МОДЕЛИРОВАНИЕ, СПЕЦИФИКАЦИЯ И ВЕРIFYКАЦИЯ “АВТОМАТНЫХ” ПРОГРАММ

© 2008 г. Е. В. Кузьмин, В. А. Соколов
Ярославский государственный университет им. П. Г. Демидова
150000 Ярославль, ул. Советская, 14
E-mail: egorkuz@uniyar.ac.ru, sokolov@uniyar.ac.ru
Поступила в редакцию

1. ВВЕДЕНИЕ

Статья посвящена описанию, спецификации и верификации моделей программ, построенных на основе автоматного подхода к программированию [1–5].

Технология автоматного программирования является современной отечественной разработкой, которая активно развивается и поддерживается рядом российских исследовательских групп. При автоматном подходе к проектированию и построению программ выделяются две части: системно независимая и системно зависимая. Первая часть реализует логику программы и задается системой взаимодействующих автоматов Мура-Мили. Проектирование каждого автомата состоит в создании по словесному описанию (декларации о намерениях) схемы связей, описывающей его интерфейс, и графа переходов, определяющего его поведение. По этим двум документам формально и изоморфно может быть построен модуль программы, соответствующий автомату (и затем реализована системно зависимая часть).

“Автоматное" программирование не зависит от платформы, операционной системы или языка программирования. Технология автоматного программирования является достаточно эффективной при построении программного обеспечения для "реактивных" систем и систем логического управления. Эта технология, не исключающая других методов построения программного обеспечения "без ошибок", существенно более конструктивно, так как позволяет начинать "борьбу с ошибками" еще на стадии алгоритмизации.

Интересным является тот факт, что к “автоматным” программам могут быть успешно применены (в совокупности) все существующие методы анализа корректности (верификации) сложных систем: имитационное моделирование, тестирование, дедуктивный анализ и метод проверки модели.

Имитационное моделирование и тестирование предусматривают проведение испытаний перед тем, как приступить к производству системы. Имитационному моделированию подвергается абстрактная схема или прототип, тестирование применяется непосредственно к самому продукту. Для программного обеспечения имитационное моделирование и тестирование включают в себя ввод определенных исходных данных и наблюдение за соответствующими выходными результатами. Эти методы позволяют находить ошибки (особенно эффективно на ранних стадиях), но они не могут гарантировать полное отсутствие ошибок в программе или оценить, сколько их еще осталось.

Несмотря на то, что дедуктивный анализ [6] является очень трудоемким методом с сильной привязкой к семантике языка программирования и не может быть полностью автоматизирован и лишен контроля эксперта, он, тем не менее, при желании вполне может быть применен для "автоматных" программ после их полного построения непосредственно для проверки корректности процедур (написанных на некото-
ром языке высокого уровня), соответствующих выходным воздействиям или входным запросам. Каждое выходное воздействие выполняет свою, обычно небольшую, отдельную задачу, корректность реализации которой может быть проверена. Таким образом, можно говорить о том, что автоматная структура программы благоприятствует применению метода дедуктивного анализа. Но этот метод оказывается бесполезным при проверке логики программы.

С другой стороны, для проверки логики “автоматных” программ удобным является метод проверки модели [7]. При этом методе для программы строится формальная конечная модель (то есть с конечным числом состояний), а проверяемые свойства задаются с помощью формул временной логики. Проверка выполнимости временных формул, задающих свойства модели, происходит автоматическим образом. Важно отметить, что построение модели программы для автоматической верификации является весьма сложной и трудоемкой задачей. При построении модели для программы, написанной традиционным способом, возникает проблема адекватности этой программной модели исходной программы. Модель может не учитывать ряд программных свойств или порождать вакуумные свойства. Автоматный подход к программированию с точки зрения моделирования и анализа программных систем имеет ряд преимуществ по сравнению с традиционным подходом. При автоматном программировании не возникает проблемы адекватности модели, поскольку набор взаимодействующих автоматов, описывающий логику программы, уже является адекватной моделью, по которой формальным образом строится программный модуль. И это является бесспорным плюсом автоматной технологии. Более того, модель имеет конечное число состояний, что является необходимым на практике условием для успешной автоматической верификации, поскольку метод проверки на модели представляет собой переборный метод.

Одним из наиболее популярных временных логик для спецификации и верификации свойств программных систем являются логика CTL (branching-time logic) или computation tree logic) и логика линейного времени LTL (linear-time logic). Для целей верификации автоматных программ логика LTL заслуживает особого внимания, поскольку любая формула в рамках этой логики по сути представляет собой автомат Бюхни, описываемый (принимающий) бесконечные допустимые пути структуры Крипке, которая, в свою очередь, задает поведение (все возможные исполнения) проверяемой на корректность “автоматной” модели. Это позволяет при спецификации и верификации “автоматных” программ оперировать в основном таким простым понятием, как “автомат”.

Таким образом, перечисленное выше позволяет говорить о возможности эффективного применения для верификации “автоматных” программ (для анализа корректности логики “автоматных” программ) метода проверки модели. Существует ряд программных средств верификации абстрактных моделей, построенных в рамках некоторых формализмов (сети Петри, взаимодействующие асинхронные процессы, автоматы с реальным временем, гибридные автомат и т.д.), базирующихся на общих подходах и технологиях. Среди этих средств верификации классическим методом проверки модели можно выделить, например, CPNTools [8], SPIN [9], SMV [10] и CAFP [11], использующие в качестве языков спецификации формальных моделей, соответственно, расширенные сети Петри высокого уровня, язык Promela, синхронные процессы и язык LOTOS. С одной стороны, можно считать, что целью создания такого рода программных продуктов является, главным образом, отработка тех или иных теоретических и прикладных методов верификации моделей, но в то же время многие из них имеют ориентированный на конкретную область применение языков спецификации – например, на моделирование и анализ коммуникационных протоколов или разработку синхронных аппаратных логических схем. Однако, программных средств верификации, направленных в основном на поддержку технологии автоматного программирования, не существует, что на первый взгляд, и скорее предполагает активное использование уже имеющихся (проверенных временем) разработок ведущих лабораторий мира, которые обычно долгое время сопровождаются тематическими конференциями (зачастую полностью
восвященными этим продуктам). Существующие средства-верификаторы в основном первоначально предполагают выделение модели из реальной программы, а затем задание этой модели в рамках некоторого абстрактного формализма. Далее специфицируются и проверяются свойства построенной формальной модели, поведение которой, вообще говоря, может значительно отличаться от оригинальной программы, в том числе и из-за особенностей используемого формализма. Цель исследований по теме данной статьи — создание программного комплекса, рассчитанного на проектирование программных продуктов с помощью автоматных моделей, из которых после соответствующего анализа на корректность происходит дальнейшее построение и порождение программы. Таким образом, в этом случае будет анализироваться адекватная автоматная модель, отвечающая за функциональную логику программы. По автоматной модели и проверяются (относительно спецификации) функциональные требования, предъявляемые к программному обеспечению. Если после проверки автоматной модели в программе обнаружатся ошибки, то они, скорее всего, будут относиться к ошибкам деталей реализации и никак не будут касаться функциональной логики программы, что не потребует при исправлении этих ошибок глобальной перестройки (перепроектирования) всей программы.

В нашей статье рассматривается одна из возможных моделей построения автоматных программ — иерархическая модель. Для спецификации и верификации автоматных программ, построенных по этой модели, предлагаются технологии применения метода проверки модели (метода model checking). Исследуется возможность спецификации (с точки зрения простоты и адекватности восприятия) структурных и семантических свойств автоматных программ с помощью временной логики. При этом акцент ставится в большей степени на семантике автоматных программ, нежели на структуру, в отличие от большого количества работ, где взаимодействующие автоматы (с различными расширениями) рассматриваются как некий абстрактный формализм, для которого, наряду с разрешимостью классических для теоретической информатики свойств, оценивается лишь трудоемкость метода проверки модели, связанная только со структурой автоматов и схемой их взаимодействия. Более того, важным моментом в настоящей статье является выбор обозреваемого поведения модели автоматных программ, так как именно от него зависит как классы (виды) проверяемых свойств, так и сама возможность адекватной спецификации. В целом, статья ориентирована на поддержку автоматного подхода к программированию “реактивных” систем и сложных систем логического управления.

