0 automaton: true
20:37:49.847 # Log A1 automaton: true
20:37:50.197 # Log A2 automaton: true
20:37:50.838 { A0: being in the state 0 has been started with the
event of e0
20:37:50.838 > x61 - the elevator is on the 1st floor - return true
20:37:50.848 > x62 - the elevator is on the 2nd floor - return false
20:37:50.848 > x63 - the elevator is on the 3rd floor - return false
20:37:50.848 } A0: has completed processing of the event of e0 in the
state of 0
...
20:37:51.619 { A0: being in the state 0 has been started with the
event of e0
20:37:51.629 > x61 - the elevator is on the 1st floor - return true
20:37:51.639 > x62 - the elevator is on the 2nd floor - return false
20:37:51.649 > x63 - the elevator is on the 3rd floor - return false
20:37:51.669 } A0: has completed processing of the event of e0 in the
state of 0
20:37:51.730 { A11: being in the state 0 has been started with the
event of e11
20:37:51.740 T A11: has transferred from the state of 0 to the state
of 1

 48

20:37:51.750 * zz111 - switch on the lamp in the «Up» button on the
first floor
20:37:51.770 } A11: has completed processing of the event of e11 in
the state of 1
20:37:51.780 { A0: being in the state 0 has been started with the
event of e0
20:37:51.800 > x61 - the elevator is on the 1st floor - return true
20:37:51.810 > x62 - the elevator is on the 2nd floor - return false
20:37:51.820 > x63 - the elevator is on the 3rd floor - return false
20:37:51.840 * z700 - stop the elevator car
20:37:51.850 * z501 - switch on the lamp in the elevator car
20:37:51.870 T A0: has transferred from the state of 0 to the state of
3
20:37:51.880 { A2: being in the state 0 has been started with the
event of e2
20:37:51.900 > x51 - a weight is present in the elevator car - return
false
20:37:51.920 } A2: has completed processing of the event of e2 in the
state of 0
20:37:51.930 { A11: being in the state 1 has been started with the
event of e3
20:37:51.950 > x61 - the elevator is on the 1st floor - return true
20:37:51.960 T A11: has transferred from the state of 1 to the state
of 2
20:37:51.980 * z110 - switch off the lamp in the «Up» button on the
first floor
20:37:52.000 } A11: has completed processing of the event of e3 in the
state of 2
20:37:52.010 { A21: being in the state 0 has been started with the
event of e3
20:37:52.030 > x62 - the elevator is on the 2nd floor - return false
20:37:52.040 } A21: has completed processing of the event of e3 in the
state of 0
20:37:52.060 { A22: being in the state 0 has been started with the
event of e3
20:37:52.080 > x62 - the elevator is on the 2nd floor - return false
20:37:52.090 } A22: has completed processing of the event of e3 in the
state of 0
20:37:52.110 { A32: being in the state 0 has been started with the
event of e3
20:37:52.130 > x63 - the elevator is on the 3rd floor - return false
20:37:52.140 } A32: has completed processing of the event of e3 in the
state of 0
20:37:52.160 * z801 - open the doors
20:37:52.180 } A0: has completed processing of the event of e0 in the
state of 3
20:37:52.240 { A0: being in the state 3 has been started with the
event of e0
20:37:52.250 } A0: has completed processing of the event of e0 in the
state of 3
...
20:37:53.382 { A0: being in the state 3 has been started with the
event of e0
20:37:53.402 } A0: has completed processing of the event of e0 in the
state of 3
20:37:53.472 { A0: being in the state 3 has been started with the
event of e80
20:37:53.482 * z800 - automatically stop the door motion
20:37:53.502 T A0: has transferred from the state of 3 to the state of
4
20:37:53.532 * z901 - start the door closing timer
20:37:53.552 } A0: has completed processing of the event of e80 in the
state of 4

