Automation and Remote Control, Vol. 57, No. 1, 1996

AUTOMATA

REALIZATION OF BOOLEAN FUNCTIONS BY ONE LINEAR
ARITHMETIC POLYNOMIAL WITH MASKING

V. N. Kondrat’ev and A. A. Shalyto UDC 519.714

Efficient — in terms of labor consumplion and compaciness of representation — methods realizing
the threshold, threshold-linear, and linear Boolean funclions by one linear (noniterated) arithmetic
polynomial with masking are proposed. Realization of symmetric Boolean functions is discussed.

1. INTRODUCTION

The use of microprocessors and microcomputers in systems of logic control has enabled one to realize Boolean
“functions (BF) by nontraditional methods relying on the tremendous possibilities offered by these facilities. Realiza-
tion of BFs by arithmetic polynomials (AP) [1-14] is among these methods.

Since, in the general case, the AP for a BF of n variables is nonlinear (iterated) and has 2" terms, its
computational complexity grows dramatically with n. Realization of BFs by linear (noniterated) APs (LAP) is
especially important, because the computation of LAPs reduces to summing the coefficients of the variables that are
equal to unity. Yet, the matters involved in realization of BFs by LAPs have not yet been adequately explored.

Artukhov, Kondrat’ev, and Shalyto [7] determined the linearity condition under which a BF of n variables
is realizable by one irredundant LAP of these variables. We recall that a LAP is referred to as irredundant if the
number of bits in the binary representation of the maximal value as computed from the polynomial equals the
number of realizable BFs, or redundant if this number exceeds the number of realizable functions. As shown below,
the irredundant LAP realizes only BFs that depend essentially on one variable at most.

The class of LAP-realizable functions can be expanded by redundantization, that is, by realization of other
functions besides the given one [1]. Here, the LAP computes from an input pattern the decimal value of the cortege
of functions whose binary representation has in the corresponding digit the value which the given function has on
this pattern.

If the least-significant digit is assumed to be first, then the operation of selecting the £th digit in the m-bit
binary representation of the decimal number will be called masking and denoted by r’,, and the transformation of a
decimal number into binary form will be denoted by “bin.”

A LAP whose decimal value is masked in order to select a bit in its binary representation will be referred to
as a masked LAP (MLAP). Efremov, Kuz’min, and Stepanov proposed [4] a method for MLAP construction, which
is very difficult because of the need to transform involved logic formulas and solve complex logic equations by the
use of integer programming based on the Balas algorithm.

Malyugin [3] described a much simpler method for realization of arbitrary BFs defined in the normal dis-
Jjunctive form by superposing two MLAPs of which the first MLAP calculates all conjunctions and the second one
establishes the disjunction resulting from substituting a new letter for each conjunction in the BF. Thus, we can state
with reasonable confidence that no constructive method exists for introducing additional functions into a cortege
with the given BF with the aim of realizing them by a single MLAP.

The present publication proposes efficient — in terms of labor consumption and compactness of represen-
tation — methods for realizing threshold, threshold-linear, and linear BFs by one MLAP. This is of both practical
(if the MLAP is more compact than other forms offunction representation) and theoretical importance, because

Research Institute of the Research and Production Association “AVRORA,” St. Petersburg. Translated from
Avtomatika i Telemekhanika, No. 1, pp. 158-170, January, 1996. Original article submitted November 15, 1994.

0005-1179/96/5701-0127$15.00 ©1996 Plenum Publishing Corporation 127

the proposed methods are meant for determining the interrelations between such important mathematical objects
as Boolean functions (formulas) and linear arithmetic polynomials. The theorems of [4, 6] associated with the BF.
classes were also used in developing these methods.

2. REALIZATION OF BOOLEAN FUNCTIONS BY AN IRREDUNDANT
LINEAR ARITHMETIC POLYNOMIAL

THEOREM 1. The linear arithmetic polynomial can realize noniteratively only a Boolean function which
is dependent essentially on one variable at most — 0, 1, !z, z, where ! stands for “inversion.”