2. ИЕРАРХИЧЕСКАЯ МОДЕЛЬ АВТОМАТНЫХ ПРОГРАММ ДЛЯ “РЕАКТИВНЫХ” СИСТЕМ И СИСТЕМ ЛОГИЧЕСКОГО УПРАВЛЕНИЯ

Рассмотрим иерархическую систему взаимодействующих детерминированных конечных автоматов

\[
A = (A_0, A_1, \ldots, A_{k_1}, \ldots, A_n),
\]

где \(n \) и \(k_i (1 \leq i \leq n) \) — натуральные числа. Автомат \(A_0 \) назовем основным, остальные автоматы — вложенными. Между всеми автоматами установлена иерархия по вложенности. Автомат \(A_{ij} \) может передавать управление стоящему ниже по иерархии автомату \(A_{i+1,j} \). В таком случае автомат \(A_{ij} \) называется главным, а \(A_{i+1,j} \) — вложенным. У каждого вложенного автомата существует только один главный автомат, в который он вложен.

Система автоматов \(A \) рассматривается как реактивная система управления некоторым объектом. Система \(A \) получает от объекта требования, характеризующие, например, изменение его состояния, и также сама запрашивает текущие параметры объекта, что также считается входным воздействием на систему \(A \). В то же время система управления, реагируя на поступающую информацию, сама оказывает воздействие на объект управления.

Кроме описанного взаимодействия с “внешней средой”, происходит аналогичное взаимодействие автоматов между собой внутри системы посредством передачи (с стороны главно-
Рис. 1. Модель взаимодействия системы A с объектом управления.

Основной автомат A0

Вложенные автоматы A11, ..., A1k1

Вложенные автоматы A21, ..., A2k2

Вложенные автоматы An1, ..., Ank

Объект управления

gо автомата) управления с некоторым событием вложенным автоматам и отслеживания их текущих состояний.

В рассматриваемой модели только основной автомат A0 принимает события от объекта управления и реагирует на них; вложенные же автоматы обращаются к объекту управления только с запросами состояния его параметров (причем вложенный автомат может сделать запрос лишь в том случае, если и главный автомат передал ему управление).

Описываемая модель взаимодействия системы управления A с объектом управления показана на рис. 1. На рисунке события обозначаются символом e, запросы к объекту управления (входные переменные) – x, текущее состояние некоторого автомата Aij хранится в переменной yij, а выходные воздействия обозначаются z.

Поведение любого автомата A системы A аналогично поведению всей системы в том смысле, что автомат A реагирует на произошедшие события и, в зависимости от своего состояния, состояния вложенных автоматов и состояния объекта управления (т. е. значений входных переменных), оказывает воздействие на объект управления или же на вложенные автоматы, передавая им управление с некоторым событием.

Обозначим E_A = {e_1, ..., e_k} множество всех имен событий, на которые реагирует автомат A. Определим на множестве E_A переменную события e, в которую будет помещаться имя произошедшего события для автомата A. Текущее значение переменной e будем обозначать E_A(e).

Введем множество X_A = {x_1, ..., x_n} запросов автомата A к объекту управления. Каждый запрос рассматривается как некоторый предикат, истинность которого зависит от состояния параметров объекта управления.

Также введем Z_A = {z_1, ..., z_n} множество выходных воздействий автомата A. Воздействие z_i подразделяется на две группы. Первая группа – это воздействия непосредственно на объект управления. Воздействия второго типа – передача управления вложенному автомату с некоторым событием (генерация события для вложенного автомата). В этом случае выходное воздействие z_i имеет вид A'(e'_j), где A' – вложенный автомат, а e'_j – статифицированное событие A событие для вложенного автомата A', которому передается управление для обработки этого события.

Тогда автомат A управляющей системы автоматов A представляет собой набор (Σ, Q, q_0, E, X, Z, δ), где
• \(Q = \{ q_0, q_1, \ldots, q_n \} \) — конечное множество состояний автомата \(A \);
• \(q_0 \) — начальное состояние;
• \(\Sigma = \{ a_1, a_2, \ldots, a_k \} \) — конечный алфавит меток дуг переходов;
• \(\delta : Q \times \Sigma \rightarrow Q \) — функция переходов из одного состояния в другое.

Каждый переход срабатывает по определенному правилу. Прежде чем описывать правила переходов, введем еще ряд обозначений.

Для метки перехода \(a \in \Sigma \) обозначим \(E(a) \) событие, на которое автомат \(A \) реагирует при срабатывании перехода с меткой \(a \).

Будем обозначать \(X(a) \) множество запросов к объекту управления, истинность которых необходима для срабатывания перехода с меткой \(a \).

Пусть \(Z^* \) — множество конечных последовательностей выходных воздействий, тогда для \(a \in \Sigma \) обозначим \(Z^*(a) \in Z^* \) последовательность выходных воздействий, которая проходит при срабатывании перехода с меткой \(a \).

Также для произвольного состояния \(q \) автомата \(A \) введем обозначение \(Z^*(q) \in Z^* \) для последовательности выходных воздействий, которая должна выполняться при попадании (переходе) автомата в состояние \(q \).

И, наконец, пусть \(Y(a) \) — предикат, зависящий от состояний вложенных автоматов, истинность которого необходима для срабатывания перехода с меткой \(a \).

Правило перехода из состояния \(q \) в состояние \(q' \) по метке \(a \) имеет вид:

\[
q, a: \text{if } e = E(a) \text{ and } (\forall x \in X(a) : x = \text{true}) \text{ and } Y(a) = \text{true} \text{ then } Z^*(a); Z^*(q'); \text{ goto } q'.
\]

Из изложенного следует, что правило перехода в новое состояние в общем случае можно описать следующим образом. После получения события автомат, в зависимости от своего текущего состояния, реагирует (или никак не реагирует) на событие, определяет параметры объекта управления (их имена переменные), учитывает состояние вложенных автоматов, затем проявляет последовательность выходных воздействий, включая те выходные воздействия, которые необходимо совершить при попадании в новое состояние, и только после этого переходит в новое состояние (которое в случае нетли может быть тем же самым).

Выходное воздействие первого типа, направленное на объект управления, считается сразу же осуществленным после его применения. Выходное воздействие второго типа, представляющее собой передачу управления с событием вложенному автомату, считается выполненным только лишь после реакции вложенного автомата на это событие, которая заключается в том, что либо автомат переходит в новое состояние (срабатывает один из переходов вложенного автомата), либо событие игнорируется вложенным автоматом (или один из переходов сработать не может). До тех пор пока выходное воздействие второго типа не выполнится, работа (процесс перехода в новое состояние) главного автомата приостанавливается.

Важно отметить, что правила переходов, а точнее условия срабатывания переходов, должны удовлетворять условию детерминированности (или ортогональности), т. е. при поступлении некоторого события может быть готов к срабатыванию не более чем один переход. Если ни один переход в текущем состоянии при поступлении некоторого события сработать не может (условия переходов не выполняются), то событие игнорируется (переменная событий \(e \) для этого автомата обнуляется). Далее рассмотрим виртуальную модель автоматных программ на примере системы управления кофеваркой [12].

3. АВТОМАТНАЯ МОДЕЛЬ СИСТЕМЫ УПРАВЛЕНИЯ КОФЕВАРКОЙ

Рассмотрим систему независимую часть автоматной программы, которая отвечает за логику управления кофеваркой.

Модель кофеварки представлена на рис. 2. Кофеварка позволяет выбрать количество порций кофе для варки с помощью кнопок "+" (увеличить количество порций на единицу) и "-" (уменьшить количество порций на единицу).

В кофеварке предусмотрена возможность индикации отсутствия воды и основных неисправностей (например, не работает нагреватель или неисправлен один из клапанов). Количество пор-

Рис. 3. Диаграмма взаимодействия автоматов управления.