 49

20:37:53.572 { A0: being in the state 4 has been started with the
event of e0
20:37:53.592 > x51 - a weight is present in the elevator car - return
true
20:37:53.612 * z900 - switch off the door closing timer
20:37:53.632 T A0: has transferred from the state of 4 to the state of
6
20:37:53.662 } A0: has completed processing of the event of e0 in the
state of 6
20:37:53.742 { A0: being in the state 6 has been started with the
event of e0
20:37:53.752 > x51 - a weight is present in the elevator car - return
true
20:37:53.783 } A0: has completed processing of the event of e0 in the
state of 6
...
20:37:54.223 { A0: being in the state 6 has been started with the
event of e0
20:37:54.233 > x51 - a weight is present in the elevator car - return
true
20:37:54.263 } A0: has completed processing of the event of e0 in the
state of 6
20:37:54.343 { A2: being in the state 0 has been started with the
event of e43
20:37:54.353 > x51 - a weight is present in the elevator car - return
true
20:37:54.383 > x63 - the elevator is on the 3rd floor - return false
20:37:54.413 T A2: has transferred from the state of 0 to the state of
3
20:37:54.433 * z431 - switch on the lamp in the "3" button
20:37:54.454 } A2: has completed processing of the event of e43 in the
state of 3
20:37:54.484 { A0: being in the state 6 has been started with the
event of e0
20:37:54.504 T A0: has transferred from the state of 6 to the state of
7
20:37:54.544 * z802 - close the doors
20:37:54.584 } A0: has completed processing of the event of e0 in the
state of 7
20:37:54.674 { A0: being in the state 7 has been started with the
event of e0
20:37:54.694 > x51 - a weight is present in the elevator car - return
true
20:37:54.724 } A0: has completed processing of the event of e0 in the
state of 7
...
20:37:56.296 { A0: being in the state 7 has been started with the
event of e0
20:37:56.316 > x51 - a weight is present in the elevator car - return
true
20:37:56.346 } A0: has completed processing of the event of e0 in the
state of 7
20:37:56.436 { A22: being in the state 0 has been started with the
event of e22
20:37:56.456 T A22: has transferred from the state of 0 to the state
of 1
20:37:56.486 * z221 - switch on the lamp in the «Down» button on the
second floor
20:37:56.516 } A22: has completed processing of the event of e22 in
the state of 1
20:37:56.547 { A0: being in the state 7 has been started with the
event of e0
20:37:56.577 > x51 - a weight is present in the elevator car - return
true

 50

20:37:56.607 } A0: has completed processing of the event of e0 in the
state of 7
20:37:56.697 { A0: being in the state 7 has been started with the
event of e81
20:37:56.717 * z800 - automatically stop the door motion
20:37:56.747 T A0: has transferred from the state of 7 to the state of
9
20:37:56.777 { A11: being in the state 2 has been started with the
event of e4
20:37:56.817 T A11: has transferred from the state of 2 to the state
of 0
20:37:56.857 } A11: has completed processing of the event of e4 in the
state of 0
20:37:56.897 { A21: being in the state 0 has been started with the
event of e4
20:37:56.937 } A21: has completed processing of the event of e4 in the
state of 0
20:37:56.977 { A22: being in the state 1 has been started with the
event of e4
20:37:57.007 } A22: has completed processing of the event of e4 in the
state of 1
20:37:57.047 { A32: being in the state 0 has been started with the
event of e4
20:37:57.077 } A32: has completed processing of the event of e4 in the
state of 0
20:37:57.107 } A0: has completed processing of the event of e81 in the
state of 9
20:37:57.137 { A0: being in the state 9 has been started with the
event of e0
20:37:57.167 > x61 - the elevator is on the 1st floor - return true
20:37:57.197 > x62 - the elevator is on the 2nd floor - return false
20:37:57.227 > x63 - the elevator is on the 3rd floor - return false
20:37:57.258 T A0: has transferred from the state of 9 to the state of
10
20:37:57.288 { A1: being in the state 0 has been started with the
event of e9
20:37:57.318 T A1: has transferred from the state of 0 to the state of
1
20:37:57.348 } A1: has completed processing of the event of e9 in the
state of 1
20:37:57.388 * z701 - start the upward motion
20:37:57.418 } A0: has completed processing of the event of e0 in the
state of 10
20:37:57.508 { A0: being in the state 10 has been started with the
event of e0
20:37:57.528 > x61 - the elevator is on the 1st floor - return false
20:37:57.568 > x62 - the elevator is on the 2nd floor - return false
20:37:57.608 > x63 - the elevator is on the 3rd floor - return false
20:37:57.658 } A0: has completed processing of the event of e0 in the
state of 10
...
20:38:33.410 { A0: being in the state 10 has been started with the
event of e0
20:38:33.490 > x61 - the elevator is on the 1st floor - return false
20:38:33.590 > x62 - the elevator is on the 2nd floor - return false
20:38:33.680 > x63 - the elevator is on the 3rd floor - return false
20:38:33.770 } A0: has completed processing of the event of e0 in the
state of 10
20:38:33.900 { A0: being in the state 10 has been started with the
event of e60
20:38:33.980 > x61 - the elevator is on the 1st floor - return false
20:38:34.060 > x62 - the elevator is on the 2nd floor - return false
20:38:34.151 > x63 - the elevator is on the 3rd floor - return true
20:38:34.271 * z700 - stop the elevator car

