Saint-Petersburg State University of Information Technologies,
Mechanics and Optics

Computer Technique Department

A.H. Kirakozov, A.A. Shalyto, B.R. Yaminov

Car Alarm Control System

Object-oriented programming with explicit state selection
Project documentation

This project has been developed in the context of the
“Foundation for open project documentation”

http://is.ifmo.ru/

Saint-Petersburg

2006

Table of contents

R 315 016 11 o1 10) o LRSS 3
2. Problem definition..........ccceeeeiiiiiieciiee e 3
3. FOrmal SCTIPL.....oeiiiiiiieeiiie ettt et e e e ereeeeas 5
4. Implementation in aUtOMALa...........c.vveeeiieriiiiieeeceiiee e 5
4.1, AULOMALA ...evviiiiiiiiiiee et e e e e 6
4.2, EVENt PTOVIAETS ...cuviiiieiiiii ettt 8
4.3. Controlled ObJECLSooeiieeiiiiiiieeieee e 8
5. Implementation.........ccccoceeuiiiiiiieiiiiiee e e 9
5.1, INterpretatingccceveeeeeiieeeeeiiee et 10
5.2 Compilating.......oveviiieiiiiiiieeeceee e 11
{070) 0 Ted 1113 0 o USSR 17
LITETALUIE ...evvieeeeeeieeee ettt e et e e e e eara e e e e e e aens 17
Appendix 1. Example of protocolccccvviiiiiiiiiiiiiieee e, 18
Appendix 2. Generated XML-descriptionccccceeeeeeviieeeeeeiiieeee e, 19

1. Introduction

This project is an example of designing a car alarm system with automata approach
using instrumental tool Unimod.

When designing a control system it seems that it is a good idea to use automata
approach. If a system is controlled by automata then by looking at them it is easy to
understand system’s behaviour. Moreover, if some bug is detected, it is much easier to find
the reason in automata transition graphs than in source code.

Instrumental tool Unimod provides an easy way to build automata based systems.
When using this tool firstly we have to describe system states and transitions between
them. A system transits from one state to another when event happens. While it is transiting
some actions are called. Entities that can generate events are called event providers, and
those which can perform actions are called controlled objects. In such way the whole
system is splitted into independent parts and so it becomes easier to maintain.

To sum up, if we want to design a system using Unimod, we have to describe event
providers, controlled objects and automata which will react to event by transiting from one
state to another and calling corresponding actions of controlled objects. Implementations of
actions and event throwing are written in Java.

2. Problem definition

Our aim is to design and build a simple car alarm control system. An example of
such system is taken from a car alarm manual [1]. Let’s describe it.

User controls the system with remote control unit with 3 buttons. First button turns
alarm on, second one turns it off. Third button is used for “silent mode”. Alarm system has
a hit sensor with 2 levels (easy or hard hit). Current state is represented by blinking LED.

When car gets an easy kick it gives a warning by blinking headlights and making
sound 3 times. If car gets a hard kick, or two easy kicks within 5 seconds, it begins
alarming, i.e. it blinks headlights and makes sound for 15 seconds.

When alarm is turned on it is confirmed by 1 blink and sound. When it is turned off 2
blinks and sounds are produced. Third button of remote control enables silent mode for 3
seconds. If user turns on or off alarm system during this time period, no confirmation is
produced.

LED represents current state of system. If alarm is turned on then LED is blinking,
otherwise it is off.

Figurel represents graphical user interface of the program.

£ AlarmFrame

1 - BEAHHMTE
2 - BRIKNHHWTE

3 - TUHMIA DEHMM

EOMMEHTIRMI;

CHIHANM2AUMA BEENKYEHA

Monyded cnafsii yoap

Mepexnd B PEXMM ONaACHOCTH.
CKMIOAHWE BOZMOHOTD NOBTORHOTD
napa

BpemAa oMOaHKMA BRlWn0. Mepexog e
HORMANEHEIR PEHHM

BrMiodeH THEMA pEHm. DU HHE
KO RS HOE

CHMIHANMEAUMA BERIKMNOYEHA

CHIHANMIAUMA BEENKYEHA

[b

1]

Ha#MHUTE NEEOH KHOMEOR MEIWK ANA cNaforo y0apa MNd NPEEoA gnAa cHNeHomn

Figure 1: Graphical user interface of the program.

In the top left of the window on Figure 1 you can see remote control unit. You can
click on its buttons. Also you can click on the car picture to simulate hits. Left-button click
simulates easy hit and right-button is used for hard hit.

In the bottom of the window you can see a comment about an object which is under
cursor of mouse at the moment. These objects are buttons and the car. Also in the car you
can see red LED we described above. Comments about actions performed and states
changed are printed into text area named “Kommentapun’.

3. Formal script

Life cycle of the program can be divided into several states, in which program
differently reacts to events. Let’s describe a script of program’s behaviour. States are
indicated by 1 numbers and transitions are indicated by pairs (i, 7j) where transition is
performed from state i to state j.

1. Alarm system is off

Initially alarm system is off.

(1, 2) Button “1” is pressed (event e11). Car lights blink one time (action o1 .z1), LED
begins to blink (04 .z1), all timers are stopped (02 .z4), and sound system is turned on
(03.26). If sounds were on then a short sound is produced (03. z1), otherwise all sounds
are stopped (03. z5).

