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1. INTRODUCTION

The paper is devoted to the description, specifica-
tion, and verification of models for program con-
structed by means of the automaton approach [1–5].

The automaton programming technology is a mod-
ern Russian development, which is actively studied and
supported by a number of Russian research groups.
In the automaton approach to the program design and
construction, the program is divided into two—system-
independent and system-dependent—parts. The former
part implements logic of the program and is given by a
system of the interacting Moore–Mealy automata. The
design of each automaton consists in the creation of a
link scheme describing its interface and a transition
graph determining its behavior by a verbal description
of the desired automaton (declaration of purposes).
Given these two documents, a program module corre-
sponding to the automaton can formally and isomorphi-
cally be constructed (after which its system-dependent
part can be implemented).

The automaton programming does not depend on
the platform, operating system, or programming lan-
guage. The automaton programming technology is very
effective in constructing software for reactive systems
and logical control systems. This technology, which
does not exclude using other methods of “erra-free”
software construction, is considerably more construc-
tive than other methods, since it allows one to start to
“fight against errors” as early as at the algorithmization
stage.

It is interesting that all existing methods for correct-
ness analysis (verification) of complex systems, such as
simulation modeling, testing, deductive analysis, and
model checking method, can successfully be applied to
the automaton programs.

The simulation modeling and testing envisage car-
rying out tests before manufacturing the system. The
simulation modeling is applied to an abstract schema or
prototype, and the testing is used for the product itself.
In the case of software, the simulation modeling and
testing include supplying certain input data and observ-

ing appropriate output results. These methods allow
one to find errors (they are especially efficient at early
stages) but cannot guarantee finding all errors or esti-
mate how many errors still left in the program.

Although the deductive analysis [6] is a very labor-
consuming method with strong referencing to seman-
tics of the programming language and cannot com-
pletely be automated and used without expert control, it
still can be used for completed automaton programs for
immediate checking of the correctness of the proce-
dures (written in a high-level language) corresponding
to output actions or input queries. Each output action
performs its own, usually small, task, the correctness of
the implementation of which can be checked. Thus, we
can say that the automaton structure of the program
advantages application of the deductive analysis. How-
ever, this method turns out useless for checking pro-
gram logic.

On the other hand, the logic of automaton programs
can conveniently be verified by the model checking
method [7]. In the framework of this method, a formal
finite model of the program is constructed, and the
properties being checked are specified by means of
temporal logic formulas. The satisfiability of the tem-
poral formulas specifying model properties is checked
automatically. It is important to note that the construc-
tion of the program model for automated verification is
a very difficult task. When constructing the model for a
program written in a traditional way, we arrive at the
problem of adequacy of this program model and the
original program. The model may not take into account
a number of program features or generate nonexisting
properties. From the standpoint of modeling and analy-
sis of program systems, the automaton approach has a
number of advantages compared to the traditional
approach. In the automaton programming, the problem
of model adequacy does not arise, since the set of the
interacting automata describing the program logic is
already an adequate model, by which the program mod-
ule is constructed in a formal way. This is certainly a
great advantage of the automaton technology. In addi-
tion, the model has a finite number of states, which is a
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necessary condition for successful automatic verifica-
tion in practice, since the checking of the model is a
search method.

One of the most popular temporal logics for specifi-
cation and verification of properties of program sys-
tems are the CTL (computation tree, or branching time,
logic) or LTL (linear-time logic) logics. The use of the
LTL for the verification of the automaton programs
deserves special attention, since any formula in this
logic is essentially a Buchi automaton describing
(accepting) infinite admissible paths of the Kripke
structure, which, in turn, specifies the behavior (all pos-
sible implementations) of the automaton model
checked for correctness. This allows us to basically use
only a simple concept of the “automaton” in the speci-
fication and verification of automaton programs.

Thus, the above-said allows us to speak of the pos-
sibility of efficient use of the model checking method
for verification of the automaton programs (for analysis
of correctness of the automaton program logic).

There exist a number of software tools for verifica-
tion of abstract models constructed in the framework of
certain formalisms (Petri nets, interacting asynchro-
nous processes, real-time automata, hybrid automata,
and the like) and based on general approaches and tech-
nologies. These tools of classical verification by means
of the model checking method include, e.g., CPNTools
[8], SPIN [9], SMV [10], and CADP [11], which use
high-level colored Petri nets, the Promela language,
asynchronous processes, and the LOTOS language,
respectively, for the formal model specification lan-
guages. On the one hand, it is commonly accepted to
consider that the goal of the creation of such program
products is, basically, development of various theoreti-
cal and applied methods of model verification. On the
other hand, many of these methods have specification
languages designed for a particular field, for example,
modeling and analysis of communication protocols or
development of synchronous hardware logic circuits.
However, there do not exist software verification tools
designed directly for support of the automaton pro-
gramming technology, which does not exclude (or even
implies) active use of the available (time-proved) devel-
opments of the leading world’s laboratories, which are
usually accompanied for a long time by discussions at
appropriate scientific conferences (which are often
entirely devoted to these products). The existing verifi-
cation tools suggest basically extracting of the model
from the real program and, then, specifying this model
in the context of certain abstract formalism. Then, prop-
erties of the constructed formal model are specified and
checked. The behavior of this model may be, generally,
quite different form that of the original program, in par-
ticular, because of specific features of the formalism
used. The goal of the studies reported in this paper is the
creation of a software complex intended for designing
software products by means of the automaton models,
from which, after appropriate correctness analysis, the

desired programs are generated. Thus, we are going to
analyze an adequate automaton model responsible for
functional program logic. By the automaton model,
functional requirements imposed on the software are
checked (with respect to the specification). If, after
checking the automaton model, errors are found in the
program, they, most likely, will refer to the implemen-
tation details rather than to the functional program
logic. Hence, the correction of these errors will not
require global redesign of the entire program.

In this paper, we consider a hierarchical model of
construction of automaton programs. For specification
and verification of the automaton programs, a technol-
ogy of application of the model checking method is
proposed. The possibility of specification (in terms of
simplicity and perception adequacy) of structural and
semantic properties of automaton programs with the
help of temporal logic is studied. Note that the empha-
sis is placed more on the semantics of the automaton
programs rather than on their structure. This feature dif-
fers our method from the majority of others, where the
interacting automata (with various extensions) are con-
sidered as certain abstract formalism for which, along
with the decidability of classical (from the standpoint
of theoretical information science) properties, only
complexity of the model checking method related to the
structure of the automata and their interaction scheme
is estimated. Moreover, the choice of the observable
behavior of the automaton program model in this paper
is very important, since it greatly affects both classes
(types) of the verified properties and the very possibil-
ity of adequate specification. On the whole, the paper is
aimed at supporting the automaton approach to pro-
gramming reactive systems and complex logical con-
trol systems.

2. HIERARCHICAL MODEL OF AUTOMATON 
PROGRAMS FOR REACTIVE SYSTEMS

AND LOGICAL CONTROL SYSTEMS

Let us consider a hierarchical system of interacting
deterministic finite automata given by
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nested. For each nested automaton, there exists only
one principal automaton in which it is nested.