ций изменяется от 1 до 5. При попытке увеличить максимальное значение порций нажатием кнопки “+” ничего не происходит (аналогично для значения порций 1 нажатие “–” игнорируется). Отдельно выделяется объект “бойлер”, который состоит из клапанов 1 и 2, нагревателя и емкости для кипячения. Дисплей кофеварки разбит на части, использующиеся для индикации состояний клапанов, нагревателя и собственно кофеварки.

В кофеварке выделяются четко выраженные подобъекты управления (бойлер, клапаны и нагреватель), которые имеют свои собственные подсистемы управления. Каждая подсистема управления представлена в виде конечных автоматов Мура-Мили, выстроенных в иерархию. В результате логическая часть системы управления кофеваркой имеет вид иерархической системы взаимодействующих автоматов. Автомат, находящийся выше по иерархии, управляет вложенными в него автоматами путем генерации событий и передачи автоматам управления с этими событиями. Кроме того, автомат следует за состоянием вложенных автоматов, так как от них могут зависеть его собственные переходы по состояниям.

Диаграмма взаимодействия автоматов представлена на рис. 3. Автомат A0, называемый основным, получает от панели управления (панели кнопок) события e0, на которые он реагирует. Специальное событие e0, генерируемое постоянно системным таймером, используется для проверки условий переходов (условий на дугах автоматов), которые не предусматривают реакцию ни на одно из событий e0. Автомат A0 взаимодействует с автоматом A1, передавая ему управление с событиями e1 и e0. Автомат
Среда управления

Автомат управления кофеваркой

0. Готов к работе

1. Выбор количества порций

2. Варит кофе

3. Кофе готов

4. Прервано пользователем

5. Неисправность

Рис. 4. Схема связей и граф переходов автомата управления кофеваркой A0.

A0 отслеживает состояние A1 через переменную y1. При таком взаимодействии автомат A0 считается главным, а A1 – вложенным. Аналогичным образом происходит взаимодействие автомата A1 с вложенными автоматами A2, A31 и A32.

Автомат A0 реализует логику управления кофеваркой. Он реагирует на нажатие кнопок на панели управления (при задании количества порций, запуске процесса варки, отмене варки, сбросе ошибки и т. д.), передавая управление на время варки кофе взаимодействующему с ним автомату управления бойлером A1. Информация о текущих состояниях кофеварки отображается на дисплее.

Схема связей и граф переходов автомата управления кофеваркой A0 представлены на рис. 4.

Автомат A1 реализует логику управления бойлером, который непосредственно отвечает за процесс варки кофе.

В процессе варки контролируются работоспособность клапанов, нагревателя, а также проверяется наличие воды. В случае неисправности одного из клапанов или нагревателя варка прерывается и выдается сообщение о неисправности на дисплее соответствующего предупреждение. В случае отсутствия воды в емкости варки приостанавливается, пока вода не будет долита либо пользователь не прервет варку.
Рис. 5. Схема связей и граф переходов автомата управления бойлером A1.

Если не произошло поломок, процесс варки повторяется до тех пор, пока не будет сварено установленное количество порций кофе. Один цикл варки соответствует одной порции.
Автомат A1 взаимодействует с автоматом управления A0, передавая последнему текущее состояние и получая от него события. Автомат A1 также взаимодействует с автоматами A31, A32 (отвечающими за управление клапанами 1 и 2) и A2 (управляющим нагревателем), получая их состояния и посылая им события.

Схема связей и граф переходов автомата управления бойлером A1 представлены на рис. 5.

Автомат A2 реализует логику управления нагревательным элементом. Он поддерживает температуру нагревателя в заранее заданном диапазоне (для температуры устанавливаются допустимые минимум и максимум). Предусмотрена возможность установления неисправности вида “нагреватель не работает”.

После включения нагревателя происходит его прогрев до нижней границы рабочего диапазона. Если он не прогреется до необходимой температуры за заданное время, то нагреватель считается неисправным. Нагреватель включается при достижении температурой нижней границы рабочего интервала и выключается при достижении верхней границы.

Автомат A2 взаимодействует только лишь с автоматом управления бойлером A1 и не имеет вложенных автоматов.

Автоматы A31 и A32 полностью идентичны. Под автоматом A3 понимается как автомат A31, так и автомат A32. Автомат A3 служит для реализации логики управления работой клапана в режиме “открыто-насос-закрыть”. Автомат имеет четыре состояния и, не имея вложенных автоматов, взаимодействует только с автоматом управления бойлером A1, передавая последнему свое состояние и получая от него события. Автомат A3 начинает цикл своей работы по событию $e31$ (“открыть клапан”). Сначала клапан открывается, затем делается пауза для набора воды или выпуска пара, а после этого клапан закрывается. В случае если за определенное время клапан не откроется (либо не закроется), он считается неисправным.

Схемы связей и графы переходов автомата управления нагревателем A2 и автомата управления клапаном A3 представлены на рис. 6.

4. СПЕЦИФИКАЦИЯ И ВЕРIFIERИКАЦИЯ “АВТОМАТНЫХ” МОДЕЛЕЙ

При построении автоматной программы в рамках иерархической модели логика программы сосредоточивается в основном автомате, который распределяет управление вложенными автоматами в зависимости от поведения управляемого объекта. Каждый автомат программы взаимодействует только со своими главным и вложенными автоматами, что облегчает понимание программы. Во время проектирования или верификации такой автоматной программы можно рассмотрение части или некоторого поддерева системы автоматов в зависимости от определенной функции, которая реализуется выделенной подсистемой автоматов. Любая подсистема взаимодействующих автоматов в иерархической модели представляет собой дерево автоматов, которое можно рассматривать как отдельную систему (как отдельную автоматную программу). Это позволяет менять масштаб всей системы, отнимаются не интересующие проектировщика в данный момент времени автоматы к внешней среде, т. е. к внешнему объекту управления, и сосредотачиваться внимание только на анализируемой подсистеме. И, наконец, при верификации спецификации и анализ свойств автоматной программы проводится по сути по новой и несложной по структуре верифицируемой модели.

Автоматная программная модель является идеальным объектом для автоматической верификации методом проверки модели (model checking) [7], смысл которого состоит в следующем.

Поведение программной модели описывается конечной системой переходов, которая называется структурой Крипке. Конечность системы переходов означает, что система имеет конечное число состояний. При некотором упрощении конечную систему переходов можно представить как конечный ориентированный граф с явно выделенной начальной вершиной.

Далее в рамках структуры Крипке с использованием языка темпоральной логики специфицируются свойства программной модели, истинность которых для этой модели затем и проверяется. Используя такие простые объекты, как конечная система переходов и формулы темпоральной логики, возможно автоматическим спо-
Рис. 6. Схема связей и график переходов автоматов нагревателя A2 и клапана A3.

собом выполнить проверку свойств модели, заданных в виде формул.

Темпоральные логики играют важную роль в формальной верификации. Они используют-
сия для выражения свойств процессов. Также свойствами, например, являются следующие: "процесс никогда не достигает тупикового состояния" или "в любом бесконечном исполнении процесса действие \(b \) происходит бесконечно часто".

Задача проверки модели — это задача, состоящая в том, чтобы определить выполнимость для процесса, который задается системой переходов (структурой Крипке), свойства, выраженного формулой временной логики. Сформулируем задачу проверки модели.

Задача проверки модели

Дано: конечная система переходов (структура Крипке), начальное состояние \(s_0 \) этой системы и формула \(\varphi \) временной логики.

Вопрос: удовлетворяет ли состояние \(s_0 \) системы переходов формулу временной логики \(\varphi \)?

5. СТРУКТУРА КРИПКЕ

АВТОМАТНОЙ МОДЕЛИ

Структурой Крипке над множеством элементарных высказываний \(P \) называется система переходов \(S = (S, s_0, \rightarrow, L) \), где

- \(S \) — конечное множество состояний;
- \(s_0 \in S \) — начальное состояние;
- \(\rightarrow \subseteq S \times S \) — топологическое отношение переходов (точность означает, что для каждого состояния \(s \in S \) должно существовать состояние \(s' \in S \), для которого имеет место \((s, s') \in \rightarrow, \) т. е. \(s \rightarrow s' \));
- \(L : S \rightarrow 2^P \) — функция, помечающая каждое состояние множеством элементарных высказываний, истинных в этом состоянии.