 51

20:38:34.381 T A0: has transferred from the state of 10 to the state
of 8
20:38:34.461 { A2: being in the state 1 has been started with the
event of e2
20:38:34.551 T A2: has transferred from the state of 3 to the state of
0
20:38:34.641 * z400 - switch off the lamp in the button
20:38:34.721 } A2: has completed processing of the event of e2 in the
state of 0
20:38:34.812 { A11: being in the state 0 has been started with the
event of e3
20:38:34.912 > x61 - the elevator is on the 1st floor - return false
20:38:35.012 } A11: has completed processing of the event of e3 in the
state of 0
20:38:35.122 { A21: being in the state 0 has been started with the
event of e3
20:38:35.212 > x62 - the elevator is on the 2nd floor - return false
20:38:35.292 } A21: has completed processing of the event of e3 in the
state of 0
20:38:35.382 { A22: being in the state 1 has been started with the
event of e3
20:38:35.472 > x62 - the elevator is on the 2nd floor - return false
20:38:35.563 } A22: has completed processing of the event of e3 in the
state of 1
20:38:35.643 { A32: being in the state 0 has been started with the
event of e3
20:38:35.773 > x63 - the elevator is on the 3rd floor - return true
20:38:35.873 T A32: has transferred from the state of 0 to the state
of 2
20:38:35.963 * z320 - switch off the lamp in the «Down» button on the
third floor
20:38:36.053 } A32: has completed processing of the event of e3 in the
state of 2
20:38:36.143 * z801 - open the doors
20:38:36.224 } A0: has completed processing of the event of e60 in the
state of 8
20:38:36.314 { A0: being in the state 8 has been started with the
event of e0
20:38:36.404 > x51 - a weight is present in the elevator car - return
true
20:38:36.514 } A0: has completed processing of the event of e0 in the
state of 8
...
20:38:38.697 { A0: being in the state 8 has been started with the
event of e0
20:38:38.787 > x51 - a weight is present in the elevator car - return
true
20:38:38.897 } A0: has completed processing of the event of e0 in the
state of 8
20:38:39.078 { A0: being in the state 8 has been started with the
event of e0
20:38:39.168 > x51 - a weight is present in the elevator car - return
false
20:38:39.258 T A0: has transferred from the state of 8 to the state of
3
20:38:39.348 { A2: being in the state 1 has been started with the
event of e2
20:38:39.438 > x51 - a weight is present in the elevator car - return
false
20:38:39.528 } A2: has completed processing of the event of e2 in the
state of 0
20:38:39.648 { A11: being in the state 0 has been started with the
event of e3
20:38:39.779 > x61 - the elevator is on the 1st floor - return false