The automaton system A is considered to be a reac-
tive control system for an object. The system A receives
from the object events that characterize change of its
states and asks the object about its current parameters,
which is also considered to be an input action on A.
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At the same time, the control system reacts to the arriv-
ing information and affects the control object.

In addition to the above-described interaction with
the “environment,” the automata interact with one
another inside the system by transferring control from
the principal automaton to the nested ones when certain
events occur and watching their current states.

In the considered model, only the main automaton

 

A

 

0

 

 receives events from the control object and reacts to
them; the nested automata can address the control
objects only with a query on the states of its parameters
(note that a nested automaton can send a query only if
the principal automaton transferred control to it).

The above-described model of the interaction of the
control system A and the control object is shown in Fig. 1.
In the figure, the events are denoted by the letter 

 

e

 

; the
queries to the control object (input variables), by 

 

x

 

; the
current state of an automaton 
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ij

 

 is stored in variable 

 

y

 

ij

 

;
and the output actions are denoted as 

 

z

 

.
The behavior of any automaton 

 

A

 

 of the system A is
similar to the behavior of the whole system in the sense
that the automaton 

 

A

 

 reacts to the occurring events and,
depending on its state, states of the nested automata,
and the state of the control object (i.e., values of the
input variables), affects the control object or the nested
automata by transferring them control when some event
occurs.
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Let us introduce the set 
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of the automaton 
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 to the control object. Each query is
considered as a certain predicate the truth of which
depends on the state of the control object parameters.
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events (generation of events for nested automata).
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to which the control is transferred for processing this
event.
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Each transition fires by a certain rule. Before
describing the transition rules, we introduce some nota-
tion.

For a transition label 
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) denotes the event
to which 

 

A

 

 reacts upon firing the transition with the
label a.

Let X(a) denote the set of queries to the control
object the truth of which is required for firing the tran-
sition with the label a.

Let Z* be a set of finite sequences of output actions.
Then, for a ∈ Σ, Z*(a) ∈ Z* denotes the sequence of the
output actions that occur when the transition with the
label a fires.

For an arbitrary state q of an automaton A, we intro-
duce the notation Z*(q) ∈ Z* for the sequence of output
actions that are to be performed when the automaton
comes to the state q.

Finally, let Y(a) be a predicate depending on the
states of the nested automata that must be true in order
that the transition with the label a fire.

The rule of the transition from a state q to a state q'
has the following form:

q, a: if e = E(a) and (∀x ∈ X(a): x = true) and
 Y(a) = true

 then Z*(a); Z*(q'); goto q'.
It follows from the above-said that the rule of the

transition to a new state in the general case can be
described as follows. Having received an event, the
automaton reacts (or does not react) to it (with reaction
being determined by its current state), asks the control
objects about its parameters (input variables), takes into

Control system

Control

Main automaton A0

object

Nested automata
A11,...A1k1

Nested automata
A21,...A2k2

Nested automata
An1,...Ankn

e1ij y1i

e2ij y2i

e3ij y3i

enij yni

e0i
x0i
z0i

x1ij

z1ij

x2ij

z2ij

xnij

znij

Fig. 1. The model of interaction of system A and the control
object.
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account states of the nested automata and, then, per-
forms a sequence of output actions, including the
actions that are required to perform when it occurs in a
new state. Only after this, it is transferred to the new
state (which, in the case of a loop, may coincide with
the old state).

An output action of the first kind, which is aimed at
the control object, is considered to be performed imme-
diately after the application. An output action of the
second kind, which is a control transfer to a nested
automaton in response to an incoming event, is consid-
ered to be performed only after the reaction of the
nested automaton to this event. The latter reaction con-
sists in the following: either the automaton transfers to
the new state (one of the transitions of the nested
automaton fires) or the event is ignored by the nested
automaton (none of the transitions can fire). Until the
output action of the second type is performed, the oper-
ation (the process of transition to the new state) of the
principal automaton is postponed.

It is important to note that the transition rules (more
specifically, transition firing conditions) must satisfy
the determinacy condition (or orthogonality); i.e., not
more than one transition can be ready to fire when an
event occurs. If none of the transitions can fire in the
current state when an event occurs (transition condi-
tions are not fulfilled), then the event is ignored (the
event variable e for this automaton is set equal zero).

Further, we consider a hierarchical model of autom-
aton programs on the example of a coffee maker control
system [12].

3. AUTOMATON MODEL
OF A COFFEE MAKER CONTROL SYSTEM

We consider a system-independent part of the
automaton program responsible for the logic of the cof-
fee maker control.

The coffee maker model is shown in Fig. 2. It allows
one to select the number of coffee portions by means of
the “+” (increase the number of portions by one) and “–”
(reduce the number of portions by one) buttons.

Provision is made for the indication of lack of water
and basic faults (for example, heater failure or a defec-
tive valve). The number of portions varies from 1
through 5. An attempt to increase the maximum num-
ber of portions by pressing the “+” button does not
result in any change (similarly, if the number of por-
tions is 1, pressing the “–” button is ignored). A sepa-
rate object is a boiler consisting of valves 1 and 2,
heater, and container for boiling water. The coffee
maker display is divided into panels used for indicating
states of the valves, the heater, and the coffee-making
machine itself.

There are three control subobjects (boiler, valves,
and heater) in the coffee maker, each of which has its
own control subsystem. Each control subsystem is rep-
resented as a hierarchy of finite Moore–Mealy autom-
ata. As a result, the logical part of the coffee maker con-
trol system has the form of a hierarchical system of
interacting automata. An automaton occupying a higher
place in a hierarchy controls the automata nested into it
by generating events and transferring control to the
nested automata when the events occur. In addition, the
automaton watches states of the nested automata since
its own transitions may depend on these states.

The automata interaction diagram is shown in Fig. 3.
The main automaton A0 receives events e0i from the
control panel (button panel) and reacts to them. The
special event e0 generated by the system timer is used
for checking conditions of the transitions (conditions
on the automaton arcs) that do not suggest reactions to
any event e0i. The automaton A0 interacts with the
automaton A1 by transferring control to it when events
e1i and e0 occur. The automaton A0 watches states of
A1 through variable y1. In this interaction, A0 is consid-
ered to be a principal automaton, and A1, a nested
automaton. The automaton A1 interacts with the nested
automata A2, A31, and A32 in a similar way.

The automaton A0 implements logic of the coffee
maker control. It reacts to pressing buttons on the con-
trol panel (when specifying the number of portions,
starting boiling process, canceling coffee making, error
reset, etc.) by transferring control to the boiler control

1

2

3

4

5

6

7

8

9 10

11

12

+

–

Ok C

13 14

Fig. 2. Coffee-making machine: 1 – container for water, 2 – boiling container, 3 – coffee filter, 4 – flask for the coffee, 5 – display,
6 – water sensor, 7 – input valve (valve 1), 8 – output valve (valve 2), 9 – heater, 10 – boiler, 11 – “+” (increase) button, 12 – “–”
(decrease) button, 13 – “ok” button, 14 – “C” (cancel) button.
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automaton A1 for the time of boiling. The information
on the current states of the coffee maker is depicted on
the display.

