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AUTOMATA

ALGORITHMIC GRAPH SCHEMES AND TRANSITION GRAPHS: THEIR USE IN SOFTWARE
REALIZATION OF LOGICAL CONTROL ALGORITHMS. I

A. A. Shalyto UDC 519.687

The difficulties encouniered in undersianding graph schemes wsed in designing algorithms and pro-
grams are ezamined. A classification of graph schemes is given. The main difficulties in wnder-
standing graph schemes have been shown to result from the negligence of a concept like “state.” If
this concept is inlroduced, transition graphs can be used instead of graph schemes. Requirements for
transition graphs are formulaied, which, when satisfied, make them “meaningful.”

1. INTRODUCTION

Presently, mainframes are more often used in combination with a programmable logical controller in software
realization of logical control algorithms for technological processes.

Irrespective of the type of control computer used, since the problems (e.g., controlling nuclear reactors) of
this class are vital, it is imperative that all interested parties, i.e., customer, designer, programmer, operator, and
controller, understand each other completely without confusion.

We call the language of communication between them the language of specifications (1]. Although a large
number of such languages are available for logical control programs {2-26), due to fully formed traditions in the field
of computer technology (5], block schemes, which are also known as graph schemes or simply schemes [27, 28], find
extensive use in practice. These schemes are strongly recommended by national standards (29, 30).

These standards, however, only define the rules for imaging graph schemes and do not specify any require-
ments (except for imaging) on the construction of these schemes that might aid in understanding them.

Literature, too, does not fully describe the properties of algorithmic graph schemes that might aid in using
them as a communicative language for this class of problems. For example, methods of constructing graph schemes are
designed in {31, 32); their structural organization improves the understanding of these schemes. The authors believe
that if graph schemes are designed only from basic controlling constructions without the use of GOTO operators,

the graph schemes yield to easy understanding. But they did not pay attention to other factors that render graphs
hard to read, especially the omission of values of variables.

Recently, program designers have realized that structural design alone is not adequate for solving this problem
[33]. Therefore, an object-oriented approach incorporating the concepts of an “object” and its “state” to program
designing was developed. This approach stipulates the use of transition graphs for describing the dynamics of
processes being realized. Except for one isolated example illustrating the use of transition graphs, [33) does not

describe any theoretical principles governing the requirements to be imposed on the construction of transition graphs
so that programs could yield to easy understanding.

In this paper, we elaborate the requirements for constructing easily understandable graph schemes and
transition graphs. In Part 11 of this paper, we shall design methods of constructing understandable transition graphs
from algorithmic graph schemes and understandable algorithmic graphic schemes from transition graphs, as well
methods of programming in languages of different levels.
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2. GRAPH SCHEMES. BASIC PROBLEMS

In this paper, we study automatic graph schemes in whicl only unit or zero values of variables are formed
and stored at operator vertices. Automatic graph schemes are subdivided into two classes: algorithmic graph schemes
and software graph schemes.

Furthermore, we differentiate algorithmic graph schemes by the following criteria:

(a) internal feedback,

(b) types of variables,

(c) state decoder,

(d) omission of variables and ambiguously defined variables,

(e) variables which repeatedly vary in one pass through a graph scheme, and
(f) output destination for the values of output variables.

On the basis of these criteria, without claiming completion of the classification, we distinguish five subclasses
of algorithmic graph schemes:

AGS], i.e., algorithmic graph schemes with internal feedback, in which the values of oiitput variables are
sent to any operator vertex, .

AGS2, i.e., algorithmic graph schemes with no internal feedback and with state decoder, in which values of
output variables are delivered at the end of the “body” of a graph scheme,

AGS3, i.e., algorithmic graph schemes with no internal feedback, in which the specific properties of the
controlling constructions of the programming language are taken into account,

AGS4, i.e., algorithmic graph schemes with no internal feedback but with a state decoder, in which the
values of output variables are delivered at the end of the “body” of a graph scheme and which do not contain any
output variables varying repeatedly in one pass over graph schemes, and

AGSS, i.e., algorithmic graph schemes with no internal feedback but with a state decoder, in which the values
of output variables are delivered at the end of the “body” of a graph scheme and which contain output variables
that may vary repeatedly in one pass over graph schemes.

It must be noted that external feedback is always inherent in control algorithms and control programs
(scanning mode in programmable logical controllers). It must also be noted that if the control algorithm is realized
in the computing device as a component (of the problem), then both AGS1 and AGS2 can be isomorphically mapped
into a software graph scheme through the use of AGS3 with appropriate controlling constructions.