Путь в структуре Крипке из состояния \(s_0 \) — это бесконечная последовательность состояний \(\pi = s_0 s_1 s_2 \ldots \) такая, что для всех \(i \geq 0 \) выполняется \(s_i \rightarrow s_{i+1} \).

Для некоторого пути \(\pi = s_0 s_1 s_2 s_3 \ldots \) обозначим \(\pi^i \) суффикс \(\pi \), который получается удалением из \(\pi \) первых \(i \) состояний — например, \(\pi^0 = s_0 \) или формулу Thursday состояний пути, \(\pi(0) = s_0, \pi(1) = s_1, \ldots \).

Рассмотрим для произвольной верхний архимедову программу, построенную на принципах автоматного программирования, ее автоматную модель \(A \), представляющую собой набор взаимодействующих автоматов \((A_0, A_1, \ldots, A_n) \).

Для этой автоматной модели \(A \) построим структуру Крипке, которая, с одной стороны, описывает все возможные состояния системы \(A \), а с другой стороны, задает семантику элементарных высказываний, истинных в этих состояниях.

Рассмотрим произвольный автомат \(A_k \) из системы автоматов \(A \). Выделим в автомате \(A_k \), помимо основных состояний, множество его промежуточных состояний, в которых автомат пребывает во время перехода из одного основного состояния в другое. Промежуточное состояние перехода автомата будем фиксировать каждый раз, когда автомат совершит одно из элементарных действий, т. е. автомат отреагирует на некоторое событие \(\epsilon_k \), обратится к объекту управления с запросом значений входных переменных \(\mathcal{P}(\mathcal{I}_k) \) или произведет некоторое выходное воздействие на объект управления или вложенный автомат \(z_k \).

Продемонстрируем идею выделения промежуточных состояний для перехода произвольного автомата \(A_k \) (рис. 7).

На рис. 7 промежуточный переход с пометкой \(nxy \) вводится для того, чтобы иметь возможность непосредственно отслеживать момент перехода вложенного автомата в следующее основное...
ное состояние с одновременной передачей управления главному автомату (в случае промежуточного перехода \(n x t y \) основного автомата, активным остается по-прежнему основной автомат). Внутренний переход с пометкой \(e 1 \) может произойти при наступлении события \(e 1 \), если выполняется условие \(y i = j \). Все остальные переходы не имеют условий и являются активными при попадании автомата в соответствующие промежуточные состояния. В указанной на рисунке последовательности переходов по внутренним состояниям обязательно сначала идет переход, соответствующий входному событию, далее переходы с пометками входных запросов, а затем переходы, помеченные выходными воздействиями. Таким образом, можно разделить последовательность внутренних состояний на три части, которые идут друг за другом строго в соответствии с указанным порядком. В каждой части метки внутренних переходов располагаются в порядке следования соответствующих элементов в выражении на дуге основного (входного) перехода.

Далее для произвольного автомата под переходом в следующее состояние будем предполагать внутренний переход в основное или промежуточное состояние.

Каждому автомату \(A_k \) из набора \(A \) сопоставим переменные \(y_k, x m_k, z d_k, e v_k \) и \(s l_k \) (\(0 \leq k \leq n \)). А для всей системы автоматов \(A \) в целом введем переменные \(e v, x m, z d, act, auto \) и \(end \).

Каждая из введенных переменных имеет следующий смысл.

1. Переменная \(y_k \) хранит последнее основное состояние автомата \(A_k \).

2. Переменная \(x m_k \) содержит последний выполненный запрос параметров объекта управления. Значениями \(x m_k \) являются имена входных воздействий в прямой или инверсной форме, т. е. \(x m_k \) может содержать либо \(x \), либо \(! x \), где \(x \in X_{A_k} \).

3. Переменная \(z d_k \) используется для хранения имени последнего выполненного выходного воздействия \(z \in Z_{A_k} \).

4. Переменная \(e v_k \) содержит имя последнего обработанного автоматом \(A_k \) входного собы-

5. Переменная \(s l_k \) хранит текущее состояние автомата \(A_k \). Значениями \(s l_k \) являются как основные, так и промежуточные состояния автомата.

6. Переменная \(auto \) содержит номер активного в данный момент времени автомата из набора \(A \), т. е. номер последнего автомата, получившего управление.

7. Переменная \(end \) хранит имя поступившего на обработку входного события для вложенного автомата, которому было передано управление. Значениями переменной являются имена входных событий всех вложенных автоматов из \(A \) и пустое значение 0. Переменная \(end \) принимает значение 0 тогда, когда входное событие было обработано или же пропущено автоматом (если в текущем состоянии автомат не может отреагировать на данное входное событие). В переменную \(end \) записывается имя некоторого события, если произошла передача управления с этим событием от главного автомата к вложенному.

8. Переменная \(act \) используется для хранения имени последнего элементарного действия, произошедшего в системе автоматов \(A \). Значениями переменной \(act \) могут быть имена входных событий \(a \in E_{A_k} \), входных запросов \(x \) и \(! x \), где \(x \in X_{A_k} \), выходных воздействий \(z \in Z_{A_k} \), а также имена специальных действий 0, \(n x t y \) и \(end \). После перехода активного автомата в новое промежуточное или основное состояние переменная \(act \) содержит метку этого промежуточного перехода. Переменная \(act \) принимает значение 0, когда вложенный автомат, находящийся в основном состоянии, не может обработать входное событие и игнорирует его. При этом автомат совершает пустое действие 0 и переходит в то же самое основное состояние, в котором находился, т. е. автомат остается в прежнем состоянии. Если \(act = n x t y \), то это означает, что некоторый вложенный автомат перешел в свое следующее основное состояние с одновременной передачей
управления главному автомату. Значение end используется для идентификации тупи-
кового состояния всей системы автоматов. Для того чтобы выполнить условие толль-
ности отношения переводов для структуры Крипке, устанавливается, что из тупиково-
го состояния (структуры Крипке) есть всего лишь один перевод в то же состояние, и при
этом совершается действие act = end.

9. Переменные ev, xm и zd используются для хранения имен последних выполненных
входных событий, входных запросов и выходных воздействий соответственно в рам-
ках всей системы А в целом.

Тогда состоянием s структуры Крипке S_A автомата модели A является вектор значений переменных

$$(act, auto, evnt, ev, xm, zd, ev_0, xm_0, \ldots, ev, xm, zd, ev_k, sl_k).$$

В этом случае состояние s можно рассматривать как отображение, которое задается над множе-
ством переменных и используется для опреде-
ления значения этих переменных в состоянии s. Например, запись $s(act)$ представляет собой
значение переменной act в состоянии s. В на-
чальном состоянии s_0 структуры Крипке S все
переменные y_i и sl_i содержат начальные состоя-
ния соответствующих автоматов A_i, перемен-
ная auto = 0, т. е. активным является основ-
ной автомат A_0, evnt не содержит событий и
установлена в 0, а всем остальным переменным
присваивается начальное значение int, которое
вводится специально для инициализации и да-
лее не используется.

Отношение переводов структуры Крипке S_A
автоматной модели A определяется в соответ-
ствии с поведением системы автоматов A.

1. Переход системы A соответствует только
одному из внутренних переводов некоторо-
го автомата из A.

2. При выполнении условий перехода некото-
рый автомат A_k может совершить этот пере-
ход, если в данном состоянии он является
активным (ему передано управление), что
отражает значение переменной auto = k.

3. Для активного вложенного автомата A_k пере-
ход с пометкой e, где e — некоторое вход-
ное событие, может произойти, если пере-
менная evnt = e и выполняется условие
для этого перехода — истинен предикат над
значениями переменных состояний y_i, со-
порставленный переходу. После срабатыван-
ния этого перехода изменяются значения
переменных act, evnt, ev, ev_k и sl_k. Перемен-
ная evnt принимает нулевое значение 0,
означающее, что событие было обработано,
а переменным act, ev и ev_k присваивается
имя события e. В sl_k помещается внутрен-
нее состояние, в которое произошел пере-
ход. Если активным автоматом является
основной автомат A_0, то переход с помет-
кой e происходит при выполнении условия
перехода, a evnt = 0.