2. Alarm system is on

(2, 3) An easy hit is received; the system gets into “Danger” state (e21). Lights blinks
two times (o1 .z3), a sound is performed (03 . z3). Countdown timer “2” is started for 5
seconds (02 .z2). If the car receives another hit during this period then system gets into
“Alarming” state.

(2, 4) A hard hit is received; the system gets into “Alarming” state (e22). Lights begin
to blink (o1 . z4), alarming sounds are made (03 . z4), and countdown timer “1” is started
for 15 seconds (02 . z1). System proceeds with alarming during this period.

3. Danger

(3, 4) An easy or hard hit is received (e21, e22). System gets into alarming state. Car
lights begin to blink (o1 .z4), alarming sounds are made (03.z4), and countdown timer
“1” is started for 15 seconds (02.z1). System is in alarming state until the countdown
finishes.

(3, 2) Countdown of timer number “2” has finished. System returns into regular state
(e32).

4. Alarming
(4, 2) Countdown of timer “1” has finished. System returns into regular state (e33).
Blinking of lights is stopped (o1 . z5) and alarming sounds are stopped too (03 . z5).

4. Implementation in automata

Let’s divide the system into objects. It is natural to make remote control and hit
sensor as event providers and car lights, sound system and LED as controlled objects.
Figure 2 represents connectivity diagram.

T3 «eventproviders

pl :..mevent BemoteControl

%@ zstatemachines
A1 ;. Confighd anager

%F E11: String = "e11" {but...
2F E12 String = "e12" {butt...
2F E13: Sting = "e13" {butt_.

T «eventproviders

p2 : ..o.alamevent HitSenzor

&F E21: Sting = "e21" {eas...
§F E22: Shing = "e22" thard...

T3 «eventproviders

p3 .. alarmevent StateTimer

F E31: String = "e31" {but...
3F E32 String = "e32" {dan...
2F E32: String = "e33" {alar...

T «eventproviders

pd ;.. fmo.alarm.event Window

3F E4: Shing = "ed" fwindo...

E] #controlledobjects

o4 ;. controlled LightDiode

@ z1: void {start blinking}
@ 22 void {stop blinking}

_od

ol

ol

E] #controlledobjects

2 1 ifrno. alarmn, controlled Lights

o2

@ 21: woid {blink 1 time calling ..

@
@
@

z2; void {blink 2 times calling ...
23; woid {blink 3 times calling ...
24 woid {start alarming ful ala...

25: void {stop blinking}

o2

E] «contralledabjects

: ruLifma, alarm. event, StateT imer

@

[7]

[7]

s 23 vaid {ztart button3 timer Fo..

z1: vaid {start alarm timer far ... i

o2

(ﬁ_@ gstatemachine:
A2 - Confighd ahager

z2: woid {start danger tirer for...

24: vaid {stap all timers}

A2

o3

o3

E] scontrolledobjects

: . ifmo.alarm. controlled. S ounds

fala]

@

#1: boolean fis enablzd} =

o3

-

21: void {alarm was turned..

22: void {alarm was turned..

23 void fear was easiy bith [
24: vaid {full alarm mode}

25: void {zwitch off sounds} Ll

E] #controlledobjects

: ._larm. controlled. Commentator

z1: void {alarmOn} =

z2: void {alarmOIf}

o5

-

23 void {starbw/ait}

24 void {stopi/ it} I
z5: void {easyHit}

z6: woid {hardHit} |

Figure 2: Connectivity diagram.

Also there is a timer as event provider (p3), a controlled object for starting timer (02)

and a controlled object for printing comments into comments field (05).

4.1. Automata

As you can see on the connectivity diagram, we have two automata. 4/ is main one
and A2 is nested into several states of 4/. We use nested automaton because it drastically
simplifies transition diagrams of the system.

Figure 3 represents A4/ transitions diagram.

- - &11[03.x1] /o321 o~ R

1. BelkmoueHa

11103 .x1] /0325 21 fob.z5
e11liod:] /o3 1. DfbuHoe cocTosrde | oY 2 CocTosHMe onacHocTH |
&3 /ohzh
el2[odx1] /o122, 0322, 022
t " o \ ehter /ol.23, 0222, 03.23, ofz?)
233 fol.25, 03.25, 05.210
 e12[lo3.x1] fol.22, 03.25, o8.22 [e 3 Toooors -, el .1’05.25]
include /82 P
enter fo2 24, 03,26, od.z2 . 27 I o6 27 /b oE
\enter fol.24, 0221, 0324, 0529)
ed fo2.z4 01.25, 03,25 . ed /o224, 01,25, 03.25 e A0
. '\!,r‘ enter /o1.21. 0d.21, 05.21. 02.24. 03.z6

Figure 3: A1 transition diagram.

The main states are “/. Buixnouena” and “2. Bxmouena”. The first one is an initial
one. Transitions between these states are activated when events of pressing buttons “1” and
“2” happen. If sound system is on then when transiting, sounds are made. Sound system is
turned on and off by 42 automaton which is included in both main states.

The state “2. Bxuouena” is compound. It contains a part of automaton which reacts
to hits and timers. When an easy hit has been made, automaton transits from “/. O6siunoe
cocmosinue” to “2. Cocmosinue onachocmu”. If no more hits are made during 5 seconds,
then automaton returns back. Otherwise it transits into “3. Tpegoea”, and alarms for 15
seconds.

Using container state provides us a way to simplify transition diagram. For example,
we can turn off alarm system from any state while we did not have to make “turning off”
transitions from states “/. Obwviunoe cocmosnue”, “2. Cocmosinue onacnocmu’ and
“3. Tpesoca™.