The scheme of links and transition graph of the cof-
fee maker control automaton A0 are shown in Fig. 4.

The automaton A1 implements logic of the boiler
control, which is responsible for the coffee-boiling pro-
cess.

In the process of boiling, the efficacy of the valves
and heater and availability of water are checked. If one
of the valves or heater is out of order, the boiling is ter-
minated, and an appropriate warning is displayed. If the
water is lacking in the container, the boiling is post-
poned until some water is added or the user interrupts
the boiling process.

If no breakage occurs, the boiling process is
repeated until the required number of coffee portions is
done. One boiling loop corresponds to one portion.

The automaton A1 interacts with the control autom-
aton A0 informing the latter about its current state and
receiving an event from it. The automaton A1 interacts
also with the automata A31, A32 (responsible for con-
trol of valves 1 and 2), and A2 (controlling the heater)
by receiving information about their states and sending
them events.

The scheme of links and transition graph of the
boiler control automaton A1 are presented in Fig. 5.

The automaton A2 implements logic of the heater
control. It supports heater temperature in a prescribed
temperature range (minimum and maximum values of
temperature are set). It is possible to determine whether
there is a breakage of the type “heater does not work.”

After turning the heater on, it continues to heat up to
the lower boundary of the working range. If it does not
reach the required temperature, the heater is considered
out-of-service. The heater is turned on when the tem-
perature reaches the lower boundary of the working

range and is turned off when it reaches the upper
boundary.

The automaton A2 interacts only with the boiler
control automaton A1 and does not have nested auto-
mata.

The automata A31 and A32 are completely identical.
Speaking of automaton A3, we mean both A31 and A32.
The automaton A3 implements logic of the control of
valve operation in the mode “open–pause–close.”
The automaton has four states and, having no nested
automata, interacts only with the boiler control autom-
aton A1 sending its state to the latter and receiving an
event from it. The automaton A3 starts its operation
loop by the event e31 (“open the valve”). First, the
valve opens; then, it pauses to water or blow off steam;
and, finally, it closes. If, during a certain time period,
the valve does not open (or does not close), it is consid-
ered out of service.

The schemes of links and transition graphs of the
heater control automaton A2 and valve control automa-
ton A3 are presented in Fig. 6.

4. SPECIFICATION AND VERIFICATION
OF AUTOMATON MODELS

When constructing an automaton program in the
framework of a hierarchical model, the program logic is
concentrated in the main automaton, which sends con-
trols to the nested automata depending on the behavior
of the controlled object. Each automaton of the pro-
gram interacts only with the principal automaton and
the nested automata, which facilitates understanding of
the program. In the course of the design or verification
of such an automaton program, it is possible to consider
a part, or a subtree, of the automaton system, depending
on what function is implemented by the considered sys-
tem of automata. Any subsystem of interacting autom-
ata in a hierarchical model is a tree of automata, which

Control panel
and system timer

Coffee maker control
automaton A0

Valve 1 control
automaton A31

Boiler control
automaton A1

Valve 2 control
automaton A32

Heater control
automaton A2

e0i e0

e1i e0 y1

e2i e0 y2

e3i

e0

y32

e3i

e0

y31

Fig. 3. The control automata interaction diagram.
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can be considered as a separate system (as a separate
automaton program). This makes it possible to change
the scale of the system by considering the automata that
are not relevant to the design at a given moment as a
part of the environment, i.e., an external control object,
and to focus only on the subsystem analyzed. Finally,
specification and analysis of properties of an automaton
program under verification are simplified if the struc-
ture of the verified model is easy to understand.

An automaton program model is an ideal object for
automated verification by the model checking method
[7], which consists in the following.

The behavior of a program model is described by a
finite system of transitions, which is called Kripke
structure. The finiteness of a transition system implies
that the system has a finite number of states. Under
some simplification, a finite transition system may be

viewed as a finite directed graph with an explicitly sep-
arated initial vertex.

Further, in the framework of the Kripke structure,
with the use of a temporal logic language, properties of
the program model are specified, and the truth of these
properties for this model is checked. Using simple
objects such as a finite system of transitions and tempo-
ral logic formulas, it is possible to automatically verify
model properties given in the form of formulas.

Temporal logics play an important role in the formal
verification. They are used for expressing process prop-
erties, such as, for example, “the process never reaches
a deadlock state” or, “in any endless execution of a
process, action b occurs an infinite number of times.”

The objective of the model checking is to determine
whether a property given by a temporal logic formula is
satisfiable for the process specified by a transition sys-

Control environment Coffee maker control automaton

System
timer

Control
panel

A0

e0

e01

e02

e03

e04

z01

z02

A1(e11)

A1(e12)

A1(e13)

z03

z04

z05

z06

z07

z08

Boiler
automaton

A1

Coffee
maker
display

check transitions

“Ok” button is pressed

“C” button is pressed

“+” button is pressed

“–” button is pressed

increase the number of portions by one

decrease the number of portions by one

run boiler

stop boiler

reset to the initial state

clear display

indication of selection of the number of portions

boiling indication

interruption indication

termination indication

error indication

0. Ready for operation

1. Selection of the
number of portions

2. Boils coffee 3. Coffee is ready4. Interrupted
by user

5. Fault

e0 & y1 ! = 7& y1 ! = 6

e0 & y1 = 6
z07, A1(e12)

e04
z02

e01
z04

e02
z03

e01
z05, A1(e11)

e0 & y1 = 7
z08

A1(e0)

e01
z03

e03
z01

e0 & y1 = 0
z03

e0 & y1 ! = 7
z06, A1(e12)

e0 & y1 = 7
z08

e02
z03, A1(e13)

e0 & y1 ! = 0 & y1 ! =7
A1(e0), A1(e12)

Fig. 4. The scheme of links and transition graph of the coffee maker control automaton A0.
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Fig. 5. The scheme of links and transition graph of the boiler control automaton A1.
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Fig. 6. The schemes of links and transition graphs of the heater automaton A2 and valve automaton A3.
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tem (Kripke structure). Let us formulate the model
checking problem.

Model checking problem
Given a finite transition system (Kripke structure),

an initial state s0 of this system, and a temporal logic
formula ϕ, find out whether the state s0 satisfies the tem-
poral logic formula ϕ.

5. KRIPKE STRUCTURE
OF AUTOMATON MODEL

The Kripke structure over a set of elementary prop-
ositions P is a transition system S = (S, s0, , L),
where

• S is a finite set of states;
• s0 ∈ S is an initial state;
• ⊆ S × S is a total transition relation (totality

means that, for each state s ∈ S, there exists a state s' ∈ S
for which (s, s') ∈ , i.e., s  s');

• L: S  2P is a function that marks each state by
a set of elementary propositions that are true in this
state.

A path from a state s0 in the Kripke structure is an
infinite sequence of states π = s0s1s2… such that, for all
i ≥ 0, si  si + 1.