4. Если вложенный автомат A_k получил от
главного автомата управление с событием e,
которое находится в переменной evnt, но
не может на него отреагировать — не суще-
ствует из данного основного состояния пере-
хода с пометкой e или для него не выпол-
нены условия перехода, то происходит пу-
стое действие act := 0, переменная evnt об-
нуляется и управление передается главно-
му автомату — в переменную auto заносится
номер главного автомата, а все остальные
переменные не изменяют своих значений.

5. Если произошел переход с пометкой x, где
x — некоторый входной запрос в прямой или
инверсной форме (x может иметь вид !x'),
то происходят изменения следующих пере-
менных: act := x, $xm := x$, $xm_k := x$, a sl_k
получает значение внутреннего состояния,
в которое был сделан переход.

6. При срабатывании перехода автомата A_k с
пометкой z, где z — выходное воздействие,
происходят присваивания $act := z$, $zd := z$,
$zd_k := z$, и sl_k получает значение внутрен-
него состояния, в которое был сделан пере-
ход. Более того, если z принадлежит к
выходным воздействиям второго типа, т. е.
$z = A_{k'}(e)$, где $A_{k'}$ — вложенный автомат, а e — передаваемое вместе с управлением
входное событие для автомата $A_{k'}$, то evnt

Программирование №1 2008
получает значение e, и активным становится вложенный автомат A_k, за счет присваивания $auto := k$.

7. Если произошел переход с пометкой nxy в основное состояние j во вложном автомате A_k, то происходят присваивания $act := := nxy; y_k := j; st_k := j$ и передача управления главному автомату A_k через $auto := := k$. Если переход nxy произошел в основном автомате A_0, то переменная $auto = 0$ остается без изменения.

8. Если из некоторого состояния автомата A_k существует переход, который помещен переменными z, x, x или nxy, то для его срабатывания не требуется дополнительных условий, кроме активности этого автомата: $auto = k$.

9. Если система взаимодействующих автоматов A попала в тупиковое состояние, что равносильно невозможности совершить переход из основного состояния основного автомата A_0 из-за нарушения условий переходов, то происходит специальный введенный переход $act := end$, который ведет в то же самое состояние, а значения всех остальных переменных остаются без изменений.

Благодаря построенной структуре Крипке при спецификации и верификации имеется возможность в качестве элементарных высказываний использовать предикаты над значениями введенных переменных, что позволяет выражать следующие свойства состояний автоматных моделей.

1. В каждом состоянии автоматной модели существует возможность отслеживать, какое последнее действие произошло перед попаданием в текущее состояние с помощью переменной act.

2. Имеется возможность определения типа последнего действия, т. е. возможность определить, произошло ли вхождение события, входной запрос или выходное воздействие, посредством выражений $act = ev$, $act = xm$ и $act = zd$. Например, если в текущем состоянии автоматной модели выполняется $act = zd$, это означает, что последним действием, которое произошло при переходе в данное состояние, является некоторое выходное воздействие. Уточнить, к какому автомату системы A принадлежит выходное воздействие, можно с помощью выражений вида $act = zd_i$. Наконец, истинность выражения $act = z$ означает, что последним действием при переходе в текущее состояние было выходное воздействие z.

3. Через переменную $auto$ в каждом состоянии автоматной модели определяется активный в данный момент времени автомат. Например, если в состоянии системы A выполняется $auto = 0$, то это означает, что активным является основной автомат A_0.

4. Для каждого автомата A: в текущем состоянии системы A можно узнать через переменную y_i: последнее основное состояние, в котором он пребывал. Более того, выражение $y_i = st_i$ означает, что автомат A: в данном состоянии системы A находится в своем основном состоянии. Вместо выражения $y_i = st_i$ будем также использовать выражение $y_i == y_i$ с целью минимизации количества переменных, используемых при задании элементарных высказываний. Тогда, если $y_0 = 0$ означает, что последним основным состоянием автомата A_0 было состояние 0, то выражение $y_0 == 0$ показывает, что автомат A_0 в данный момент времени находится в своем основном состоянии 0 – последнее выражение равнонительно $y_0 = 0 \& y_0 = s_0$.

5. С помощью выражения $act = end$ можно отслеживать тупиковые состояния системы автоматов A, а с помощью выражения $act = nxy$ отслеживается переход одного из автоматов системы в свое новое основное состояние с одновременной передачей управления главному автомату.

6. ТЕМПОРАЛЬНАЯ ЛОГИКА СТИ.
ДЛЯ АВТОМАТНОЙ МОДЕЛИ

Одним из наиболее популярных темпоральных логик для спецификации и верификации свойств программных систем является логика СТИ. (branching-time logic, или computation tree
Моделирование, спецификация и верификация "автоматных" программ

Для целей верификации автоматных программ логика LTL заслуживает особого внимания, поскольку любая формула в рамках этой логики по сути представляет собой автомат Бюхера, описывающий (принимающий) бесконечные допустимые пути структуры Крипке, которая, в свою очередь, задает поведение (все возможные исполнения) проверяемой на корректность автоматной программы. Это позволяет при верификации и спецификации автоматных программ оперировать в основном таким простым понятием, как "автомат". Таким образом, можно в некотором смысле говорить, что LTL является более естественным средством спецификации свойств автоматных программ. С другой стороны, логика CTL также широко используется в формальной верификации, и спецификация на языке CTL происходит в многом аналогичным образом. Далее в работе делается попытка оценить удобство использования ("менее естественной") для автоматных моделей логики CTL для задания временных свойств автоматных программ.

Формулы логики CTL для структуры Крипке S_A автоматной модели A строятся по следующей грамматике:

$$
\varphi ::= true \mid p \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid AX \varphi \mid EX \varphi \mid AY_i \varphi \mid EY_i \varphi \mid AF \varphi \mid EG \varphi \mid AG \varphi \mid E(\varphi U \psi) \mid A(\varphi U \psi) \mid E(\varphi U \varphi) \mid A(\varphi U \varphi);
$$

где $p \in P$ – элементарное высказывание, определенное над множеством состояний автоматной модели A, а i и в операторах AY_i и EY_i представляет собой номер некоторого автомата из системы A.

Отношение выполнимости \models для состояния s структуры Крипке $S_A = (S, s_0, \rightarrow, L)$ и формулы φ логики CTL индуктивно определяется следующим образом:

- $s \models true$ и $s \not\models false$;
- $s \models p$ для $p \in P \Leftrightarrow p \in L(s)$;
- $s \models \neg \varphi \Leftrightarrow s \not\models \varphi$;
- $s \models \varphi \land \psi \Leftrightarrow s \models \varphi$ и $s \models \psi$;
- $s \models \varphi \lor \psi \Leftrightarrow s \models \varphi$ или $s \models \psi$;
- $s \models EX \varphi \Leftrightarrow \exists s' s \rightarrow s' \models \varphi$ – существует такое следующее состояние структуры Крипке S_A, в котором будет выполняться формула φ;
- $s \models AX \varphi \Leftrightarrow \forall s' \text{ из } s \rightarrow s' \text{ следует } s' \models \varphi$ – во всех следующих состояниях структуры S_A должна выполняться формула φ;
- $s \models E(\varphi U \psi) \Leftrightarrow$ для некоторого пути π, выходящего из состояния $s = \pi(0)$, существует такое $j \geq 0$, что $\pi(j) \models \psi$, и при этом для всех $i, 0 \leq i < j, \pi(i) \models \varphi$;
- $s \models A(\varphi U \psi) \Leftrightarrow$ для каждого пути π, выходящего из состояния $s = \pi(0)$, существует такое $j \geq 0$, что $\pi(j) \models \psi$, и при этом для всех $i, 0 \leq i < j, \pi(i) \models \varphi$;
- $s \models EF \varphi \Leftrightarrow E(\text{false} U \varphi)$ – из s в структуре Крипке S_A существует путь, проходящий через состояние, в котором выполняется φ;
- $s \models AF \varphi \Leftrightarrow A(\text{false} U \varphi)$ – любой путь из состояния s в структуре Крипке S_A обязательно проходит через состояние, в котором выполняется φ;
- $s \models E(\varphi U \psi) \Leftrightarrow$ для некоторого пути π, выходящего из состояния $s = \pi(0)$, для любого $j \geq 1$ такого, что $\pi(j) \not\models \psi$, существует $i, 0 \leq i < j$, такое, что $\pi(i) \models \varphi$ (для некоторого пути формула ψ истинна и должна оставаться истинной до тех пор, пока φ не станет истинной);
- $s \models A(\varphi U \psi) \Leftrightarrow$ для каждого пути π, выходящего из состояния $s = \pi(0)$, для любого $j \geq 1$ такого, что $\pi(j) \not\models \psi$, существует $i, 0 \leq i < j$, такое, что $\pi(i) \models \varphi$ (для каждого пути формула ψ истинна и должна оставаться истинной до тех пор, пока φ не станет истинной);
- $s \models EG \varphi \Leftrightarrow E(false U \varphi)$ – существует путь из состояния s в структуре Крипке S_A, на протяжении которого (в каждом состоянии пути) выполняется φ;
- $s \models AG \varphi \Leftrightarrow A(false U \varphi)$ – на протяжении любого пути (в каждом состоянии каждого
пути) из состояния s в структуре Кринке S_A выполняется φ;