The final state is reached when application’s window is closed.

An A2 automaton turns on and off sound system. When sound system is on any
sound which is tried to be created is created and when it is off no sounds are made. Figure 4
represents transition diagram of automaton A2.

T 3B BH.MHIYEH ™ © 2 JEYK BEIK.NO4EH 7

. el3 /o223, 0h.23, 0327 N

edl /obz4, 0326

ell fod.zb

B el fod.zb
. » . -

Figure 4: A2 transition diagram.

Sounds are turned off by button “3”. At the same time a timer is started, and in 3
seconds automaton transits back. Also it transits back when button “1” or “2” are pressed.
So if user wants to turn alarm system on silently then user should press button “3” and
within 3 seconds press button “1”. Then no sounds would be made.

4.2. Event providers
In this section we will desribe event providers.

Event provider p1
This event provider generates events made by remote control. These events are:

ell — button “1” was pressed;
el2 — button “2” was pressed;
el3 — button “3” was pressed.

Event provider p2
This event provider generates events made by hit sensor.

€21 — easy hit was detected;
€22 — hard hit was detected.

Event provider p3

This event provider is called to start countdown timer for different periods of time.
When countdown is finished it generates one of three events (an event corresponding to
period of time). The timer is started by controlled object “02”.

€31 — countdown for timer “1” has finished (this timer is used for turning off sounds,
3 seconds);

€32 — countdown for timer “2” has finished (this timer is used in state
“2. Cocmosinue onacnocmu” of automaton 42, 5 seconds);

€33 — countdown for timer “3” has finished (this timer is used in state “3. Tpegoea”
of automaton 42, 15 seconds).

Event provider p4
This event provider generates event when application window is closed.

e4 — application window has been closed.

4.3. Controlled objects
Controlled object o1
This controlled object represents actions made by car lights.

z1 — blink one time;

z2 — blink two times;

z3 — blink three times;

74 — begin alarming blinking;
Z5 — stop any blinkings.

Controlled object 02

This controlled object starts timers from “p3”.

z1 — start timer “3” for 15 seconds;
z2 — start timer “2” for 5 seconds;
z3 — start timer “1” for 3 seconds;
z4 — stop all timers.

Controlled object 03
This controlled object represents actions of sound system.

x1 — boolean variable showing if sound are on;

z1 — generate a sound of turning on alarm system;
72 — generate a sound of turning off alarm system,;
z3 — generate a sound of danger (after easy hit);

z4 — begin alarming;

z5 — stop all sounds;

z6 — turn sound system on (allow making sounds);
z7 — turn sound system off (forbid making sounds).

Controlled object 04

This controlled object represents action of LED showing current condition of alarm
system.

z1 — begin blinking;
z2 — stop blinking.

Controlled object 05

This controlled object prints comments upon actions of alarm system into comments
field.

z1 — print comment when alarm system is turned on;

z2 — print comment when alarm system is turned off;

z3 — print comment when sounds are turned off;

z4 — print comment when countdown finishes and sounds are turned on again;
Z5 — print comment when an easy hit was detected;

z6 — print comment when a hard hit was detected;

z7 — print comment when A4/ transits into “2. Cocmosnue onacnocmu’”,

z8 — print comment when countdown for timer “2” has finished;

79 — print comment when alarming is turned on;

z10 — print comment when alarming is finished.

5. Implementation

The system is implemented using Unimod tool. Unimod is a plugin for IDE Eclipse
which provides an easy way to make automata based applications. Using Unimod you can
make connectivity diagram and automata transitions diagrams (Figures 2 — 4). Then you
only have to implement actions of event providers and controlled objects in Java.

There are two ways for making and running final working application in Unimod:
interpretating and compilating.

5.1. Interpretating

Connectivity diagram and automata are coded into XML file by Unimod. You can see
XML generated for our application in Appendix 2. When using interpretating way of
running application, every time Unimod parses this XML file and interpretates automata. So
to run the application you need all Unimod libraries, XML file generated and compiled
classes implementing event providers and controlled objects. When application is running
Unimod logs are printed into console.

You can see such logs for the following actions: run the application, press button “1”

and close the window.

18:18:29,890 INFO [Run]
18:18:29,890 INFO [Run]
18:18:29,890 INFO [Run]
18:18:29,890 INFO [Run]
18:18:29,890 INFO [Run]
18:18:30,953 INFO [Run]
18:18:30,968 INFO [Run]
18:18:30,984 INFO [Run]
18:18:30,984 DEBUG [Run]
18:18:31,000 INFO [Run]
18:18:31,000 INFO [Run]
[true]

18:18:31,000 DEBUG [Run]
18:18:31,000 INFO [Run]
BrutoueHa#ell#03.x1]
18:18:31,000 INFO [Run]
18:18:31,000 INFO [Run]
18:18:31,000 INFO [Run]
18:18:31,000 INFO [Run]
18:18:31,000 INFO [Run]
18:18:31,000 INFO [Run]
18:18:31,000 INFO [Run]
18:18:31,031 INFO [Run]
18:18:31,031 INFO [Run]
18:18:31,031 INFO [Run]
18:18:31,031 INFO [Run]
18:18:31,031 INFO [Run]
18:18:31,031 INFO [Run]
18:18:31,031 INFO [Run]
BkuioueHa /A2 : Top]
18:18:31,031 INFO [Run]
18:18:31,109 INFO [Run]

BxuioueHa/A2:1.