For a path π = s0s1s2s3…, πi will denote the suffix of π
obtained by deleting the first i states from π; for exam-
ple, π1 = s1s2s3…, and π(i) will denote the ith state of
the path, π(0) = s0, π(1) = s1, and so on.

For an arbitrary hierarchical program constructed on
the basis of the automaton programming, we consider
its automaton model A, which is a set of interacting
automata (A0, A1, …, An).

For this automaton model A, we construct the
Kripke structure, which, on the one hand, describes all
possible states of system A and, on the other hand,
specifies semantics of elementary propositions that are
true in these states.

Consider an arbitrary automaton Ak from system A.
In the automaton Ak, in addition to the basic states, we
separate a set of its intermediate states, the automaton
states during its transition from one state to another.
An intermediate state of the automaton transition is
fixed every time when the automaton performs one of
the elementary actions, i.e., reacts to an event ek,
addresses the control object with a query of values of

input variables xk (!xk), or produces an output action on
the control object or nested automaton zk.

Let us demonstrate the idea of separation of inter-
mediate states for a transition of an arbitrary automaton
Ak (Fig. 7).

In Fig. 7, the intermediate transition with the label
nxty is introduced in order to have an opportunity to
directly track the moment when the nested automaton
transits to the next basic state with simultaneous control
transfer to the principal automaton (in the case of the
intermediate transition nxty of the main automaton, the
main automaton remains to be active automaton).
An internal transition with label e1 may occur when the
event e1 occurs under the condition that yi! = j.
All other transitions have no conditions and are active
when the automaton comes to the corresponding inter-
mediate states. In the sequence of transitions by inter-
nal states depicted in the figure, the first transition is
necessarily that corresponding to the input event; then,
transitions with labels of input queries come; and,
finally, we have transitions marked by output actions.
Thus, we can divide the sequence of internal states into
three groups, which go one after another in accordance
with the specified order. In each group, labels of inter-
nal transitions are placed in the order the corresponding
elements are located in the expression on the arc of the
basic (original) transition.

Further, for an arbitrary automaton, under a transi-
tion to the next state, we mean an internal transition to
a basic or intermediate state.

To each automaton Ak from set A, we assign vari-
ables yk, xmk, zdk, evk, and stk (0 ≤ k ≤ n). For the entire
system of automata A, we introduce variables ev, xm,
zd, act, auto, and evnt.

The variables introduced have the following mean-
ing:

(1) Variable yk stores the last basic state of the
automaton Ak.

(2) Variable xmk contains the last executed query of
control object parameters. The values of xmk are names
of input actions in the direct or inverse form; i.e., xmk
may contain either x or !x, where x ∈ XAk.

(3) Variable zdk is used for storing the name of the
last performed output action z ∈ ZAk.

n m

mn

z3

q1 q2 q3 q4 q5 q6 q7
e1 x1 x2 !x3 z1 z2 z3 nxty

yi ! = j & e1 & x1 & x2 & !x3
z1, z2

yi ! = j 

Fig. 7. Separation of intermediate states for an automaton transition.
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(4) Variable evk contains the name of the last input
event e ∈ EAk processed by the automaton Ak, i.e., the
name of the event to which Ak reacted.

(5) Variable stk stores the current state of the autom-
aton Ak. The values of stk are both basic and intermedi-
ate states of the automaton.

(6) Variable auto contains the number of the autom-
aton from set A that is active at the current moment, i.e.,
the number of the last automaton that has received con-
trol.

(7) Variable evnt stores the name of the input event
that came for processing by the nested automaton that
has received control. The values of the variable are
names of the input events of all nested automata from A
and the empty value 0. Variable evnt takes value 0 when
the input event has been processed or ignored by the
automaton (or the automaton in the current state cannot
react to this input event). In variable evnt, the name of a
certain event is written if the control was transferred with
this event from the principal automaton to a nested one.

(8) Variable act is used for storing the name of the
last elementary action that occurred in the automaton
system A. The values of variable act may be names of
input events a ∈ EA; input queries x and !x, where x ∈ XA;
output actions z ∈ ZA; and special actions 0, nxty, and
end. After an active automaton transits to a new inter-
mediate or basic state, variable act contains the label of
this intermediate transition. Variable act takes value 0
when, being in a basic state, the nested automaton can-
not process an input event and ignores it. In this case,
the automaton performs the empty action 0 and transits
to the same basic state (does not change its state). If act =
nxty, then this means that some nested automaton has
transited to the next basic state and transferred control
to the principal automaton. Value end is used for iden-
tification of the deadlock state for the entire automaton
system. In order to fulfill the totality condition of the
transition relation for the Kripke structure, it is estab-
lished that there is only one transition from the dead-
lock state (of the Kripke structure) to the same state.
In this case, the action act = end is performed.

(9) Variables ev, xm, and zd are used for storing
names of the last performed input events, input queries,
and output actions, respectively, in the framework of
the entire system A on the whole.

Then, a state s of the Kripke structure SA of an
automaton model A is given by the following vector of
values of variables:

(act, auto, evnt, ev, xm, zd, ev0, xm0,

zd0, y0, st0, …, evn, xmn, zdn, yn, stn).

In this case, the state s may be viewed as a mapping
defined on the set of variables that is used for determin-
ing values of these variable in the state s. For example,
s(act) is the value of the variable act in the state s. At
the initial state s0 of the Kripke structure S, all variables
yi and sti contain the initial states of the corresponding

automata Ai , auto = 0 (i.e., only the main automaton A0
is active), evnt does not contain events and is set equal 0,
and, to all other variables, the initial value intl is
assigned, which is introduced only for the initialization
and is not further used.

The transition relation for the Kripke structure SA of
an automaton model A is defined in accordance with the
behavior of automaton system A.

(1) A transition of system A corresponds to only one
of the internal transitions of some automaton from A.

(2) When transition conditions are fulfilled, some
automaton Ak can perform this transition if it is active in
the given state (received control), which is reflected in
the value of variable auto = k.

(3) For an active nested automaton Ak, the transition
with a label e, where e is an input event, may occur if
evnt = e and the condition for this transition—the pred-
icate over values of variables of states yi corresponding
to this transition is true—is fulfilled. After this transi-
tion fires, the values of variables act, evnt, ev, evk, and
stk are changed. Variable evnt takes zero value, which
means that the event has been processed, and, to vari-
ables act, ev, and evk, the name of the event e is
assigned. The internal state to which the transition was
done is placed into stk. If the main automaton A0 is
active, then the transition with the label e occurs upon
fulfillment of the transition conditions, and evnt = 0.

(4) If a nested automaton Ak receives control from its
principal automaton when an event e stored in the vari-
able evnt has occurred but cannot react to it (there does
not exist a transition with the label e from the given
basic state, or transition conditions for it are not ful-
filled), then the empty action (act := 0) is performed,
the variable evnt is set equal zero, and control is trans-
ferred to the principal automaton; the number of the
principal automaton is placed into the variable auto,
and all other variables do not change their values.

(5) If a transition with a label x occurs, where x is an
input query in the direct or inverse form (x may have the
form !x'), then the following variable are modified: act := x,
xm := x, xmk := x, and stk receives the value of the inter-
nal state to which the transition has been done.