Proof. Each value of the BF must be either 0 or 1, and the LAP coefficients can assume values —1, 0, 1,
except for a0 = 0,1. If a0 = 0 (a0 = 1), then at most one of the remaining coefficients can be 1 (—1), whereas the
remaining coefficients must be 0. Otherwise, the polynomial will be neither 0 nor 1 on at least one input pattern,
which proves the theorem.

As follows from the theorem, a single BF, which is essentially dependent on two or more variables, is not
realizable by the noniterated LAP; therefore, we will consider realization of such functions by the MLAP.

3. REALIZATION OF THE THRESHOLD FUNCTIONS

This section considers two methods for realization of the threshold functions (TF). The first method con-
structs a MLAP of n variables using the threshold representation of the function of n variables, and the second one
uses the MLAP of the threshold function of the (n — 1)st variable.

(a) First method. A Boolean function is called a threshold function if

n
1 for Zwi*zi)T,

f= l'il (l)
0 for z:wi*zi<T,

i=1

where wi is the weight of variable zi, T is the threshold of a function, and * stands for “multiplication.”
Thus, we can assert that the threshold function f of n variables has the LAP

P=-TH+wlxzl+w2*xz2+...+wn*zn
and the conditional operator
if (P > 0) then f="1else f =0.
In this section, our task is to find for f another LAP
P=uwl+wl*zl+w2*xz24+...4+ unxzn,
such that
f = r(bin P).

Therefore, the problem reduces, in a sense, to checking whether it is possible to replace the conditional
operator by masking, which is simpler for software realization.

For a function f of n variables, which belongs to the classes of nonthreshold functions considered in this
work, a LAP is sought

P=a0+al*xzl+a2*z2+...+anx*zn
such that

f = (bin P).

128

Returning now to the threshold functions, we note that if the threshold is 2* (a = 0,1,2,...), it follows

that 1 in at least one bit of the binary representation of the values }_ wi = zi beginning from the bit a + 1 (for bit
=1
enumeration beginning from 1) testifies that the computed value has reached or exceeded T.
If T # 22, then by increasing the threshold to the nearest higher degree of two the problem can be reduced

to the above one. To this end, we add 21'°8:Tl — T to both sides of (1):

2]1057T[—T+2wi*£i22]1052T[. (2)

i=1

Here, the threshold will be T} = 2% = 211983 T(_ The left-hand side of (2) is a LAP of the form

P:2]l°52T[—T+Zwi*xi. (3)

i=1
It follows that an arbitrary TF is realizable as
f=r4(bin P)|r§ 7} (bin P)| ... |r5+ (bin P), (4)

where (3 is the number of bits in the binary representation of the maximal value of P and | denotes “disjunction.”
Example 1. It is required to realize the TF f ==z1|z2]|z3.
Here, (1) takes the form z1 4 z2 4+ z3 > 2°. Since here the maximal value of P is equal to three, it follows
that 8= 2. Since a = 0, it follows from (4) that

f = r3(bin (21 + 22 + 23)) | r} (bin (z1 + 2 + 23)).

We consider the case of 3 = a + 1 — the threshold is exceeded only in one bit of the binary representation
of P. To this end, 3 must not exceed the number of bits in the binary representation of the threshold 77. This
condition is representable as

Prax < 2*T. (5)

where Pp,x 1s the maximal value of the polynomial P.

We note that if the condition (5) for TF is not satisfied, then the value of 7} must be doubled by adding T}
to both sides of (2). If again (5) is not satisfied, this procedure is iterated until this condition is satisfied. Therefore,
(5) can be satisfied for any TF, because the right-hand side of (5) grows with double speed upon increasing both
sides of (2).

Thus, we have proved that an arbitrary TF is computable as

f = r5(bin P). (6)

The software realization of this relationship in a high-level language such as C is extremely simple: compute
the value of the polynomial P on the given input pattern, shift the result by 8 — 1 bits to the right, and read the
final result which equals the TF on this pattern.