 52

20:38:39.869 } A11: has completed processing of the event of e3 in the
state of 0
20:38:39.959 { A21: being in the state 0 has been started with the
event of e3
20:38:40.049 > x62 - the elevator is on the 2nd floor - return false
20:38:40.149 } A21: has completed processing of the event of e3 in the
state of 0
20:38:40.239 { A22: being in the state 1 has been started with the
event of e3
20:38:40.329 > x62 - the elevator is on the 2nd floor - return false
20:38:40.470 } A22: has completed processing of the event of e3 in the
state of 1
20:38:40.580 { A32: being in the state 2 has been started with the
event of e3
20:38:40.680 } A32: has completed processing of the event of e3 in the
state of 2
20:38:40.770 * z801 - open the doors
20:38:40.870 } A0: has completed processing of the event of e0 in the
state of 3
20:38:41.020 { A0: being in the state 3 has been started with the
event of e0
...
20:38:42.382 } A0: has completed processing of the event of e0 in the
state of 3
20:38:42.533 { A0: being in the state 3 has been started with the
event of e80
20:38:42.623 * z800 - automatically stop the door motion
20:38:42.713 T A0: has transferred from the state of 3 to the state of
4
20:38:42.823 * z901 - start the door closing timer
20:38:42.953 } A0: has completed processing of the event of e80 in the
state of 4
20:38:43.053 { A0: being in the state 4 has been started with the
event of e0
20:38:43.144 > x51 - a weight is present in the elevator car - return
false
20:38:43.244 } A0: has completed processing of the event of e0 in the
state of 4
...
20:38:55.692 { A0: being in the state 4 has been started with the
event of e0
20:38:55.822 > x51 - a weight is present in the elevator car - return
false
20:38:55.942 } A0: has completed processing of the event of e0 in the
state of 4
20:38:56.102 { A0: being in the state 4 has been started with the
event of e90
20:38:56.212 T A0: has transferred from the state of 4 to the state of
5
20:38:56.423 * z802 - close the doors
20:38:56.543 } A0: has completed processing of the event of e90 in the
state of 5
20:38:56.653 { A0: being in the state 5 has been started with the
event of e0
20:38:56.773 > x51 - a weight is present in the elevator car - return
false
20:38:56.883 } A0: has completed processing of the event of e0 in the
state of 5
...
20:39:02.261 { A0: being in the state 5 has been started with the
event of e0
20:39:02.371 > x51 - a weight is present in the elevator car - return
false

 53

20:39:02.501 } A0: has completed processing of the event of e0 in the
state of 5
20:39:02.652 { A0: being in the state 5 has been started with the
event of e81
20:39:02.762 * z800 - automatically stop the door motion
20:39:02.872 T A0: has transferred from the state of 5 to the state of
0
20:39:02.982 { A11: being in the state 0 has been started with the
event of e4
20:39:03.092 } A11: has completed processing of the event of e4 in the
state of 0
20:39:03.202 { A21: being in the state 0 has been started with the
event of e4
20:39:03.323 } A21: has completed processing of the event of e4 in the
state of 0
20:39:03.443 { A22: being in the state 1 has been started with the
event of e4
20:39:03.553 } A22: has completed processing of the event of e4 in the
state of 1
20:39:03.663 { A32: being in the state 2 has been started with the
event of e4
20:39:03.783 T A32: has transferred from the state of 2 to the state
of 0
20:39:03.893 } A32: has completed processing of the event of e4 in the
state of 0
20:39:04.014 * z500 - switch off the lamp in the elevator car
20:39:04.124 } A0: has completed processing of the event of e81 in the
state of 0
20:39:04.244 { A0: being in the state 0 has been started with the
event of e0
20:39:04.354 > x61 - the elevator is on the 1st floor - return false
20:39:04.464 > x62 - the elevator is on the 2nd floor - return false
20:39:04.574 > x63 - the elevator is on the 3rd floor - return true
20:39:04.684 T A0: has transferred from the state of 0 to the state of
2
20:39:04.795 { A1: being in the state 1 has been started with the
event of e8
20:39:04.905 T A1: has transferred from the state of 1 to the state of
0
20:39:05.015 } A1: has completed processing of the event of e8 in the
state of 0
20:39:05.125 * z702 - start the downward motion
20:39:05.235 } A0: has completed processing of the event of e0 in the
state of 2
20:39:05.396 { A0: being in the state 2 has been started with the
event of e0
20:39:05.496 > x61 - the elevator is on the 1st floor - return false
20:39:05.606 > x62 - the elevator is on the 2nd floor - return false
20:39:05.726 > x63 - the elevator is on the 3rd floor - return false
20:39:05.836 } A0: has completed processing of the event of e0 in the
state of 2
...
20:39:38.303 { A0: being in the state 2 has been started with the
event of e0
20:39:38.433 > x61 - the elevator is on the 1st floor - return false
20:39:38.573 > x62 - the elevator is on the 2nd floor - return false
20:39:38.713 > x63 - the elevator is on the 3rd floor - return false
20:39:38.854 } A0: has completed processing of the event of e0 in the
state of 2
20:39:39.044 { A0: being in the state 2 has been started with the
event of e60
20:39:39.174 > x61 - the elevator is on the 1st floor - return false
20:39:39.314 > x62 - the elevator is on the 2nd floor - return true
20:39:39.454 * z700 - stop the elevator car