(6) Upon firing the transition of the automaton Ak
with label z, where z is an output action, the assign-
ments act := z, zd := z, and zdk := z take place, and stk
receives the value of the internal state to which the tran-
sition has been done. Moreover, if z is an output action
of the second kind, i.e., z = Ak'(e), where Ak’ is a nested
automaton, and e is an input event for the automaton Ak’
transferred together with the control, then evnt receives
value e, and the nested automaton Ak’ becomes active
owing to the assignment auto := k'.

(7) If a transition with the label nxty to a basic state
j occurred in the nested automaton Ak’, then the assign-
ments act := nxty, yk' := j, and stk' := j take place, and the
control is transferred to the principal automaton
through auto := k. If the transition nxty occurred in the



PROGRAMMING AND COMPUTER SOFTWARE      Vol. 34      No. 1      2008

MODELING, SPECIFICATION, AND VERIFICATION 37

main automaton A0, the variable auto = 0 remains
unchanged.

(8) If there exists a transition from some state Ak
marked by variables z, x, !x, or nxty, no additional con-
ditions are required for its firing if the automaton is
active: auto = k.

(9) If the system A of the interacting automata
comes to a deadlock state (which means that no transi-
tion from the basic state of the main automaton A0 is
possible because of violation of the transition condi-
tions), then a specially introduced transition act := end
occurs, which leads to the same state, and the values of
all other variables remain unchanged.

Owing to the Kripke structure constructed, it is pos-
sible to use, in specification and verification, predicates
over values of the introduced variables for elementary
propositions, which makes it possible to express the
following properties of the automaton model states.

(1) In each state of an automaton model, there exists
a possibility to find out what action was last before the
system reached the current state by means of the vari-
able act.

(2) It is possible to determine the type of the last
action; i.e., it is possible to find out whether an input
event, or an input query, or an output action occurred by
means of the expressions act = ev, act = xm, and act =
zd. For example, if act = zd in the current state of the
automaton model, then the last action before transiting
to this state was an output action. To find out what
automaton of system A produced this action, expres-
sions of the form act = zdi are used. Finally, the truth of
the expression act = z means that the last action upon
transiting to the current state was the output action z.

(3) Which automaton is active at the current moment
in each state of the automaton model is determined by
means of the variable auto. For example, if auto = 0 in
some state of system A, then the main automaton A0 is
active.

(4) In the current state of A, for each automaton Ai ,
it is possible to determine its last basic state by means
of the variable yi . Moreover, the expression yi = sti
means that the automaton Ai is in its basic state in the
current state of A. Instead of the expression yi = sti , we
will also use the expression yi == yi in order to minimize
the number of variables used in specification of ele-
mentary expressions. Then, whereas y0 = 0 means that
the last basic state of the automaton A0 was state 0, the
expression y0 == 0 indicates that the automaton A0 is in
the basis state 0 at the current moment; note that the lat-
ter expression is equivalent to y0 = 0&y0 = st0.

(5) By means of the expression act = end, it is pos-
sible to track deadlock states of the automaton system
A, and the transition of one automaton of the system to
its new basic state with simultaneous transfer of control
to the principal automaton can be tracked by means of
the expression act = nxty.

6. TEMPORAL LOGIC CTL
FOR AUTOMATON MODEL

One of the most popular temporal logics for specifi-
cation and verification of properties of program sys-
tems are the CTL (computation tree, or branching time,
logic) and LTL (linear-time logic) logics. The use of the
LTL for the verification of automaton programs
deserves special attention, since any formula in this
logic is essentially a Buchi automaton describing
(accepting) infinite admissible paths of the Kripke
structure, which, in turn, specifies the behavior (all pos-
sible implementations) of the automaton model
checked for correctness. This allows us to basically use
only a simple concept of the “automaton” in the speci-
fication and verification of automaton programs. Thus,
in a sense, the LTL is a more natural means for specifi-
cation of properties of automaton programs. On the
other hand, the CTL is also widely used in formal veri-
fication, and specification in the CTL language is simi-
lar in many respects. In what follows, we attempt to
estimate convenience of using the CTL (which is con-
sidered “less natural” for automaton models) for speci-
fying temporal properties of automaton programs.

CTL formulas for the Kripke structure SA of an
automaton model A are constructed in accordance with
the following grammar:

ϕ ::= true|p |¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|
AXϕ|EXϕ|AYiϕ|EYiϕ|AFϕ|
EF ϕ|AG ϕ|EG ϕ|A(ϕU ϕ)|

E(ϕUϕ)|A(ϕ ϕ)|E(ϕ ϕ),

where p ∈ P is an elementary proposition defined on
the set of states of the automaton model A and i in the
statements AYi and EYi is the number of an automa-
ton in A.

The satisfiability relation  for a state s of the
Kripke structure SA = (S, s0, , L) and a CTL logic
formula ϕ is defined by induction as follows:

• s  true and s  false;

• s  p for p ∈ P ⇔ p ∈ L(s);

• s  ¬ϕ ⇔ s  ϕ;

• s  ϕ ∧ ψ ⇔ s  ϕ and s  ψ;

• s  ϕ ∨ ψ ⇔ s  ϕ or s  ψ;

• s  EX ϕ ⇔ ∃s' s  s' and s'  ϕ – there exists
a next state of the Kripke structure SA in which formula
ϕ is satisfied;

• s  AX ϕ ⇔ ∀s' from s  s' it follows that s'  ϕ;
i.e., in all subsequent states of the structure SA, the for-
mula ϕ holds;

• s  E(ϕUψ) ⇔ for some path π originating from
the state s = π(0), there exists j ≥ 0 such that π(j)  ψ,
and, for all i, 0 ≤ i < j, π(i)  ϕ;

Ũ Ũ

=

= =

=

= =

= = =

= = =

= =

= =

=
=

=



38

PROGRAMMING AND COMPUTER SOFTWARE      Vol. 34      No. 1      2008

KUZMIN, SOKOLOV

• s  A(ϕUψ) ⇔ for each path π originating from
the state s = π(0), there exists j ≥ 0 such that π(j)  ψ,
and, for all i, 0 ≤ i < j, π(i)  ϕ;

• s  EF ϕ ⇔ E(trueU ϕ) – there exists a path from
s in the Kripke structure SA that passes through a state
in which ϕ holds;

• s  AF ϕ ⇔ A(trueU ϕ) – any path from the state
s in the Kripke structure SA necessarily passes through
a state in which ϕ holds;

• s  E(ϕ ψ) ⇔ for some path π originating from
the state s = π(0) and for any j ≥ 1 such that π(j)  ψ,
there exists i, 0 ≤ i < j, such that π(i)  ϕ (for some path,
formula ψ is true and must remain true until ϕ is true);

• s  A(ϕ ψ) ⇔ for each path π originating from
the state s = π(0) and for any j ≥ 1 such that π(j)  ψ,
there exists i, 0 ≤ i < j, such that π(i)  ϕ (for each path,
formula ψ is true and must remain true until ϕ is true);

• s  EG ϕ ⇔ E(false ϕ) – there exists a path from
the state s in the Kripke structure SA through which ϕ
holds (in each state of the path);

• s  AG ϕ ⇔ A(false  ϕ) – through any path (in
each state of the path) from the state s in the Kripke
structure SA, ϕ holds;

• s  EYi ϕ ⇔ EX E(yi! = yiUyi == yi&ϕ) – among
the basic states of an automaton Ai of system A that
immediately follow state s, there exists a state such that
formula ϕ holds;

• s  AYi ϕ ⇔ AX A(yi! = yiUyi == yi&ϕ) – for each
basic state of an automaton Ai of system A that imme-
diately follow state s, the formula ϕ must hold.