To apply this approach to the given TF, it is first necessary to find its threshold realization (TR) (1).

The procedure for determination of the weights of variables and the TF threshold is very laborious {15].
Therefore, we consider three simpler approaches to establishing the threshold realization. The first approach con-
structs the TR directly from its description. The second approach is based on the catalogs of optimal TRs (for
example, [16]) for arbitrary TFs of six variables at most. The third one, which is described in the Appendix, is
applicable to the noniterated threshold formulas (NTF), which are of both practical and theoretical significance [17].

Example 2. lt is required to realize the TF “two or more of three” described by f = (z1|z2)&z3 |z1&z2.

It follows from the verbal description of the function that z1 + z2 + z3 > 2. Since here 7 = 2% and (3) is
satisfied, it follows that

f = ri(bin(z1 + 22 + £3)).

We illustrate the obtained relationship by Table 1.
It follows from Table 1 that by means of redundancy (realization of the polynomials of two functions instead
of one) and masking one can construct a MLAP

f=zl*xz24+21 %23+ 2223 —~2+zl x 22 % 23,

instead of an irredundant (in terms of united functions) but more complicated nonlinear AP (NAP) [7].

129

TABLE 1

bin (z1 + 2 + £3)
zl 2 z3 zl + 224 z3 2

T2 L]
0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 1 0 1
0 1 1 2 1 0
1 0 0 1 0 1
1 0 1 2 1 0
1 1 0 2 1 0
1 1 1 3 1 1

Thus, the fact that a noniterated AP with masking corresponds to an iterated BF underlies its efficien
software realization. For a noniterated Boolean function, its direct software realization is always more efficient thas
that of a MLAP-based realization. Yet, for systems of threshold (even noniterated) functions, MLAPs can enable &

memory-minimal software realization [13].
The determined MLAP is realized in C by the following program:

mlap (intzl, intz2, intz3)
{ int f;
f=(z1+22+123)>1;},
where > L stands for “L-bit right shift.”
Importantly, for the chosen types of variables, this fourteen-byte realization of the function “two or more

of three” is the simplest one, compared with more than sixty other variants of its software realization known to the
present authors. For example, the direct realization of

for (int zl, int 22, int z3)
{nt f;
f=(zl|22)&z3|z1&z2;}
requires 20 bytes of memory space, and the TR
prg (int z1, int z2, int z3)
{intf=0;
if (z14+22423)22) f=1;}
requires even 24 bytes.
Example 3. It is required to realize the TF “seven or more of ten.”

10
It follows from the description of the function that 3~ zi > 7. If we increase the function threshold to 2%g

i=1

10
then 14+ Y zi > 8. Since (5) is satisfied, it follows that

i=1
10
f=ri (bin(l +Z:ci>> ,
i=1

This example illustrates the high efficiency of MLAPs, because here the truth table, Boolean function, &
NAP are very inconvenient and require much memory.

Example 4. It is required to realize the TF f = (z1| 22| z3)&z4|z1&z2& 3.

It follows from [15] that here 1+ 22+ z3 +2+z4 > 3. Using the fact that T # 29, we increase the threshali]
of 1 +z14+ 22+ 23 +2+24 > 4. Since (2) and (5) are satisfied, it follows that

f=ri(bin(1+zl+22+ 23+ 2%z4)).

130

s

Example 5. 1t is required to realize the NTF f = z1&=z2.
Using the method described in the Appendix, we get zl + z2 > 2. Since here T = 2% and (5) is satisfied, it
follows that

f =r3(bin(z1+ z2)).

Example 6. 1t is required to realize the NTF f = z1|z2.
Using the method described in the Appendix, we get z1 + 22 > 1. Since T = 29, but (5) is not satisfied, we
increase the function threshold — 1+ z1 + 22 > 2. Since now both conditions are satisfied, it follows that

= r3(bin (1 + z1 + z2)).

Example 7. 1Itis required'to realize the NTF f = z1&z2&z3.