 54

20:39:39.595 * z501 - switch on the lamp in the elevator car
20:39:39.735 T A0: has transferred from the state of 2 to the state of
3
20:39:39.865 { A2: being in the state 0 has been started with the
event of e2
20:39:40.005 > x51 - a weight is present in the elevator car - return
false
20:39:40.155 } A2: has completed processing of the event of e2 in the
state of 0
20:39:40.296 { A11: being in the state 0 has been started with the
event of e3
20:39:40.436 > x61 - the elevator is on the 1st floor - return false
20:39:40.576 } A11: has completed processing of the event of e3 in the
state of 0
20:39:40.726 { A21: being in the state 0 has been started with the
event of e3
20:39:40.877 > x62 - the elevator is on the 2nd floor - return true
20:39:41.007 T A21: has transferred from the state of 0 to the state
of 2
20:39:41.157 * z210 - switch off the lamp in the «Up» button on the
second floor
20:39:41.287 } A21: has completed processing of the event of e3 in the
state of 2
20:39:41.427 { A22: being in the state 1 has been started with the
event of e3
20:39:41.568 > x62 - the elevator is on the 2nd floor - return true
20:39:41.708 T A22: has transferred from the state of 1 to the state
of 2
20:39:41.848 * z220 - switch off the lamp in the «Down» button on the
second floor
20:39:41.998 } A22: has completed processing of the event of e3 in the
state of 2
20:39:42.138 { A32: being in the state 0 has been started with the
event of e3
20:39:42.279 > x63 - the elevator is on the 3rd floor - return false
20:39:42.429 } A32: has completed processing of the event of e3 in the
state of 0
20:39:42.569 * z801 - open the doors
20:39:42.719 } A0: has completed processing of the event of e60 in the
state of 3
20:39:42.859 { A0: being in the state 3 has been started with the
event of e0
...
20:39:47.716 { A0: being in the state 3 has been started with the
event of e0
20:39:47.867 } A0: has completed processing of the event of e0 in the
state of 3
20:39:48.067 { A0: being in the state 3 has been started with the
event of e80
20:39:48.217 * z800 - automatically stop the door motion
20:39:48.367 T A0: has transferred from the state of 3 to the state of
4
20:39:48.518 * z901 - start the door closing timer
20:39:48.658 } A0: has completed processing of the event of e80 in the
state of 4
20:39:48.808 { A0: being in the state 4 has been started with the
event of e0
20:39:48.958 > x51 - a weight is present in the elevator car - return
false
20:39:49.108 } A0: has completed processing of the event of e0 in the
state of 4
...
20:40:03.769 { A0: being in the state 4 has been started with the
event of e0