18:18:31,109 INFO [Run]
cocTOSHUE |

18:18:33,015 INFO [Run]
cocTosHUE]

18:18:33,015 DEBUG [Run]
18:18:33,015 INFO [Run]
18:18:33,015 INFO [Run]
18:18:33,015 INFO [Run]
18:18:33,015 INFO [Run]
18:18:33,015 INFO [Run]
18:18:33,015 INFO [Run]
18:18:33,015 INFO [Run]
18:18:33,140 INFO [Run]
18:18:33,140 INFO [Run]

In state [/Al:Top]
BrikJjioueHa# #true]
execution
execution
execution
execution
execution

Start event [ell] processing.
Transition to go found [sl#l.
Start on-enter action [02.z4]
Finish on-enter action [02.z4]
Start on-enter action [03.z6]
Finish on-enter action [03.2z6]
Start on-enter action [04.z2]
Finish on-enter action [04.z2] execution

Try transition [1. BukuioueHa#2. Bxiouenaf#tell#!o3.x1]
Start input action [03.x1] calculation
Finish input action [03.x1l] calculation. Its value is
Try transition [1. BuxuioueHa#2. Bxiouenaf#ell#o03.x1]
Transition to go found [1. BekyoueHa#2.

Start output action [03.z1] execution

Finish output action [03.z1] execution

Start on-enter action [0l.zl] execution

Finish on-enter action [o0l.zl] execution

Start on-enter action [04.zl1l] execution

Finish on-enter action [04.z1l] execution

Start on-enter action [05.z1l] execution

Finish on-enter action [05.z1] execution

Start on-enter action [02.z4] execution

Finish on-enter action [02.z4] execution

Start on-enter action [03.z6] execution

Finish on-enter action [03.z6] execution
Transition to go found [s2#1. OOGriuHOe cocTosHuMe##true]
Start event [ell] processing. In state [/Al:2.
Transition to go found [sl#l. 3Byk BryoueH##true]

3BYK BKJIOUEH |

Finish event [ell] processing. In state [/Al:2.
Finish event [ell] processing. In state [/Al:1. OOGwuHOe
Start event [ed4] processing. In state [/Al:1. OOGwuHOE

Try transition [2. BxiwoueHa#s3#ed#true]
Transition to go found [2. BxiwoueHa#s3#edfftrue]
Start output action [02.z4] execution

Finish output action [02.z4] execution

Start output action [0l.z5] execution

Finish output action [0l.z5] execution

Start output action [03.z5] execution

Finish output action [03.z5] execution

State machine came to final state [/Al:s3]
Finish event [e4] processing. In state [/Al:s3]

10

Interpretating way of making application is not too good because you have to use all
Unimod libraries to run the application, while for example a module parsing XML
description seems to be excess for current task (task of making an alarm system).

5.2. Compilating

Unimod can generate a Java class from XML description. This class contains all the
logic of the application and to use it you need less libraries than in the interpretating way.
For example you do not have to parse XML anymore.

You can find the generated class for our application in package ru.ifmo.alarm,
class name ModellEventProcessor. java. Let’s describe its structure.

/**

* This file was generated from model [Modell] on ([Sun Dec 11 22:26:56 MSK

20057 .

* Do not change content of

*/

package ru.ifmo.alarm;

import java.util.*;

import
import
import
import

public

com.evelopers
com.evelopers
com.evelopers
com.evelopers

.common.
.unimod.
.unimod.
.unimod.

this file.

exception.*;
core.stateworks.*;
runtime. *;
runtime.context.*;

class ModellEventProcessor extends AbstractEventProcessor {

In the beginning of the file used packages are stated. Then fields of class are stated
and among them you can find the following fields.

private AlEventProcessor Al;
private A2EventProcessor A2;

These fields are instances of classes representing automata A/ and A2. Let’s describe
these classes.

private class AlEventProcessor

// states

private
private
private
private
private
private
private
private
private

static
static
static
static
static
static
static
static
static

final
final
final
final
final
final
final
final
final

int
int
int
int
int
int
int
int
int

Top = 1;

s3 = 2;

1 BmxjoudeHa = 3;

2 BxJjwueHa = 4;

1 O6uuHOe cocroaHMe = 5;
2 CocTofAHME OHNaCHOCTM = 6;
3 Tpesora = 7;

s2 = 8;

sl = 9;

private int decodeState(String state) {
("Top".equals (state)) {

return Top;
} else
("s3".equals (state))

if

if

return

} else
("1. BmxjwoueHa".equals(state)) {

if

return

s3;

{

_ 1 BrukioueHa;

11

} else

}

Here states of 4/ automaton are described. State Top is a special state used by
Unimod as initial. State s1 is initial state of automaton; state s3 is an ending state. State s2
is an initial state in the part of automaton included into state «2. Bxarouena» (Figure 3).
Method decodeState decodes state’s name into its id.

Then events and controlled objects are described.