- $s \models EY i \varphi \iff EX E(y_i^1 = y_i U y_i \iff y_i & \varphi)$ — среди непосредственно следующих основных состояний автомата A из системы A существует такое, что при попадании в него выполняется формула φ;

- $s \models AY i \varphi \iff AX A(y_i^1 = y_i U y_i \iff y_i & \varphi)$ — для каждого непосредственно следующего основного состояния автомата A, из системы A должно выполняться условие, что при попадании в него формула φ является истинной.

Последние два оператора вводятся для того, чтобы более полно и естественно выражать свойства, относящиеся в большей степени к основным состояниям автоматов A_i из системы A.

Кроме введенных логических связок \land и \lor, традиционно используют связки \to и \iff:

- $\varphi \to \psi \equiv \neg \varphi \lor \psi$;

- $\varphi \iff \psi \equiv (\varphi \to \psi) \land (\psi \to \varphi) \equiv (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$.

Для темпоральных операторов справедливы (вытекают непосредственно из определений) следующие соотношения:

- $AX \varphi \equiv \neg EX \neg \varphi$;

- $AF \varphi \equiv \neg EG \neg \varphi$;

- $AG \varphi \equiv \neg EF \neg \varphi$;

- $A(\varphi U \psi) \equiv \neg E(\neg \varphi U \neg \psi)$;

- $E(\varphi U \psi) \equiv \neg A(\neg \varphi U \neg \psi)$.

Применяя последние два соотношения, можно отказаться от использования в темпоральных формулах операторов EU и AU, поскольку их определения довольно сложны, что может привести к трудностям при словесной интерпретации (понимании) формул.

Далее паряду с символами \land и \lor будут также использоваться символы $&$ и $|$.

Темпоральное свойство, заданное формулой φ темпоральной логики CTL, считается истинным для структуры Кринке $S_A = (S, s_0, \to, L)$ автоматной модели A тогда и только тогда, когда выполняется $s_0 \models \varphi$.

7. ТЕМПОРÀЛЬНОЕ СВОЙСТВА АВТОМАТНЫХ МОДЕЛЕЙ

Рассмотрим несколько примеров темпоральных свойств, которые являются общими для всех конкретных иерархических автоматных моделей (для любой иерархической системы взаимодействующих автоматов).

“Тупиковое состояние”. Свойство, описывающее возможность попадания автоматной программы в тупиковое состояние, из которого нельзя выйти, применимо к любой автоматной программе (к модели любой автоматной программы рассматриваемого типа). В рамках описанной структуры Кринке это свойство может быть описано на языке темпоральной логики CTL следующим образом:

$$EF \ act = end.$$

Эта формула означает, что существует путь из начального состояния s_0 структуры Кринке в такое состояние, из которого произошел переход с пометкой end. По построению структуры Кринке S_A такое состояние является тупиковым, так как переход end добавляется в случае, когда других переходов из данного состояния больше нет. В связи с иерархической структурой автоматной модели тупиковая ситуация происходит лишь тогда, когда нет возможности выйти из основного состояния основного автомата A_0 из-за нарушения условий переходов или вообще при полном отсутствии переходов из данного основного состояния.

“Тупиковое состояние вложенного автомата”. В предыдущем примере тупиковое состояние всей системы было связано с попаданием автомата A_0 в свое основное состояние, из которого нельзя было выйти. В данном случае рассматривается свойство, выражающее наличие тупика во вложенных автоматах. Предположим, что структура Кринке S_A перешла в новое состояние посредством перехода некоторого вложенного автомата A_k из A в свое следующее основное состояние с одновременной передачей управления главному автомату. Далее, пусть на протяжении всех возможных путей из этого состояния структуры Кринке любое входное событие, которое передается вместе с управлением автомату A_k, будет игнорироваться им либо из-за
Спецификация временных свойств в моделировании систем управления кофеваркой

1. СПЕЦИФИКАЦИЯ ВРЕМЕННЫХ СВОЙСТВ В МОДЕЛИ СИСТЕМЫ УПРАВЛЕНИЯ КОФЕВАРКОЙ

Удобство и целесообразность применения введенной структуры Крьпке в временной логике CTL для спецификации и валидации свойств автоматных моделей продемонстрируем на примере автоматной модели системы управления кофеваркой.

Рассмотрим следующее свойство системы управления кофеваркой, заданное на естественном языке.

“Корректное прерывание работы кофеварки пользователем”. Если не сломаны клапаны и нагреватель и кофеварка варит кофе в обычном режиме, то после нажатия кнопки “С” основной автомат управления кофеваркой A_0 переходит в состояние “Прервано пользователем”, а все вложенные автома ты обязательно должны вернуться в свои начальные состояния до того, как кофеварка будет запущена вновь.

Перефразируем это свойство, используя элементы автоматной модели.

Если при $y_{31} = 4, y_{32} = 4, y_2 = 4$ и $y_0 = 2$ произойдёт событие e_{02}, то автомат A_0 обязательно его обрабатывает (не пропускает) и перейдет в состояние $y_0 = 4$, и, когда произойдёт событие e_{01} при $y_0 = 0$, система уже будет находиться в состоянии $y_{31} = 0$, $y_{32} = 0$, $y_2 = 0$ и $y_1 = 0$.

Рассмотрим структуру Крьпке, которая появляется в спецификации системей взаимодействующих автоматов. Перепишем свойство с применением понятия пути в структуре Крьпке автоматной модели.

Для всех путей модели выполнено следующее: Если в состоянии пути истинно выражение $y_{31} = 4 \land y_{32} = 4 \land y_2 = 4 \land y_0 = 2$ в следующий момент времени произойдёт событие e_{02}, то это событие обязательно будет обработано и следующим основным состоянием автомата A_0 будет $y_0 = 4$. И когда после этого в будущем автомат A_0 окажется в состоянии $y_0 = 0$ и обработает событие e_{01}, то это будет означать, что система автоматов перед обработкой e_{01} уже находилась в состоянии $y_{31} = 0 \land y_{32} = 0 \land y_2 = 0 \land y_1 = 0 \land y_0 = 0$.

Заметим все высказывания над путями временных операторами. Получим следующую временнную формулу логики CTL для описывающего свойства:

$AG (y_{31} = 4 \land y_{32} = 4 \land y_2 = 4 \land y_0 = 2) \rightarrow EX act = e_{02} \&$

$\& AX (act = e_{02} \rightarrow AY_0 (y_0 = 4 \land$

$\& AG (y_0 = 0 \land act = e_{01} \rightarrow y_{31} = 0 \land y_{32} = 0 \land y_2 = 0 \land y_1 = 0))$.

Рассмотрим и спецификуем аналогично еще ряд свойств для системы управления кофеваркой.

“Определение ненадёжности”. Если произошла поломка нагревателя или одного из клапанов, то кофеварка (основной автомат A_0) обязательно перейдет в состояние “Ненадёжность”.