Using the method described in the Appendix, we get z1 + 22 + 3 > 3. Since T # 2%, we increase the
function threshold up to the nearest degree of two — 1+ z1 + 22+ z3 > 4. In view of the fact that here (5) is
satisfied, it follows that :

= r3(bin (1 + z1 + 22 + z3)).

Example 8. It is required to realize the NTF f = z1&z2|z3.

: Using the method described in the Appendix, we get 21 +22+2x 23 > 2. Here, T = 29, but since (5) is not
satisfied (Pnax = 2 * T'), we increase the threshold up to the next degree of two — 24214+ 224+2*23 > 4. Since

now (5) is satisfied, it follows that

= r3(bin (2 + z1 + 72 + 2+ 23)).

(b) Second method. The method is based on the theorem presented in [6].

THEOREM 2. If the cortege fn # fn—1 #,...,#, Ji of N Boolean functions of n variables is realized by
 the linear a.rithmetic polynomial Py, it follows that the cortege of (N + 1) function

(fN&2n+1)#(fN@zn+1)#fN 1 # ... #N (7)
is reahzed by LAP of the form PN+1 =Py +2¥-1 « z,,,, and a cortege of the same number of functions
(UN|Zap 1)) #F(INB Zn1 @) # v # ... # A (8)

is realized by a LAP of the form Py, = Py + 2V~ 2 2,1 + 21, where # is the operation of linking into a
cortege and @ is “modulo 2 sum.”

_ By virtue of the fact that the LAP realizes only function corteges where the extreme left function fi is a
TF [13] and that fy&z,41 and fi | z.41 are also thrahold functions if fy is a threshold function of n variables

[15]), Theorem 2 defines:

« a recursive method of constructlng a MLAP for a NTF and

« a simple method of realizing a TF of the form fny&zn41 and fnv | zny1 for the case where the MLAP for
fn has been established using, for example, the above approaches.

Example 9. It is required to realize the BF f = r1&z2&z3.

It follows from Example 5 that N =2 for f1 = z1&z2 n = 2, and, therefore, we have from (7) that

= r3(bin (21 + 72 + 2 * 23)).

It follows from the above relationship and Example 7 that the representation of BFs by MLAPs is not
unique — in contrast to their representation.by APs (1, 7].
' Example 10. It is required to realize the BF f = (z1|z2)&z3|z1&z2|z4. .

It follows from Example 2 that N = 2 for f1 = (z1|z2)&z3|z1&z2 n = 2, and, therefore, we get from (8)
that .

=r3(bin(2+ 21 + 22 + 23 + 2 + z4))’
The above methods are applicable to the TFs representable by inversionless formulas — the positive monotone

TFs.

131

If the realized formula involves variables suchas !zi, then a MLAP is constructed for a positive monotone
TF of the same type and then 1 — zi is substituted into it for the variable !z1.

Example 11. It is required to realize the TF f = z1|!z2.

It follows from the aforesaid and Example 6 that

f=r3(bin (2 + z1 — z2)).
Example 12. It is required to realize the TF f = (z1|z2)&z3 |z1&z2|!z4.

It follows from the aforesaid and Example 10 that

f:T'g(biﬂ(4+1?1+1:2+1:3—2*:c4))_

4. REALIZATION OF THE LINEAR FUNCTIONS

By a linear BF is meant a BF representable by
f=c0®cléz]l B c2&z2B...D cnkzn,
where ci =0, 1.
The linear function is realized by a MLAP of the form

n—co

f= r%+[log2 n] <bin (c0%(1—2zn)+ Z ck * :clc)).

k=1
Therefore,

fl=z1®z2= r;(bin(zl+z2)),
f2=zl®zr20z3 = r;(bin(:cl + 72+ z3)).

The second of the above functions is realized in C by the following program:

mod (intzl, intz2, int z3)
{int f;
f=(z1+z24+23)& 1;}.

The above functions are realized by the same MLAPs as the functions f1 = z1&z2 and f2 = (z1|z2)&z3 |zl
&z2, respectively, as they must be for the binary one-bit half-adder and adder.