The last two operators are introduced in order that to
be able to express properties related mostly to the states
of automata Ai from A in a most natural way.

In addition to logical connectives ∧ and ∨, the con-
nectives  and  are traditionally used:

• ϕ  ψ ≡ ¬ϕ ∨ ψ;

• ϕ  ψ ≡ (ϕ  ψ) ∧ (ψ  ϕ) ≡ (¬ϕ ∨ ψ) ∧
(¬ϕ ∨ ϕ).

For temporal operators, the following relations hold
(they follow immediately from the definitions):

• AX ϕ ≡ ¬EX¬ϕ,

• AF ϕ ≡ ¬EG¬ϕ,

• AG ϕ ≡ ¬EF¬ϕ,

• A(ϕ ψ) ≡ ¬E(¬ϕU¬ψ),

• E(ϕ ψ) ≡ ¬A(¬ϕU¬ψ).

=
=

=

=

=

= Ũ
=

=

= Ũ
=

=

= Ũ

= Ũ

=

=

Ũ

Ũ

By using the last two relations, it is possible to get

rid of the operators E  and A  in temporal formulas,
since their definitions are rather involved and may
result in difficulties in verbal interpretation (under-
standing) of formulas.

In what follows, along with the symbols ∧ and ∨, we
will also use the symbols & and |.

A temporal property given by a temporal CTL for-
mula ϕ is considered true for the Kripke structure SA =
(S, s0, , L) of an automaton model A if and only if
s0  ϕ holds.

7. TEMPORAL PROPERTIES
OF AUTOMATON MODELS

We consider several examples of temporal proper-
ties that are common for all particular hierarchical
automaton models (for any hierarchical system of inter-
acting automata).

“Deadlock state.” The property that describes possi-
bility of coming to a deadlock state is applicable to any
automaton program (to a model of any automaton pro-
gram of the considered type). In the framework of the
above-described Kripke structure, this property can be
described in the language of the temporal CTL logic as
follows:

EF act = end.

This formula means that there exists a path from the ini-
tial state s0 of the Kripke structure to the state from
which the transition with the label end took place.
By construction of the Kripke structure SA, such a state
is a deadlock, since the transition end is added when no
other transitions from this state exist. In view of a hier-
archical structure of the automaton models, a deadlock
situation occurs only when it is impossible to leave the
basic state of the main automaton A0 because of viola-
tion of the transition conditions or if there are no tran-
sitions from this state at all.

“Deadlock state of a nested automaton.” In the pre-
vious example, the deadlock state of the whole system
was due to entering of the automaton A0 into its basic
state from which there is no way out. In this example,
we consider the property that expresses availability of a
deadlock in the nested automata. Suppose that the
Kripke structure SA transited to a new state by means of
a transition of a certain automaton Ak from A to its next
basic state with simultaneous transfer of control to the
principal automaton. Next, suppose that, for any paths
from this state of the Kripke structure, any input event
passed to the automaton Ak together with the control is
ignored either because of violations of the transition
conditions or because of lack of transitions marked by
this input event. Hence, the nested automaton ran into
some basic state and will never leave it. This basic state
at the given time moment is said to be a deadlock state

Ũ Ũ

=
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for the automaton Ak, although this may be not true in a
different situation. The property of being deadlock for
a basic state of the automaton Ak is specified as follows:

   EF AG(auto = k  act! = evk) or

 EF AG(auto = k&evnt! = 0  AX act = 0) or

   EF AG(auto = k&yk == yk  AX act = 0).

“Lost automaton.” Consider one more kind of the
deadlock state of a nested automaton. Starting from
some moment (from some state of a path in a Kripke
structure SA), a nested automaton Ak will never receive
control. Thus, starting from some moment, the autom-
aton Ak will remain in one of its basic states for ever.
This property is expressed as

EF AG auto! = k.

Below, we consider some examples of temporal
properties related to a particular automaton model of a
coffee maker control system (Section 3).

8. SPECIFICATION OF TEMPORAL PROPERTIES 
OF AUTOMATON MODEL OF COFFEE MAKER 

CONTROL SYSTEM

We demonstrate convenience and usefulness of
using the introduced Kripke structure and temporal
CTL logic for specification and verification of proper-
ties of automaton model of a coffee maker control sy-
stem.

Let us consider the following property of the coffee
maker control system formulated in a natural language.

“Correct interrupt of coffee maker operation by
user.” If the valves and the heater are not broken, and
the coffee maker boils coffee in an ordinary mode, then,
after pressing the “C” button, the main automaton A0 of
the coffee maker control transits to the state “Inter-
rupted by user,” and all nested automata must return to
their initial states before the coffee maker starts to work
again.

Let us rephrase this property using elements of the
automaton model.

If, for y31! = 4, y32! = 4, y2! = 4, and y0 == 2, event
e02 occurs, then the automaton A0 will necessarily pro-
cess it (will not ignore) and transit to the state y0 = 4.
When event e01 occurs for y0 = 0, the system will be in
the state y31 = 0, y32 = 0, y2 = 0, and y1 = 0.

Let us consider the Kripke structure generated by
the analyzed system of interacting automata and rewrite
the property using the concept of path in the Kripke
structure of the automaton model.

For all paths in the model, we have the following.
If, in a state of a path, the expression y31! = 4&y32! =
4&y2! = 4&y0 == 2 is true and event e02 occurs at the
next moment of time, then this event will necessarily be
processed, and the next basic state of the automaton A0
will be y0 == 4. When the automaton A0 comes to the
state y0 == 0 sometime later and process event e01, this

will imply that the system of automata has already been
in the state y31 == 0&y32 == 0&y2 == 0&y1 == 0&y0 == 0
before processing e01.

Let us replace all propositions over paths by tempo-
ral operators. We will obtain the following temporal
CTL formula for the described property:

AG(y31! = 4&y32! = 4&y2! = 4&y0 == 2 

 EX act = e02

&AX (act = e02

 AY0 (y0 == 4

&AG (y0 = 0&act = e01

 y31 == 0&y32 == 0&y2 == 0&y1 == 0)))).

In a similar way, we consider and specify a number
of other properties of the coffee maker control system.

“Fault determination.” If the heater or one of the
valves is broken, the coffee maker (main automaton A0)
will necessarily transit to the state “Fault.”