// events
private static final int e33 = 1;
private static final int e4 = 2
private static final int e22 =
private static final int ell =
private static final int e32 =
private static final int e21 =
private static final int el2 =

~e

o N

~e

~ o U > W e
~

~e

private int decodeEvent (String event) {

}

private ru.ifmo.alarm.controlled.Commentator o5;
private ru.ifmo.alarm.controlled.LightDiode o04;
private ru.ifmo.alarm.controlled.Sounds 03;
private ru.ifmo.alarm.controlled.Lights ol;

private ru.ifmo.alarm.controlled.StateTimerStarter o02;

The following method processes an event and transits into stable state.

private StateMachineConfig process (Event event,
StateMachineContext context, StateMachinePath path,
StateMachineConfig config) throws Exception {
config = lookForTransition (event, context, path, config);

config = transiteToStableState (context, path, confiqg);

// execute included state machines
executeSubmachines (event, context, path, config);

return config;

}
This method gets an event (event), current configuration of automata (config)
and some other parameters. Then it looks for a transition and transits into a stable state. For
example, initial state s1 is not stable and automata can not be in this state, it only can go

through it. After transiting automata lets included automata perform their transitions.
The following method executes included automata.

private void executeSubmachines (Event event,
StateMachineContext context, StateMachinePath path,
StateMachineConfig config) throws Exception {
int state = decodeState(config.getActiveState());

while (true) {

switch (state) {
case s3:

12

return;
case 1 BHEKJIKOYEHA:
// 1. BmkiwoueHa includes A2

fireBeforeSubmachineExecution (context, event, path,
"1. BmkJjouena', "A2");

ModellEventProcessor.this.process (event, context,
new StateMachinePath (path, "1. Bukimouena',"A2"));

fireAfterSubmachineExecution (context, event, path,
"1. BmkJjouena', "A2");

return;
case 2 BKJIOYEHA:
// 2. Bkiyiwuena includes A2

return;
case 1 OO6CBUYHOE COCTOSAHME:

state = 2 BxJjwouyeHa;
break;
case 2 CoCTOAHME ONAaCHOCTM:

state = 2 BxJjoueHa;
break;
case 3 Tpesora:

}

As you can see that when A/ is in state “1. Beikimrouena” or “2. Bximtouena”, events
are passed to included automata A2. And if current state is included into “2. Bxirouena”,
then the loop is repeated for the parent state and finally event is also passed to A2 on the
second loop.

The following method makes transition into stable state.

private StateMachineConfig transiteToStableState(
StateMachineContext context, StateMachinePath path,
StateMachineConfig config) throws Exception {

int s = decodeState(config.getActiveState());
Event event;

switch (s) {
case Top:

fireComeToState (context, path, "sl1");

// sl->1. BrkJjodeHa [true]/

event = Event.NO EVENT;

fireTransitionFound (context, path, "sl", event,
"s1#1. BrkioueHaf##true"):;

fireComeToState (context, path, "1. Bukijouena");

// 1. BukJjwoueHa []

return new StateMachineConfig("1l. BruxJjoueHa");

13

case 2 BKJOYEHa:
fireCompositeTargetState (context, path, "2. BxiwoueHa");

fireComeToState (context, path, "s2");

// s2->1. OBriuHOEe cocTosHMe [true]/

event = Event.NO EVENT;

fireTransitionFound (context, path, "s2", event,
"s2#1. O6ruHOe cocTogHue##true");

fireComeToState (context, path, "1l. OOrunHoe cocTosgHuMe");
// 1. OBrluHOEe cocTogHMe []

return new StateMachineConfig("1l. OBrluHOe cocTosgHMe") ;

}

return config;
}

If automaton is in Top state, then it has just started its work and makes transition
from s1 to “l. Buiknouena”. If automaton is in state “2. Bxkrrouena” then it transits into
first stable state among included ones (1. O6viunoe cocmosanue™).

The following method finds transitions. It describes the main logic of automaton.

private StateMachineConfig lookForTransition (Event event,
StateMachineContext context, StateMachinePath path,
StateMachineConfig config) throws Exception {
boolean

o3 x1 = false;

BitSet calculatedInputActions = new BitSet (1)

int s decodeState (config.getActiveState());
int e = decodeEvent (event.getName ());

while (true) {
switch (s) {
case 1 BHEKJIOYEHA:

switch (e) {
case ell:

// 1. BekJjwoueHa->2. BxJioueHa
// ell['o3.x1]/0l.21,03.25,04.21,05.21,02.24,03.26

fireTransitionCandidate (context, path, "1. Bukiouena',
event, "1. BukioueHa#2. BxioueHa#ell#!o3.x1");

if (!isInputActionCalculated(calculatedInputActions,
~03 x1)) {

fireBeforeInputActionExecution (context, path,
"1l. BmkiwueHa#2. BxiwouenHafell#!o3.x1",
"o3.x1");

03 x1 = 03.x1 (context);

fireAfterInputActionExecution (context, path,

"1. BokJioueHa#2. BxiaoueHa#ell#!o3.x1",
"03.x1", new Boolean (o3 x1));

14

if (!'o3 x1) {

fireTransitionFound (context, path, "1. Brkiwouena'",
event,
"1. BokJioueHa#2. BkioueHa#ell#!o3.x1");

fireBeforeOutputActionExecution (context, path,
"1l. BekyoueHa#2. Bkiwouena#ell#!o3.x1",
"ol.z1");

ol.zl (context);

fireAfterOutputActionExecution (context, path,
"1l. BekiiwueHa#2. BxiwouenHafell#!o3.x1",
"ol.z1l");

fireBeforeOutputActionExecution (context, path,
"1l. BekyoueHa#2. Bkiwouena#ell#!o3.x1",
"03'25");

03.z5 (context) ;
fireAfterOutputActionExecution (context, path,

"1l. BekyoueHa#2. Bkiwouena#ell#!o3.x1",
"o03.z5");

fireComeToState (context, path, "2. BxjwoueHa");
// 2. BxJjoueHa |[]
return new StateMachineConfig("2. Bxkijwouena");
}
// 1. BrkJjwoueHa->2. BxJioueHa