5. REALIZATION OF THE THRESHOLD-LINEAR FUNCTIONS

By a threshold-linear function (TLF) is meant a Boolean function representable as
f=fi(z1,...,zN)® zi @...® 7],

where f1 is the threshold function, : and j are integers, and zi = {lzi, zi}.

Let us consider the methods for constructing the MLAPs for TLFs, provided that the realized function is
defined in threshold-linear form.

Theorem 2 allows one to realize the TLFs for which i,j > n and the MLAP for f1 is determined using the
methods of Sec. 3.

Example 13. It is required to realize the TLF f = z1&z2&z3®!z4.

It follows from Example 7 that f1 = z1&z2&z3 = r3(bin (14 z1 + 22 + £3)). Therefore, we determine from
(8) that f = z1&z2&z3@!74 = z1&22&z3 @ z4 + 1 = ri(bin (5 + =1 + 22+ 23 + 4+ 24)).

We realize the given function in a different way. It follows from (7) and Sec. 3 that f = z1&r2&z3@!z4 =
r3(bin (5 + z1 + 22 + 23 — 4 + z4)).

132

This relationship is realized in C by the following progranr:

plf (intzl, intz2, int 3, intz4)
{ int f;
f=((5+z1+22+23-4+24)32) & 1;}.

The disadvantage of Theorem 2 — inapplicability to the case ¢, j < n — can be eliminated using the following
theorem [4].

THEOREM 3. If f1 = rk (bin Py), then f = f1 ® zi is realized in the kth digit of the polynomial
Py + 251 g, where i = {1,2,...,n+ 1}.

Example 14. It is required to realize the TLF f = z1 @ z2&(!z3 | z4)).

It follows from Example 11 that f1 =!z3|z4 = r3(bin(2 — 23 + z4)).

From (7) we have that f2 = z2&(!z3 | z4) = r3(bin (2 + 2 + 22 — £3 + z4)). By Theorem 3, f = rj(bin(2 +
4+zl1+4+2%22— 13+ z4)). We note that in [1] this formula is realized by a substantially more complex NAP:

f=1—-z1—22—-23+2+zl %2242+l %23 +2*22+x23 + 23+ 24
—4 2zl *x22+23-2%21 %23 +24~2+22x23 224 +4%2] x22 %23 » 24.

Example 15. 1t is required to realize the TLF f = (zl |z2|23) @ 23. -
By virtue of f1 = z1|z2|23 = r3(bin (3 + z1 + z2 + z3)), it follows from Theorem 3 that

=r3(bin (3 +z1 + 22 + 5 * 23)).

On the other hand, since f = (21 |22|23)® z3 = (21| z2)&=z3 is a NTF, it follows from the results of Sec. 3
that

f =r3(bin(3 + z1+ 22 — 2+ z3)).

Example 16. [t is required to realize the TLF f = z1&z2® z3 ® z4 ® z5.
Iterative application of Theorem 3 provides f1 = z1&z2 = r3(bin (z1+22)), f2 = z1&z2®z3 = rj(bin (z1+
2+ 2%z3)), and f3 = z1&z2 B 23 ® 24 = r3(bin(z1 + z2 + 2 + 23 + 2 » z4)). Thus,

f=rﬁ(bin(zl+z2+2*z3+2*z4+2*1:5)).

Interestingly, in contrast to the above examples, the realized function has “shifted” here to the middle of the

binary representation.
Now we consider the case where a TLF is defined in a form different from the threshold-linear one. It is

suggested to seek such a form using the relationships (7]
f = (lzi&f(0) | zi&!f(1)) ® =i; (9)
f = (lzi&! £(0) | zik (1)) ® !=i. (10)

Example 17. 1t is required to realize the TLF f =!z1&z2|z1&!22&z3.
We get from (9) that f = fl® z1 = (z1&!z3|z2) ® z1. For the NTF, f1 = r3(bin (3 + z1 + 2 * 22 — z3)).
Therefore, we get from Theorem 3 that

f =ri(bin(3 + z1 + 2 * 2 - z3)).