2 ПРОГРАММИРОВАНИЕ №1 2008
1. Для каждого пути (или исполнения) структуры Крипке рассматриваемой системы взаимодействующих автоматов должно быть выполнено следующее требование. Если система перейдет в состоянии \(y_31 = 4 \& y_32 = 4 \& y_2 = 4 \), то следующим отличным от состояния \(y_0 = 2 \) ("Варит кофе") у автомата \(A_0 \) обязательно – ранее или поздно, будет состояние \(y_0 = 5 \).

2. \(AG((y_31 = 4 \& y_32 = 4 \& y_2 = 4 \& y_0 = 2 \rightarrow Y(y_0 = 2Uy_0 = 5)). \)

"Индикация неисправности". Если основной автомат управления кофеваркой \(A_0 \) перешел в состояние "Неисправность", на дисплее обязательно высвечивается сообщение о типе неисправности (не допускается ситуация, при которой неисправность произошла, но пользователя кофеварка не информирует о типе неисправности).

1. Это свойство целесообразно переписать в негативной форме следующим образом. Существует путь в структуре Крипке, который ведет в состояние \(y_0 = 5 \), и на протяжении этого пути не будет выводиться на дисплей ни одно из сообщений о поломке клапана или нагревателя – не произойдет ни одного из действий \(act = z_{35} \) или \(act = z_{25} \).

2. \(!E((act = z_{35} \& act = z_{25})Uy_0 = 5). \)

"Сброс неисправности". Если автомат \(A_0 \) находится в состоянии "Неисправность", то после нажатия кнопки "C" все автоматы, включая сам \(A_0 \), сбрасываются в начальное состояние, дождь как кофеварка будет запущена вновь.

1. На протяжении всех путей структуры Крипке, если в состоянии выполняется \(y_0 = 5 \& act = e_{02} \), то следующим состоянием \(A_0 \) в любом случае будет \(y_0 = 0 \), и обработку события \(e_{01} \) при \(y_0 = 0 \) может произойти лишь тогда, когда выполняется \(y_1 = 0 \& y_2 = 0 \& y_{31} = 0 \& y_{32} = 0 \).

2. \(AG(y_0 = 5 \& act = e_{02} \rightarrow (y_0 = 0 \& AX(act = e_{01} \rightarrow y_1 = 0 \& y_2 = 0 \& y_{31} = 0 \& y_{32} = 0))). \)

"Сброс дисплея после неисправности". Если автомат \(A_0 \) после неисправности находится в состоянии "Готов к работе", то в дисплее кофеварки (включая дисплей бойлера, нагревателя и клапанов) никакие сообщения о поломке не отображаются.

1. Если в дисплее кофеварки (включая дисплей бойлера, нагревателя и клапанов) было выдано сообщение о неисправности, то до того как автомат \(A_0 \) перейдет в начальное состояние \(y_0 = 0 \), это сообщение должно быть сброшено. В данном случае также целесообразно записать это свойство в негативной форме, ожидая, что указанное условие на некотором пути структуры Крипке нарушается.

2. \(!EF((act = z_{35} \& E(act = z_{35})Uy_0 = 0)) \)

"Необходимость наличия воды". Кофеварка никогда не будет варить кофе без воды (соответственно автомат управления бойлером \(A_1 \) никогда не перейдет из состояния "Готов к варке следующей порции" в состояние "Кипятит", если воды недостаточно).

1. Перепишем высказывание в негативном виде. Существует путь в структуре Крипке из состояния \(y_1 = 2 \) в состояние \(y_1 = 4 \), на протяжении которого не может произойти датчик наличия воды или результат опроса датчика был отрицательным.

2. \(!EF(y_1 = 2 \& E(act = x_{13})Uy_0 = 4)). \)

"Недопустимость перегрева нагревателя". Когда нагреватель достигает максимальной температуры, он всегда выключается – не существует такой ситуации (такого бесконечного процесса), при которой во время эксплуатации кофеварки нагревательный элемент будет нагреваться бесконечно долго после преодоления максимального температурного ворога.

1. Если кофеварка была запущена, то ее возврат в начальное состояние не произойдет перегрева нагревательного элемента. Другими словами, во время работы кофеварки не может быть такой ситуации,
при которой автомат A_2, находящийся в состоянии $y_2 = 2$ (“Нагреватель включен”), бесконечно долго не имеет возможности проверить свои условия переходов — не может обратиться с запросом к датчику температуры или не получает команды выключения. Такая ситуация возможна в двух случаях. В первом случае основной автомат A_0 попадает в состояние, из которого можно выйти лишь по нажатию кнопки или (по системному таймеру) обратившись с запросом параметров к объекту управления, в то время как автомат A_2 находится в состоянии $y_2 = 2$. Тогда автомат A_2 может потенциально бесконечно долго ожидать сигналов e_0 и e_2, от автомата A_0 и так их и не дождаться, что приводит к перегреву нагревательного элемента. Во втором случае существует бесконечный путь в структуре Крипке автоматной модели, на протяжении которого автомат A_2 в состоянии $y_2 = 2$ также не получает событий e_0 и e_2 от основного автомата A_0. Этот случай включает в себя возможность попадания системой автоматов в тупиковое состояние при условии $y_2 = 2$, так как будет учитываться бесконечный путь, ведущий в тупиковое состояние, и далее проходящий из-за нетли $act = end$ только по нему. Важно заметить, что автомат A_0 не содержит таких-либо запросов x.

2. $!EF(y_2 = 2 & auto = 0 & y_1 = 0 & AX(\neg act) = 0 & \neg act = end) \land \neg EG(y_2 = 2 & (auto = 2 \rightarrow AX(\neg act = 0 & \neg act = e_2)))$.

“Начальное состояние”. Если автомат A_0 перешел в начальное состояние “Готов к работе”, то все вложенные автоматы уже находятся в своих начальных состояниях.

1. Для всех путей структуры Крипке автоматной модели, если автомат A_0 попал в состояние $y_0 = 0$, то все вложенные автоматы находятся в начальных состояниях: $y_1 = 0, y_2 = 0, y_{31} = 0, y_{32} = 0$.

2. $AG(y_0 = 0 \rightarrow y_1 = 0 \land y_2 = 0 \land y_{31} = 0 \land y_{32} = 0, y_{32} = 0$).

“Условие реактивности”. Система управления кофеваркой никогда не попадает в такое состояние, в котором она никак не реагирует ни на события системного таймера, ни на нажатие кнопок “ОК” и “С”.

1. Не существует пути в такое состояние, из которого система не может выйти. Другими словами, система никогда не попадает в дедлок (deadlock) — в тупиковое состояние. По скольку структура Крипке автоматной модели имеет тотальное отношение переходов, то каждое тупиковое состояние имеет единственное переход само в себя. При этом совершается действие $act = end$.

2. $(EF act = end)$.

Итак, приведенные примеры показывают, что понятные, но в то же время довольно сложные формулируемые на естественном языке свойства системы могут быть успешно заданы в виде формул логики CTL, что позволяет проверять их автоматическим образом для рассмотренной модели. Отметим, что аналогичные свойства, записанные на языке логики LTL, имеют более простой вид.

9. РЕДУКЦИЯ МОДЕЛИ

Поскольку при автоматической верификации методом проверки модели (методом model checking) применяются переборные алгоритмы, очень важно порождать структуру Крипке автоматной модели таким образом, чтобы она содержала как можно меньше состояний, но по прежнему позволяла бы верифицировать темпоральные свойства автоматной модели.

В данном случае возможно осуществление редукции (утоньшения) введенной структуры Крипке автоматной модели относительно проверяемых темпоральных свойств, заданных формулами логики CTL.

Опишем несколько примеров, когда целесообразно проводить редукцию модели относительно формулы.

Если в темпоральной формуле элементарные высказывания представляют собой предикаты, определенные только с использованием выражений над основными состояниями вида $y_k = k$, то в модели можно не рассматривать промежуточные состояния, которые не имеют отношения
Рис. 8. Пример редукции числа промежуточных состояний в структуре Крипке для автоматных переходов, не содержащих выходных воздействий второго типа.

Рис. 9. Пример редукции числа промежуточных состояний в структуре Крипке для автоматных переходов, которые имеют выходные воздействия второго типа.