// ell[o3.x1]/0l.z1,03.21,04.21,05.21,02.24,03.26

fireTransitionCandidate (context, path, "1. Bukiouena",
event, "1. BukioueHa#2. BxiioueHa#ell#o3.x1");

if (o3 _x1) {

fireTransitionFound (context, path, "1. Brkiwouena'",
event, "1. BukioueHa#2. BxuioueHa#ell#o3.x1");

fireBeforeOutputActionExecution (context, path,
"1l. BekyoueHa#2. Bkiwouena#ell#o3.x1",
"Ol.Zl"),‘

ol.zl (context);

fireAfterOutputActionExecution (context, path,
"1l. BekyoueHa#2. Bkiwouena#ell#o3.x1",
"ol.z1");

fireComeToState (context, path, "2. BxjwoueHa");

// 2. BxJjoueHa |[]
return new StateMachineConfig("2. BxiwoueHa");

// transition not found
return config;
case ed:

// 1. BrukiwoueHa->s3 ed[truel/o02.z4,01.2z5,03.25

default:
// transition not found
return config;
case 2 BKJIOUEHa:

fireTransitionsOfSuperstate (context, path, "2. Bxiouena",
event) ;

switch (e) {
case e4:

// 2. BxiywoueHa->s3 e4d[truel]/o2.z4,01.z25,03.25

case el2:

// 2. BxuoueHa->1. BrKJIOUEHAa
// el2[o3.x1]/0l.22,03.22,04.22,05.22,02.24,03.26

if (o3 _x1) {
}

// 2. BxioueHa->1. BrKJIOUEeHAa
// el2['0o3.x1]/01.22,03.25,04.22,05.22,02.24,03.26

ié.(!o37xl) {
}

// transition not found
return config;

case 1 OOCBUHOE COCTOAHME:
case 2 CocCTOoAHME ONAaCHOCTM:
case 3 Tpesora:

default:
throw new EventProcessorException (
"Incorrect stable state ["
+ config.getActiveState ()
+ "] in state machine [Al]"):;

16

In this method in nested switch operators current state is found and then possible
transition is found. Then controlled object’s actions are performed and new automata
configuration is returned.

Structure of class A2EventProcessor is the same.

We finished describing of generated file.

To run application in compilating way we also have to create a small class which
will run the application (see file Main.java in source files). To sum up, in compilating
way of running application we need generated file, main class, compiled classes of event
providers and controlled objects and some unimod libraries.

We compared sizes of needed files in interpretating and compilating modes and for
interpretating mode it was 4 Mb while in compilating mode it was less that 1 Mb.

Conclusion

This project’s aim was to show that automata based development of controlling
systems is very simple and robust. The structure of system becomes viewable and easy to
modify. Also we wanted to show that Unimod tool [2] is a great tool for developing
automata based applications. It makes much work itself leaving to developer only task of
creating right automata.

Literature

1. Alarm System MONGOOSE manual.
2. Unimod. http://unimod.sourceforge.net

17

Appendix 1. Example of protocol

This protocol describes automata actions for the following sequence of user actions.
First, alarm system is turned on, then car is easily hit, and then it is hardly hit. After that
alarm system is silently turned off and application window is closed.

Obpaborka cobeiTtusa [ell HaxaTme kxHonkm 1] B cocTosHum [Al.start]
[Al.start] ==> [Al.l BHKJIOUEHA]
[Al.1 BmkJjoueHa] ==> [Al.2 BxkJjoueHa]
[01l.z11 MuTHYTHL OIMH pPas]
[03.23]1 BuHIOaTb KOPOTKMUM TYIOK]
[04.2z4]1 BKJIOUUTL MMITAHME CBETOOMOIA]
Obpaborka cobeiTua [ell] B coctosHuM [A2.start]
[A2.start] ==> [A2.1 OOGBHIUHOE COCTOSHUE]
Obpaborka cobeiTma [ell] BaBepmeHa B cocTosHumM [A2.1 OBBUHOE COCTOSHUE]
Obpaborka cobeitua [ell] BaBepmeHa B cocTosHuM [Al.2 BxJoOUeHa]

Obpaborka cobeiTusa [e2l Crnabeli yzmap] B cocTosgHuM [Al.2 BxJoueHa]
Obpaborka cobeiTua [e2l] B cocTosgHuM [A2.1 OOBUHOE COCTOSHUE]
[IpoBepka ycJyoBusa nepexoma [ol.x]l IlomaeTcsa CUI'HAJI TPEBOI'M]
[0l.x1] = false
[A2.1 OBHIUHOE COCTOdHUEe] ==
[01.213 MuruyTh TpM pasal]
[03.233 BelmaTb TPM KOPOTKUX TyIKa]
[02.225 BanycTuTb TaMMep Ha OSTb CEKYHI]
ObpaboTka cobeiTma [e2]l] BaBepmeHa B cocTosHuM [A2.2 COCTOSHME ONAaCHOCTHM]
ObpaboTka cobriTusa [e2l] BaBepumeHa B cocTosHuMM [Al.2 BxJIoueHa]

> [A2.2 CocTOogHME OIIaCHOCTM]