This function was realized by Efremov, Kuz’min, and Stepanov [4] using the Balas algorithm and a more
complex polynomial:

f=ri(bin(5+12x21 +6+22 + 14+ 23)).

Example 18. It is required to realize the TLF, f = (!z1|!z2[!23)&(z1|z2]|23)).
We get from (9) that f = f1®z1 = (1z1&(z2| z3) | z2&z3)®zl. For the TLF, f1 = r3(bin (1— zl+z2+z3))
Therefore, we get from Theorem 3 that

f= rg(bin(l +z1 422+ 1:3)).

133

Example 19. It is required to realize the TLF f = z1&!22&!23& 24 |!z1&22& 23424 |\21&!22& 24 | 214
r3&!z4 | 224! 234! 4. ,

It follows from (9) for i = 4 that f = f1 @ z4 = (!z1&!22| z1&z3|z2&!23) @ z4. By applying (10) to f1,
we get [= f2dlzl @ z4 = ((z1 | z2)&z3 | z1&22)B!z1 @ z4.

It follows from Example 2 that f2 = r2(bin (z1 + z2 + z3)). Therefore, by applying Theorem 3 we get that
f1 =r%(bin(2 — z1 + z2 + £3)). By using Theorem 3 again we,get

f=ri(bin(2—z1+z2+ 23+ 2xz4)).

In contrast to other forms of representing this function, the obtained relationship is noniterated, thus enabling
a simpler software realization.

The form and complexity of the MLAP found from the TLF depend also on the particular relationship used
and on the variable used as zi.

Example 20. It is required to realize the TLF f =!z1&!22&23 | r1&z24&!23.

Assuming in (9) that zi = z1, we get f = f1®z1 = (121&(122&23) | z1&!(z2&!23)) Bz = ((z1|z3)&!z2 | 21
&z3) ozl. '

Here, f1 = ri(bin(1 + z1 — 22 + z3)), because f2 = (z1|z3)&zr2|z1&z3 = ri(bin(zl + 2 + z3)). By
Theorem 3, we have

f=ri(bin(1+3*zl— 22+ z23)).

Using the variables !z1, 22, !z2, z3, and !z3 as zi, we get the following relationships: f = r3(bin (4 — 3 *
zl+ 22— 23)) = ri(bin(1 — 21+ 3 * 22 + £3)) = r3(bin (4 + z1 — 3 * 22 — z3)) = r3(bin(zl + 22+ 3 * 23)) =
r2(bin (5 — z1 — 22 — 3 * 23)).

The simplest realization, thus, is obtained with zi = £3. The questions of membership of the function in the
TLF class and of the choice of the variable zi in (9) and (10) still remain open.

6. REALIZATION OF SYMMETRIC FUNCTIONS

n
We consider the class of LAPs of the form P = 3 zi describing combinatorial counters. Their design
i=1
requires the determination of a system of 1 + [log, n] symmetric Boolean functions that are realized as follows.

We write an (n+ 1) * 1 column matrix whose elements assume values from 0,1,..., n. It is transformed into
an (n +1)*(1+ [log, n]) binary matrix whose ith (i =0, 1,...,n) row is the binary representation of the ith element
of the column matrix. Here, the jth column of the binary matrix is the characteristic number of the jth function,
and 1 in its ith bit indicates that this function has a working number.

Example 21. It is required to determine the symmetric functions (SF) realized by the LAP P =
zl + 22+ 23 + z4.

By executing the aforementioned constructions and transformations, we get

0 0 0.0
1 00 1

P=|2|=[01 0|=|Si#S5a#5s|
3 011
4 100

Let us consider a wider class of LAPs:

n
Pl=cl+c2x)Y zi, (11)
=1
where cl, ¢2 are positive integers. This class of LAPs realizes SFs as above.
Example 22. It is required to determine the SFs realizable by the LAP P1 =345 (z1 4+ 224 23 4 z4).
The required functions are determined as follows:

0 3 00011
1 8 01000

Pl=3+5x2|=|13 =0 1 1 0 1 |=|S3,#St,#S3,#Stsa#Sts4 |
3 18 10010
4 23 10111

134

It follows from above, for instance, that
f=583,=rd (bin(3 +5x(z1+22+ 23+ 1:4))).