к выходным воздействиям второго типа (раздел 2) – можно удалить из модели все промежуточные состояния, не связанные с передачей управления между автоматами.

Например, рассмотрим формулу

$$AG(y_0 == 0 \rightarrow y_1 == 0 \& y_2 == 0 \& y_{31} == 0 \& y_{32} == 0).$$

Если эта формула является истинной (или ложной) для некоторой структуры Крипке автоматной модели, то эта формула останется истинной (или ложной) для редуцированной структуры Крипке, которая получена из исходной с помощью преобразования (редукции), показанного на рис. 8. На рисунке исходный переход автомата не содержит выходных воздействий второго типа, что позволило сократить до одного число промежуточных состояний при переходе между основными состояниями автомата.

На рис. 9 показан пример редукции структуры Крипке в случае, когда во время автоматного перехода происходит передача управления вложенному автомату.

Рассмотрим еще один пример формулы, для которой возможно уменьшение размерности структуры Крипке автоматной модели.

$$EF(\text{act} = z_2 \& EX E(\text{act}! = z_2 U y_0 = 0)).$$

Эта формула выражает следующее свойство. Существует путь структуры Крипке, в котором встречается переход, помеченный выходным воздействием z_2, и после этого перехода на протяжении оставшейся части пути до состояния $y_0 = 0$ переход с меткой z_2 больше не встречается. Для этого свойства переходы с пометками, отличными от z_2, не представляют интереса, и их можно обезличить, а идущие подряд несколько обезличенных переходов заменить одним или вообще исключить из структуры Крипке. На рис. 10 приведен пример редукции структуры Крипке в соответствии с указанной формулой для автоматного перехода, не содержащего выходных воздействий второго типа.

Таким образом, после анализа темпоральной формулы возможно построение структуры Крипке автоматной модели с меньшим числом
состояний, которая будет инвариантной относительно формулы, что позволяет осуществлять проверку свойства автоматной модели, заданной этой формулой, за меньшее время.

В связи с этим представляют интерес классы временных свойств, для которых редукция структуры Кринке автоматной модели является наиболее эффективной.

10. ПРАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ

Определение структуры Кринке вероятностной автоматной модели и описанная спецификация свойств позволяют применить для верификации автоматных программ метод проверки модели. Для этого в дальнейшем целесообразно использовать уже существующие пакеты прикладных программ-верификаторов, которые разрабатываются и поддерживаются ведущими научными лабораториями на протяжении довольно длительного времени (более десяти лет).

Однако проблема состоит в том, что каждый верификатор имеет свой формализм для задания модели и свой способ порождения структуры Кринке для этой модели. Более того, верификаторы имеют свою модификацию (реализацию) временной логики, которая в ряде случаев может оказаться менее выразительной, чем, например, рассмотренная временная логика CTL.

Возникает серьезная задача адекватного задания структуры Кринке автоматной модели средствами уже существующих верификаторов. Под адекватностью понимается порождение верификатором такой структуры Кринке для заданной формальной модели, которая не допускает потери каких-либо свойств исходной автоматной модели, а также исключает появление не существующих свойств. Должно быть гарантировано, что после проверки свойств для модели, заданной в рамках программы-верификатора, результат этой проверки будет однозначно применим и к зависимым свойствам исходной автоматной модели. Кроме того, при выборе верификатора необходимо руководствоваться и выразительной способностью реализованной в нем временной логикой, чтобы иметь возможность выражать описанные выше типы свойств автоматных моделей.

Таким образом, после выбора адекватного и выразительного верификатора задача практической реализации автоматной проверки свойств автоматных программ может быть представлена в виде, показанном на рис. 11.

На рис. 11 важной деталью является утилита автоматной трансляции автоматной модели и ее свойства в такие формальные модели и спецификацию, которые допускаются интерфейсом программы-верификатора. В соответствии с требованиями утилита трансляции должна всегда обеспечивать корректное однонаправленное соответствие между результатом проверки свойств верификатором и истинностью этого свойства автоматной модели.

11. ЗАКЛЮЧЕНИЕ

Автоматная программа является исключительно удобным объектом для верификации методом проверки модели. Свойства программ-
вой системы в виде автоматов формулируются и специфицируются естественным и понятным образом, легко соотносится со взаимодействующими автоматами, которые задают логику “автоматной” программы, так как элементы управляющих автоматов являются либо четко выраженные состояния объекта управления, либо понятные действия над ним. Проверка свойств осуществляется в терминах, которые естественно вытекают из автоматной модели программы. Элементарные высказывания в рамках свойств определяются над элементами и моделями — событиями, входными и выходными воздействиями и состояниями. Если после верификации методом проверки модели тестирование вызывает ошибку, то в этот ошибки, скорее всего, будет относиться к некорректной программной реализации выходных воздействий, а не к нарушению логики программы, что при исправлении не потребует глобальной перестройки “автоматной” программы (все сведется к локальным исправлениям внутри одной или нескольких отдельных, обычно небольших процедур, корректность которых затем может быть доказана методом дедуктивного анализа).

Разработка формальных методов и технологий моделирования, спецификации и верификации автоматных программ и построения на этой базе интегрированного программного комплекса позволяет проектировать и реализовывать надежные программные системы управления ответственными объектами. Для этого целесообразно использовать уже существующие пакеты прикладных программ-верификаторов, которые разрабатываются и поддерживаются ведущими зарубежными и российскими научными лабораториями и центрами. Большинство подобных программных средств верификации предоставляются бесплатно для проведения научно-исследовательских работ. Однако существуют и коммерческие версии программ-верификаторов, позволяющие использовать их для выполнения промышленных заказов как непосредственно, так и в комбинации с другими средствами верификации и анализа программ. Исследования в этом направлении [13–15] приводят к созданию прототипа программы верификации под названием “Система моделирования и верификации автоматных программ” (реп. номер свидетельства: 2007611856; авторы: Виноградов Р.А., Кузьмин Е.В., Соколов В.А.).

Важно отметить, что при построении реальных систем реального времени с использованием автоматного подхода к программированию классического метода проверки модели недостаточно для анализа сложных временных темпоральных свойств (свойств с ограничениями по времени). В этом случае необходимо применять существующие методы и средства верификации систем реального времени, представляющие собой развитие метода проверки модели. Основной акцент при построении и моделировании временных систем ставится на интерпретации времени. При автоматном программировании синхронных систем реального времени целесообразно строить и верифицировать модели с дискретным временем. Спецификация в этом случае осуществляется на языке темпоральной логики реального времени. Расширенная с учетом дискретного реального времени темпоральная логика позволяет выражать такие свойства, как “всегда верно, что за \(p \) последует \(q \) не позднее чем через \(3 \) единицы времени”. Примером такой темпоральной логики является логика RTCTL (real-time CTL), которая используется для спецификации свойств в верификато-
ре VERUS. Непрерывное время, с другой стороны, является естественной моделью для асинхронных систем, поскольку промежуток времени, разделяющий события, может быть сколь угодно мал. Стандартным формализмом для моделирования и анализа асинхронных систем реального времени являются временные автоматы.

Для верификации автоматных программ с использованием моделей на основе временных автоматов могут быть, например, применены такие программные средства, как UPPAAL [16] и KRONOS [17].

И, наконец, для моделирования автоматных программ могут быть также использованы линейные гибридные автоматы (обобщение временных автоматов). Но в этом случае для решения задач верификации используются лишь частичные алгоритмы. Однако, как указывается в руководстве к системе верификации линейных гибридных автоматов HyTech [18], на практике в большинстве случаев при проверке реальных примеров частичные алгоритмы анализа, применяемые в HyTech, оставались. Более того, существует широкий класс линейных гибридных систем, для которых итерационные методы и процедуры анализа разрешимы (всегда сходятся). Таким образом, по всей видимости, линейные гибридные автоматы представляют собой границный "сверху" по выразительности формализм, который еще может быть применен для моделирования и анализа автоматных программ.

Авторы признательны профессору А.А. Шалыто за то, что он привлек их внимание к данной проблематике автоматного программирования.

СПИСОК ЛИТЕРАТУРЫ