 55

20:40:03.930 > x51 - a weight is present in the elevator car - return
false
20:40:04.080 } A0: has completed processing of the event of e0 in the
state of 4
20:40:04.300 { A0: being in the state 4 has been started with the
event of e90
20:40:04.450 T A0: has transferred from the state of 4 to the state of
5
20:40:04.631 * z802 - close the doors
20:40:04.791 } A0: has completed processing of the event of e90 in the
state of 5
20:40:04.951 { A0: being in the state 5 has been started with the
event of e0
20:40:05.111 > x51 - a weight is present in the elevator car - return
false
20:40:05.272 } A0: has completed processing of the event of e0 in the
state of 5
...
20:40:12.021 { A0: being in the state 5 has been started with the
event of e0
20:40:12.172 > x51 - a weight is present in the elevator car - return
false
20:40:12.332 } A0: has completed processing of the event of e0 in the
state of 5
20:40:12.562 { A0: being in the state 5 has been started with the
event of e81
20:40:12.722 * z800 - automatically stop the door motion
20:40:12.893 T A0: has transferred from the state of 5 to the state of
0
20:40:13.063 { A11: being in the state 0 has been started with the
event of e4
20:40:13.233 } A11: has completed processing of the event of e4 in the
state of 0
20:40:13.393 { A21: being in the state 2 has been started with the
event of e4
20:40:13.554 T A21: has transferred from the state of 2 to the state
of 0
20:40:13.714 } A21: has completed processing of the event of e4 in the
state of 0
20:40:13.884 { A22: being in the state 2 has been started with the
event of e4
20:40:14.044 T A22: has transferred from the state of 2 to the state
of 0
20:40:14.204 } A22: has completed processing of the event of e4 in the
state of 0
20:40:14.365 { A32: being in the state 0 has been started with the
event of e4
20:40:14.525 } A32: has completed processing of the event of e4 in the
state of 0
20:40:14.685 * z500 - switch off the lamp in the elevator car
20:40:14.855 } A0: has completed processing of the event of e81 in the
state of 0
20:40:15.016 { A0: being in the state 0 has been started with the
event of e0
20:40:15.176 > x61 - the elevator is on the 1st floor - return false
20:40:15.336 > x62 - the elevator is on the 2nd floor - return true
20:40:15.506 > x63 - the elevator is on the 3rd floor - return false
20:40:15.667 } A0: has completed processing of the event of e0 in the
state of 0
20:40:15.877 { A0: being in the state 0 has been started with the
event of e0
20:40:16.027 > x61 - the elevator is on the 1st floor - return false
20:40:16.197 > x62 - the elevator is on the 2nd floor - return true
20:40:16.368 > x63 - the elevator is on the 3rd floor - return false

 56

20:40:16.528 } A0: has completed processing of the event of e0 in the
state of 0

	Table of Contents
	Introduction
	1. Problem definition
	2. Class diagram
	3. "ElevatorAutomats" class
	3.1. Description
	3.2. Numeration and list of events (e)
	3.3. Numeration and list of input variables (x)
	3.4. Numeration and list of output actions (z)
	3.5. "Elevator control" automaton (A0)
	3.5.1. Description
	3.5.2. Link diagram
	3.5.3. Transition graph

	3.6. "Latest car motion direction" automaton (A1)
	3.6.1. Description
	3.6.2. Link diagram
	3.6.3. Transition graph

	3.7. "Car operational panel" automaton (A2)
	3.7.1. Description
	3.7.2. Link diagram
	3.7.3. Transition graph

	3.8. Call button automata (A11, A21, A22, A32)
	3.8.1. Description
	3.8.2. Link diagrams and transition graphs

	4. "ElevatorLogInterface" interface
	4.1. Description
	4.2. Method prototypes and their brief description

	5. "ElevatorVisualizerInterace" interface
	6. "ElevatorLog" class
	7. "ElevatorVisualizer" class
	7.1. Description
	7.2. "Consequences" of button presses

	8. "ElevatorApplet" class
	8.1. Description
	8.2. Possible applet parameters

	9. Program listings
	9.1. ElevatorAutomats.java
	9.2. ElevatorLogInterface.java
	9.3. ElevatorVisualizerInterface.java
	9.4. ElevatorLog.java
	9.5. ElevatorVisualizer.java
	9.6. ElevatorApplet.java
	9.7. index.html

	10. Log fragments
	10.1. Example of a simplified log
	10.2. Example of a full log