(1) For each path (or implementation) of the Kripke
structure of the considered system of interacting
automata, the following requirement must be satisfied.
If the systems turns to the state (y31 = 4|y32 = 4|y2 =
4)&y0 = 2, then the next state of the automaton A0 that
is different from the state y0 = 2 (“Boils coffee”) will
necessarily be the state y0 = 5.

(2) AG((y31 = 4|y32 = 4|y2 = 4)&y0 = 2  A(y0 =
2Uy0 = 5)).

“Fault indication.” If the main automaton A0 turned
to the state “Fault,” then a message on the fault type is
shown on the display (the situation where a fault takes
place but the user is not informed on its type is not per-
mitted).

(1) It is advisable to rewrite this property in a nega-
tive form as follows. There exists a path in the Kripke
structure that leads to the state y0 = 5, and, through this
path, no messages on the valve or heater damage are
displayed (none of the actions act = z35 or act = z25 takes
place).

(2) !E((act! = z35&act! = z25)Uy0 = 5).
“Fault reset.” If the automaton A0 is in the state

“Fault,” then pressing the “C” button resets all autom-
ata, including A0, into their initial states before the cof-
fee maker starts to work again.

(1) Through all paths of the Kripke structure, if y0 =
5&act = e02 in a state of a path, then, in any case, the
next state of A0 will be y0 = 0, and the event e01 for y0 = 0
may be processed when y1 = 0&y2 = 0&y31 = 0&y32 = 0
holds.

(2) AG(y0 = 5&act = e02  AY0(y0 = 0&AX(act =
e01  y1 = 0&y2 = 0&y31 = 0&y32 = 0))).

“Display reset after fault.” If the automaton A0 is in
the state “Ready for operation” after a fault, then no
fault messages are shown on the coffee maker display
(including the boiler, heater, and valve displays).



40

PROGRAMMING AND COMPUTER SOFTWARE      Vol. 34      No. 1      2008

KUZMIN, SOKOLOV

(1) If a fault message was shown on the coffee
maker display (including the boiler, heater, and valve
displays), then, before A0 turns to the initial state y0 = 0,
this message should be deleted from the display. In this
case, it is advisable to write this property in a negative
form, expecting that this condition is violated on some
path of the Kripke structure.

(2) !EF((act = z35&E(act! = z36Uy0 = 0))|
(act = z25&E(act! = z26Uy0 = 0))|

(act = z08&E(act! = z06Uy0 = 0))).

“Availability of water.” The coffee maker will never
boil coffee without water (accordingly, the boiler con-
trol automaton A1 will never turn from the state “Ready
for boiling the next portion” to the state “Boiling” if the
amount of water is not sufficient).

(1) Let us rewrite the proposition in a negative form.
There exists a path in the Kripke structure from the state
y1 == 2 to the state y1 = 4 through which the water avail-
ability sensor has not been polled or the result of the
poll was negative.

(2) !EF(y1 == 2&E(act! = x13Uy1 = 4)).

“Inadmissibility of the heater overheat.” When the
heater reaches the maximum temperature, it always
turns off: there does not exist a situation (endless pro-
cess) when the heater of the coffee maker will heat end-
lessly after exceeding the temperature threshold.

(1) If the coffee maker runs, no overheat may take
place before it returns to the initial state. In other words,
during the coffee maker operation, there may be no sit-
uation where the automaton A2, being in the state y2 == 2
(“Heater is turned on”), will have no chance to check its
transition conditions for an infinite long time (will not
be able to send a query to the temperature sensor or will
not receive the command to turn off). Such a situation
is possible in two cases. In the first case, the main
automaton A0 falls into a state from which it can escape
only if the button is pressed or if it addresses (by the
system timer) the control object with a query of param-
eters, whereas the automaton A2 is in the state y2 == 2.
Then, the automaton A2 can potentially endlessly wait
for signals e0 and e22 from the automaton A0, which will
result in the heater overheat. In the second case, there
exists an endless path in the Kripke structure of the
automaton model on which the automaton A2 in the
state y2 == 2 also does not receive events e0 and e22 from
the main automaton A0. This case includes the possibil-
ity that the automaton system falls into a deadlock state
under the condition y2 == 2, since the endless path lead-
ing to the deadlock state, which further passes through
it because of the loop act = end, is taken into account.
It is important to note that the automaton A0 does not
contain any queries x.

(2) !EF(y2 == 2&auto = 0&y0 == y0&AX(act! =
e0&act! = end))&!EF EG(y2 == 2&(auto = 2 
AX(act! = e0&act! = e22))).

“Initial state.” If the automaton A0 turned to the ini-
tial state “Ready for operation,” then all nested autom-
ata are already in their initial states.

(1) For all paths of the Kripke structure of the
automaton model, if the automaton A0 came to the state
y0 == 0, then all nested automata are in the initial states:
y1 == &y2 == 0&y31 == 0&y32 == 0.

(2) AG(y0 == 0  y1 == 0&y2 == 0&y31 ==
0&y32 == 0).

“Reactivity condition.” The coffee maker control
system will never come to a state in which it does not
react to events of the system timer or to pressing but-
tons “Ok” and “C.”

(1) There does not exist a path to a state that the sys-
tem cannot leave. In other words, the system never
comes to a deadlock. Since the Kripke structure of the
automaton model possesses the total transition relation,
each deadlock state has only one transition, the transi-
tion to itself. In this case, the action act = end is per-
formed.

(2) !(EF act = end).
Thus, the above examples show that intelligible sys-

tem properties, which have rather involved formulation
in a natural language, can successfully be specified as
CTL formulas, which makes it possible to automati-
cally verify them for the model under consideration.
Note that similar properties written in the LTL logic
language look simpler.

9. MODEL REDUCTION

Since automated verification by the model checking
method suggests using search methods, it is important
to generate the Kripke structure of the automaton
model that contains as few states as possible but still
allows us to verify temporal properties of the automa-
ton model.

In the given case, it is possible to reduce the intro-
duced Kripke structure of the automaton model with
respect to the verified temporal properties given by
CTL formulas.

Let us describe several examples when the reduction
of the model with respect to a formula is advisable.

If elementary propositions in a temporal formula are
predicates defined only with the use of expressions over
basic states of the form yi == k, then we may not con-
sider intermediate states of the model that have nothing
to do with output actions of the second kind (Section 2):
all intermediate states not related to control transfer
between the automata can be removed from the model.

For example, consider the formula

AG(y0 == 0  y1 == 0&y2 == 0

 &y31 == 0&y32 == 0).

If this formula is true (or false) for some Kripke
structure, then it remains true (or false) for the reduced
Kripke structure obtained from the original one by
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means of the transformation (reduction) shown in Fig. 8.
In this figure, the original automaton transition does not
contain output actions of the second kind, which made
it possible to reduce the number of the intermediate
states to one for a transition between the basic states of
the automaton.

Figure 9 shows an example of reduction of the
Kripke structure in the case where the control is trans-
ferred to a nested automaton during the automaton tran-
sition.

Consider one more example of the formula for
which reduction of the dimension of the Kripke struc-
ture of the automaton model is possible:

EF(act = z2&EX E(act! = z2Uy0 = 0)).