We prove that this realization is more efficient than the direct construction of the AP for a SF.
An arbitrary SF of n variables was shown [12] to be realizable by an AP w1th at most n + 1 coefficients ai.
For n = 4, the following relationship holds:

f=ad+ v} +a3 =yl + a2+ y2 + al * ¥} + a0,
where
1=zl x22%23 24,
V3=zl+z2+23 421 %2224+ 21 + 23+ 24 + 22+ 23 x 24;
¢Z=zl*z2+zl*z3+z1*z4+z2*z3+z2*z4+z3*z4;

Vi =zl + 72+ 23 + z4.

For the function S3 4, it was proved in [12] that (a4, a3, a2, a1, a0) = (7,-3,1,0,0).

It follows from the aforesaid that (11) can be regarded as an efficient SF generator. Studies have shown
that all SFs of two variables are generated by five LAPs for ¢1 = 0,...,4, ¢2 = 1, and all SFs of three variables are
. generated by eleven LAPs, where¢1 =0,...,5,c2=1;¢l =7, c2_1 cl—0 c2—3 cl=2,c2=3;cl=4,c2=3;
cl=5,c2=5.

This method is based on enumerative search and does not ensure realization of an arbitrary SF of n variables.
Constructive methods for realization of threshold, threshold-linear, and linear SFs were considered above. For
example, using the method of Sec. 5 we can show that

S8 23 = (z1&z3|!1z2) @zl ® 23 = r3(bin (4 + 5+ zl — 2+ 22+ 5 + 23));
5:1‘l = (!31“173)&1‘26321632:3—r4(b1n(3+3*zl+2*z2+3*z3))

The question of membership of an arbitrary SF of n variables in one of the classes listed above remains open.

APPENDIX

CONSTRUCTION OF THE THRESHOLD REALIZATION FOR A POSITIVE

" MONOTONE NONITERATED THRESHOLD FORMULA

1. In the basis {&, | } of k characters, a tree-like circuit of two-input ANDs and ORs of maximal depth h—1
is constructed. If this circuit is “linear,” that is, if all its elements are connected serially, then the given formula is a
positive monotone noniterated threshold formula (PMNTF).

2. A linear binary graph (LBG) (17] with maximal number of paths from the input to the unity and zero
outputs is constructed for the PMNTF [18].

3. By the modified [19] Akers method [20], we count the number of paths in the LBG, the zero and unity
marks of the conditional vertices (CV) being eliminated and new marking being performed:

« the beginning of the LBG is marked 1, and it is assumed that the arcs going out of each CV are marked
as its input, and

« in each point of junction of arcs, the “Kirchhoff law” is obeyed, that is, the mark of the outgoing arc equals
the sum of marks of the incoming arcs.

4. The input mark of the ith CV equals the weight of the variable zi, that of the “zero” operator vertex
being equal to the function threshold.

Example Al. Construct a TR for f = (z1&z2| z3)&z4.

135

Fig. 2

Fig. 3

This formula is a PMNTF, because it is noniterated, involves no inversions, and is realized by a “linear’

circuit (Fig. 1). Figure 2 depicts a LBG with the maximal number of paths. It follows from the LBG marked witl

the aim of counting the number of paths (Fig. 3) that wl = 1, w2 = 1, w3 = 2, w4 = 3,

T = 5. Therefore

£l + 72+ 2+ 23+ 3 «z4 > 5, and it follows from Sec. 3 that f = r3(bin (3 + z1 + 22+ 2 * 3 + 3 * z4)).

REFERENCES

1.

136

V. D. Malyugin, “Representation of Boolean functions by arithmetic polynomials,” Avtomat. Telemekh.

No. 4, 84-93 (1982).