ObpaboTka cobeiTusa [e22 CuJbHBEM yIap] B cocTogHuM [Al.2. BxioueHa]
ObpaboTka cobeiTma [e22] B cocTogHuM [A2.2. COCTOSHME OIMNaCHOCTH]
[A2.2 CocTodgHmMe omnacHocTm] ==> [A2.]1 OBBUHOE COCTOSHME]
[0l.z14 BanycTuTb TPEBOXHEM cUTHaJ ¢ap Ha 10 cekyHO]
[03.234 3anycTuUTb TPEBOXHBI CUTHaJlI cupeHb Ha 10 cexkyHI]
ObpaboTka COOBTMA [e22] BaBeplleHa B cocTosHuMM [A2.1 OOBUHOE COCTOSHUE]
ObpaboTka coOEITMS [e22] BaBepmeHa B cocTosgHumM [Al.2. BxJoueHa]

Obpaborka cobeiTusa [e3]l 3BaBeplleHre TaliMepa] B cocTogHuM [Al.2. BxJioueHa]
Obpaborka cobeiTua [e31l] B cocTosgHuM [A2.1 OOBUHOE COCTOSHUE]
Obpaborka cobeiTusa [e31l] BaBeplieHa B cocTosHuMM [A2.1 OOBHUHOE COCTOSHUE]
Obpaborka cobeirua [e31] BaBepmeHa B cocTosHumM [Al.2. BxJoOUYeHa]

Obpaborka cobeTusa [el3 HaxaTme kHonku 3] B cocTosHumM [Al.2. BxJIIoueHa]
[Al.2. BkjouenHa] ==> [Al.4. OxuIaHVe TUXOTO BHEKJIOUECHNA]
[02.223 BanycTUTbk TalMep Ha TPU CEeKyHIH]
Obpaborka cobeiTma [el3] B cocTosHum [A2.start]
[A2.start] ==> [A2.1 O6GBUHOE COCTOSHME]
Obpaborka cobeiTua [el3] BaBeplieHa B cocTosHuM [A2.1 OOBHUHOE COCTOSHUE]
Obpaborka cobeiTusa [el3] BaBepumeHa B cocTosHuM [Al.4. OxmuOmaHMe TUXOI'O BHKJIOUEHUID]

ObpaboTka cobriTua [el2 HaxaTme kKHONKM 2] B cocTosHuM [Al.4. OxmmaHME TUXOTO
BBEIKJIIOUEHM S |
[Al.4. OxmMOaHMe TUMXOT'O BHKJIOUeHMS)] ==> [Al.l. BokJoueHa]
[0l.212 MurHYyTBH IBa pasal]
[03.235 BaBepumUThb 3BYK]
[04.242 BHKJOUMUTHE CBETOIMOL]
ObpaboTka cobeiTua [el2] =BaBepmeHa B cocTosHuy [Al.1l. BreKJOUeHA]

Obpaborka cobeiTusa [e31 3BaBepueHue TanMepa] B cocTogHuM [Al.l. BokJoueHa]
Obpaborka cobeiTusa [e31l] BaBepumeHa B cocTosHuMM [Al.l. BrekJIOUeHA]

ObpaboTka CcOOEITMS [€32 3aKpHETME OKHa MNPOoTpaMMel] B cocTosHuM [Al.l. BHKJIOUEeHA]
[Al.1. BukJioueHa] ==> [Al.final]

18

[03.235 BaBepumTh 3BYK]
ABTOMAT HOCTUT KOHEUHOTO COCTOSHMUA
O06paboTka coObiTus [e€32] 3aBeprieHa B coctosiauu [Al.final]

Appendix 2. Generated XML-description

<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE model PUBLIC "-//eVelopers

Corp.//DTD State machine model V1.0//EN"
"http://www.evelopers.com/dtd/unimod/statemachine.dtd">
<model name="Modell">

<controlledObject class="ru.ifmo.alarm.controlled.Lights" name="ol"/>

<controlledObject class="ru.ifmo.alarm.event.StateTimer" name="02"/>

<controlledObject class="ru.ifmo.alarm.controlled.Sounds" name="03"/>

<controlledObject class="ru.ifmo.alarm.controlled.LightDiode" name="04"/>

<controlledObject class="ru.ifmo.alarm.controlled.Commentator" name="o05"/>

<eventProvider class="ru.ifmo.alarm.event.RemoteControl" name="pl">
<association clientRole="pl" targetRef="Al"/>

</eventProvider>

<eventProvider class="ru.ifmo.alarm.event.HitSensor" name="p2">
<association clientRole="p2" targetRef="A1"/>

</eventProvider>

<eventProvider class="ru.ifmo.alarm.event.StateTimer" name="p3">
<association clientRole="p3" targetRef="A1"/>

</eventProvider>

<eventProvider class="ru.ifmo.alarm.event.Window" name="p4">
<association targetRef="Al"/>

</eventProvider>

<rootStateMachine>
<stateMachineRef name="Al"/>

</rootStateMachine>

<stateMachine name="Al">
<configStore

class="com.evelopers.unimod.runtime.config.DistinguishConfigManager"/>

<association clientRole="A1l" supplierRole="02" targetRef="o02"/>
<association clientRole="A1l" supplierRole="A2" targetRef="A2"/>
<association clientRole="Al" supplierRole="o04" targetRef="o04"/>
<association clientRole="Al" supplierRole="o0l" targetRef="ol"/>
<association clientRole="A1" supplierRole="03" targetRef="o03"/>
<association clientRole="A1l" supplierRole="05" targetRef="o05"/>
<state name="Top" type="NORMAL">
<state name="s3" type="FINAL"/>
<state name="1. BukJjwoueHa" type="NORMAL">
<stateMachineRef name="A2"/>
<outputAction ident="o02.z4"/>
<outputAction ident="03.z6"/>
<outputAction ident="o04.z2"/>
</state>
<state name="2. BxioueHa" type="NORMAL">
<state name="1. O6wuHoe cocTogume" type="NORMAL"/>
<state name="2. CocTosgHue onacHoctu" type="NORMAL">