This formula expresses the following property.
There exists a path in the Kripke structure containing a
transition marked by the output action z2, and, after this
transition, through the remaining part of the path to the
state y0 = 0, the transition with the label z2 is not met
anymore. For this property, transitions with labels dif-
ferent from z2 are not of interest and can be depersonal-
ized, and a sequence of several impersonal transitions
going one after another can be replaced by one transi-
tion or be even excluded from the Kripke structure. Fig-
ure 10 shows an example of reduction of the Kripke
structure by the above formula for the automaton tran-
sition that has no output actions of the second kind.

Thus, after analysis of a temporal formula, it is pos-
sible to construct the Kripke structure of the automaton
model with fewer number of states that is invariant with
respect to the formula, which makes it possible to verify
the properties of the automaton model given by this for-
mula in less time.

In connection with this, of interest are classes of
temporal properties for which reduction of the Kripke
structure of the automaton model is most efficient.

10. PRACTICAL IMPLEMENTATION

The definition of the Kripke structure of the autom-
aton model and the property specification described
make it possible to apply the model checking method
for verification of automaton programs. For this pur-
pose, it makes sense to use already existing application
packages for verification developed and supported by
the leading scientific laboratories for a long period
(more than ten years).

However, the problem is that each verificator has its
own formalism for specifying models and its own
method of generation of the Kripke structure for this
model. Moreover, the verificators have different modi-
fications (implementations) of temporal logic, which
may be less expressive than the temporal CTL logic
considered above.

n m

mn

z3

q1 q2 q3 q4 q5 q6 q7
e1 x1 x2 !x3 z1 z2 z3 nxty

yi ! = j & e1 & x1 & x2 & !x3
z1, z2

yi ! = j 

n m
e1

yi ! = j 

nxty
q1

Fig. 8. Example of reduction of the number of intermediate states in the Kripke structure for automaton transitions not containing
output actions of the second kind.
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Ak(ek1), z1, Ak(ek2)

yi ! = j 

n m
e1

yi ! = j 

nxty
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Fig. 9. Example of reduction of the number of intermediate states in the Kripke structure for automaton transitions containing output
actions of the second kind.
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One faces a difficult problem of adequate specifica-
tion of the Kripke structure using the means of the
existing verificators. Speaking of adequacy, we mean
generation of the Kripke structure for the given formal
model that possesses all properties of the original
automaton model and does not possess any other prop-
erties that are not inherent in the original model.
It should be guaranteed that, after checking properties
for the model specified in the framework of the pro-
gram–verificator, the result of this checking will
uniquely be applicable to the properties of the original
automaton model. Moreover, when choosing the verif-
icator, one should take into account expressiveness of
the temporal logic implemented in it in order to be able
to express types of the automaton model properties
described above.

Thus, after selection of an adequate and expressive
verificator, practical implementation of automated
checking properties of automaton programs can be rep-
resented in the form shown in Fig. 11.

An important feature of this scheme is the utility of
adequate translation of the automaton model and its
properties into such a formal model and specification
that are allowed by the interface of the program–verifi-
cator. In accordance with the requirements, the transla-
tion utility must always ensure correct and unambigu-
ous correspondence between results of checking prop-
erties by the verificator and the truth of this property of
the automaton model.

11. CONCLUSIONS

An automaton program is a very convenient object
for verification by the model checking method. Proper-
ties of the automaton program system are formulated
and specified in a natural and clear way. They are easily
related to the interacting automata that specify logic of
the automaton program, since elements of the control
automata are either explicitly expressed states of the
control object or comprehensible actions on it. The ver-
ification of properties is carried out in the terms that
naturally follow from the automaton model of the pro-
gram. The elementary propositions in the context of
these properties are defined on the model elements, i.e.,
on events, input and output actions, and states. If testing
reveals an error after the verification by the model
checking method, then it will, most likely, refer to
incorrect program implementation of the output actions
rather than to the violation of the program logic, which
will not require global reengineering of the automaton
program (the correction will reduce to local modifica-
tions of one or several, usually small, procedures, the
correctness of which can then be proved by the deduc-
tive analysis method).

The development of formal methods and technolo-
gies for simulation, specification, and verification of
automaton programs and construction of an integrated
program complex on this basis will allow us to design
and implement reliable program systems for control-
ling crucial objects. For this purpose, it makes sense to
use already existing packages of applied program–ver-

n m
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z3

q1 q2 q3 q4 q5 q6 q7
e1 x1 x2 !x3 z1 z2 z3 nxty

yi ! = j & e1 & x1 & x2 & !x3
z1, z2

yi ! = j 

n m
e1

yi ! = j 

nxty
q1

z2
q2

Fig. 10. Reduction of the number of intermediate states in the Kripke structure with respect to formula EF(act = z2&EX E(act! =
z2Uy0 = 0)) for automaton transitions not containing output actions of the second kind.
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Fig. 11. Use of the model checking method for verification of automaton programs.
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ificators developed and supported by leading foreign
and Russian scientific laboratories and centers. The
majority of such verification tools are provided free for
researchers. However, there exist commercial versions
of program–verificators that can be used for industrial
purposes by themselves and in combination with other
tools for program analysis and verification. Research in
this direction [13–15] resulted in the creation of a veri-
fication program prototype called “Automaton program
simulation and verification system” (Vinogradov, R.A.,
Kuzmin, E.V., and Sokolov, V.A., certificate no.
2007611856).

It is important to note that, in construction of reac-
tive real-time systems on the basis of the automaton
approach to programming, the classical model check-
ing method is not sufficient for analysis of complex
temporal properties (properties with time constraints).
In this case, it is required to apply the existing methods
and tools for the verification of real-time systems,
which are extensions of the model checking method. In
the construction and modeling of temporal systems, the
main focus is placed on the time interpretation. In the
automaton programming of synchronous real-time sys-
tems, it makes sense to construct and verify models
with discrete time. In this case, the specification is
implemented in a language of real-time temporal logic.
The temporal logic extended with regard to the discrete
real time makes it possible to express such properties as
“it is always true that q follows p not later than in three
units of time.” An example of such a temporal logic is
the RTCTL (real-time CTL), which is used for specifi-
cation of properties in the VERUS verificator. On the
other hand, the continuous time is natural for asynchro-
nous systems, since the time interval separating events
may be as small as desired. Standard formalism for
modeling and analysis of asynchronous real-time sys-
tems is provided by timed automata.

Verification of automaton programs with the use of
models based on timed automata can be done, for
example, by means the UPPAAL [16] and KHRONOS
[17] tools.

Finally, for modeling of automaton programs, linear
hybrid automata (generalization of timed automata) can
be used. In this case, only partial algorithms are used
for solving the verification problems. However, as
noted in the manual to the HyTech system [18]
designed for verification of linear hybrid automata, par-
tial algorithms used in HyTech converged in the major-
ity of cases. Moreover, there exists a wide class of
hybrid systems for which iteration methods and analy-
sis procedures are decidable (always converge). Thus,
the linear hybrid automata present a borderline (in
terms of expressiveness) formalism, which is still appli-
cable to modeling and analysis of the automaton pro-
grams.
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