V. D. Malyugin, “On polynomial realization of a cortege of Boolean functions,” Dokl. Akad. Nauk SSSR
265, No. 6, 1338-1341 (1982).

V. D. Malyugin, “Realization of corteges of Boolean functions by linear arithmetic polynomials,” Avtomet
Telemekh., No. 2, 114-122 (1984).

V. D. Efremov, A. A. Kuz'min, and V. A. Stepanov, “Computing logical functions with the aid of thw
Rademacher transform,” Avtomat. Telemekh., No. 2, 105-113 (1984).

V. D. Malyugin, G. A. Kukharev, and V. P. Shmerko, Transformation of Polynomial Forms of Booless
Functions, Preprint, Institute of Control Sciences, Moscow (1986).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

V. Malyugin, “Realization of logical function sets by arithmetic polynorfials,” Comput. Artificial Intelligence,
No. 6, 541-552 (1987).

V. L. Artukhov, V. N. Kondrat’ev, and A. A. Shalyto, “Generating Boolean functions via arithmetic polyno-
mials,” Avtomat. Telemekh., No. 4 138-147 (1988).

V. A. Osipov, A. A. Shalyto, and V. N. Kondrat’ev, Software Realization of Logzc Control Algorithms in
Ship Systems [in Russian), Institute of Advanced Studies for Managers and Specialists of the Ship Building
Industry, Leningrad (1988).

A. A. Shalyto, Microprocessor-Based Realization of Algorithms of Logic Control Systems [in Russian], Institute
of Advanced Studies for Managers and Specialists of the Ship Building Industry, Leningrad (1988).

V. P. Shmerko, “Synthesis of arithmetic forms of Boolean functions using the Fourier transform,” Aviomat.
Telemekh., No. 5, 134-142 (1989).

V. L. Artyukhov, V. N. Kondrat’ev, and A. A. Shalyto, “Using linear arithmetic polynomials for realization of
logic control systems,” Proc. IX All-Union Control Conf., Abstracts, Akad. Nauk SSSR (1989), pp. 495-496.
V. L. Artyukhov, N. S. Belyaev, and A. A. Shalyto, Methods of Software Realization of Symmetric Boolean
Functions [in Russian), A. N. Krylov VNTO, Issue 19, Sudostroenie, Leningrad (1989), pp. 37-51.

A. A. Shalyto and V. N. Kondrat’ev, Methods for Software Realization of Logic Control Algorithms for Ship
Microprocessor Systems [in Russian], Institute of Advanced Studies for Managers and Specialists of the Ship
Building Industry, Leningrad (1990).

V. N. Kondrat’ev and A. A. Shalyto, “Realization of systems of Boolean functions by linear arithmetic
polynomials,” Avtomat. Telemekh., No. 3, 135-151 (1993).

E. A. Butakov, Methods of Synthesizing Relay Devices of Threshold Components [in Russian], Energiya,
Moscow (1970).

S. Muroga, 1. Toda, and M. Kondo, “Majority decision function of up to six variables,” Math. Comput., 16,
No. 80, 132-150 (Oct.,1962).

V. L. Artyukhov, L. Ya. Rozenblyum, and A. A. Shalyto, “Logic possibilities of some types of cascaded
structures,” in: Communication Networks and Discrete Control Systems. [in Russian], Nauka, Moscow (1976),
pp- 138-144.

B. P. Kuznetsov and A. A. Shalyto, “System of transformations of certain representations of Boolean func-
tions,” Avtomat. Telemekh., No. 11, 120-127 (1985).

V. L. Artyukhov, B. P. Kuznetzov, and A. A. Shalyto, Adjustable Logic Devices for Ship Control Systems [in
Russian], Institute of Advanced Studies for Managers and Specialists of the Ship Building Industry, Leningrad
(1986).

S. B. Akers, “Binary decision diagrams,” IEEE Trans. Comput., No. 6, 509-516 (1978).

137