<outputAction ident="o0l.z3"/>
<outputAction ident="o02.z2"/>
<outputAction ident="03.z3"/>
<outputAction ident="o05.z7"/>

</state>

<state name="3. TpeBora" type="NORMAL">
<outputAction ident="ol.z4"/>
<outputAction ident="o02.z1"/>
<outputAction ident="03.z4"/>
<outputAction ident="05.z9"/>

</state>

<state name="s2" type="INITIAL"/>

19

<stateMachineRef name="A2"/>
<outputAction ident="ol.zl1"/>
<outputAction ident="o4.z1"/>
<outputAction ident="o05.z1"/>
<outputAction ident="o02.z4"/>
<outputAction ident="o03.z6"/>
</state>
<state name="sl" type="INITIAL"/>
</state>
<transition event="ell" guard="!03.x1" sourceRef="1. BukjwoueHa" targetRef="2.
Bxutouena'">
<outputAction ident="o03.z5"/>
</transition>
<transition event="ell" guard="03.x1" sourceRef="1. BukijwoueHa" targetRef="2.
Bxuiouena ">
<outputAction ident="o03.z1"/>
</transition>
<transition event="e4" sourceRef="1. BmkiwoueHa" targetRef="s3">
<outputAction ident="o02.z4"/>
<outputAction ident="ol.z5"/>
<outputAction ident="o03.z5"/>
</transition>
<transition event="el2" guard="03.x1" sourceRef="2. BxjwoueHa" targetRef="1.
BuikjiioueHa " >
<outputAction ident="ol.z2"/>
<outputAction ident="03.z2"/>
<outputAction ident="o05.z2"/>
</transition>
<transition event="el2" guard="!03.x1" sourceRef="2. BxkiwoueHa" targetRef="1.
BruikjiioueHa " >
<outputAction ident="o0l.z2"/>
<outputAction ident="o03.z5"/>
<outputAction ident="o05.z2"/>
</transition>
<transition event="e4" sourceRef="2. BxjwoueHa" targetRef="s3">
<outputAction ident="o02.z4"/>
<outputAction ident="o0l.z5"/>
<outputAction ident="03.z5"/>
</transition>
<transition event="e21" sourceRef="1. O6wuHOe cocTogHue" targetRef="2.
CocTosHue onacHocTm">
<outputAction ident="o05.z5"/>
</transition>
<transition event="e22" sourceRef="1. O6wuHOe cocTogHMe" targetRef="3.
Tpesora">
<outputAction ident="o05.z6"/>
</transition>
<transition event="e32" sourceRef="2. CocrosHue onacHoctu" targetRef="1.
OBrluHOE cocTOgHMe">
<outputAction ident="05.z8"/>
</transition>
<transition event="e22" sourceRef="2. CocrosgHue omnacHocTu" targetRef="3.
Tpesora">
<outputAction ident="05.z6"/>
</transition>
<transition event="e2l1l" sourceRef="2. CocrosgHue omnacHocTu" targetRef="3.
Tpesora">
<outputAction ident="o05.z5"/>
</transition>
<transition event="e33" sourceRef="3. Tperora" targetRef="1. OOrUHOE
cocroaHue">
<outputAction ident="o0l.z5"/>
<outputAction ident="o03.z5"/>
<outputAction ident="05.z10"/>

20

</transition>
<transition sourceRef="s2" targetRef="1. O6riuHoe cocToguHue"/>
<transition sourceRef="sl" targetRef="1. BrukiwoueHa"/>
</stateMachine>
<stateMachine name="A2">
<configStore
class="com.evelopers.unimod.runtime.config.DistinguishConfigManager"/>
<association clientRole="A2" supplierRole="o02" targetRef="o02"/>
<association clientRole="A2" supplierRole="03" targetRef="o03"/>
<association clientRole="A2" supplierRole="05" targetRef="o05"/>
<state name="Top" type="NORMAL">
<state name="sl" type="INITIAL"/>
<state name="2. 3Byk BukJoueH" type="NORMAL"/>
<state name="1. 3Byk BkJOuUeH" type="NORMAL"/>
</state>
<transition sourceRef="sl" targetRef="1. 3Byk BkJOUYEeH"/>
<transition event="ell" sourceRef="2. 3Byk BHKJIOUeH" targetRef="1. 3Byk
BKJIIOUEeH" >
<outputAction ident="03.z6"/>
</transition>
<transition event="e31" sourceRef="2. 3Byk BHKJIOUeH" targetRef="1. 3Byk
BKJIIOUEeH" >
<outputAction ident="o05.z4"/>
<outputAction ident="03.z6"/>
</transition>
<transition event="el2" sourceRef="2. 3Byk BHKJIOUeH" targetRef="1. 3Byk
BKJIIOUEeH" >
<outputAction ident="o03.z6"/>
</transition>
<transition event="el3" sourceRef="1. 3Byk BkJwouUeH" targetRef="2. 3ByK
BEIKJIOUEH" >
<outputAction ident="o02.z3"/>
<outputAction ident="o05.z3"/>
<outputAction ident="03.z7"/>
</transition>
</stateMachine>
</model>

21