But, if the control algorithm is realized in the computing device as several components, then there is no
possibility of isomorphically mapping an AGS1 into a software graph scheme. This happens because in logical control
problems solved through prolonged use of AGS1 under certain conditions the procedure gets into an internal feedback
loop, and this hinders the realization of other control algorithm components. Looping may take place, for example,
until a “ key is pressed,” “an alarm fails,” “a time limit is exhausted,” or “a shaft executes a few revolutions.”

By way of example, Fig. 1 illustrates the block diagram of the connection between a controller and an object.
It consists of three channels Chl, Ch2, Ch3, and a motor M. The controller is composed of an automaton (A) and
delay units (DU). Figure 2 shows an AGS! with five internal feedbacks for this example {34]. This graph scheme
realizes either the controller as a whole (DUl and DU2 are computed in the third and fourth operator vertices, or
only the automaton A (time variables ¢, and t; are regarded as inversions of the procedure implementing time delay
units, whereas the binary variables 7} and T; warn the actuation of delay units).

This graphic scheme is not complete, because it does not show the operator vertices into which the output
variables z; (i = 1...4) and time variables t; (j = 1,2) are dumped. Therefore, it cannot be used as a formal
specification of the problem and needs to be further elaborated. Paying attention to the principles of operation of
single-input servos used in the controlled object, we can assert that these servos are not provided with memory and
therefore in AGS1 (Fig. 2) the value of a variable at those operator vertices where no variable is shown is, by default,
zero.

This assumption that the value of an output or time variable at an operator vertex is zero if the variable is not
contained in the vertex is not always true, because in using a graph scheme it is often assumed that omitted variables
retain their previous values. Such graph schemes can be used in computations, since the computer remembers the
previous values of all variables stored in the external memory. But man cannot remember the prehistory, especially
the values of several variables concurrently. It must, however, be noted that graph schemes are primarily designed

to map control connections and, secondarily, to depict data (28, 35]. Therefore, graph schemes with neglected values
of variables are not useful as a communicative language.
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Only a specification that describes the control connections and depicts data equally to the maximum extent
can be regarded as a quality specification [35]. Because of the absence of certain data in explicit form, a graph scheme
cannot be used as a test for verifying the validity of a program implementing this graph scheme. Moreover, if the
program is heuristically designed from graph schemes, even in the absence of omissions, we can only verify whether a
program realizes a given graph scheme, but it is not possible to establish that the program does not execute anything
else additionally.

As regards the specific properties of different subclasses of algorithmic graph schemes, we must note that
in the schemes of the subclass AGS1 the values of output variables are dumped not at the end of the body of the
scheme, but at any operator vertex.

The schemes of the subclass AGS1 can be designed such that only input variables of the types X and T are
delivered at conditional vertices, while output variables of the type Z and t are dumped at operator vertices, where
T denotes variables representing the actuation of delay units. The main merit of the schemes of the AGS1 subclass
is that they contains only those variables that are used in the control algorithm.

In the AGS2 subclass, the variables that are stated in the control algorithm are rarely used, and “superfluous”
variables are not used at all. Figure 3 shows, by way of example, an AGS2 implementing an R-trigger, in which
only the variables defined in the control algorithm are used, namely, trigger setting variable z,, trigger reset variable
Tq, and output variable z. Even this AGS (without any additional variables) is difficult to understand, because the
results are delivered at the end of the program body, and therefore for z; = zo = 1 the values of z are computed
twice (recomputed). Furthermore, for £, = z2 = 0, this scheme contains a route having no operator vertices. In
passing over this route, the preceding value of z is saved; this is achieved by storing the values of z at the operator
vertices in an external memory cell.

This example shows that if an AGS2 contains even one route in which neither the zero value nor the unit
value of at least one output variable is not set, such a graph scheme implements a sequential automaton; otherwise
it realizes a one-cycle automaton.

As already mentioned, schemes of the subclass AGS2 with no “superfluous” variables are rarely encountered.
In general, in the schemes of this subclass, in addition to the values of input variables of the types X and T, the
values of the output variables Z at conditional vertices are also verified. Intermediary (internal) variables Y not
present in the control algorithm, which are set and dumped along with output variables at operator vertices, are also
checked. Since binary variables Y are often used, AGS2 schemes are rather unwieldy. Furthermore, they, as a rule,
are structurally not ordered, because the layout of vertices and their labels in AGS are not governed by standards.
It is rather difficult to understand the schemes of the subclass AGS2 for the simple reason that the stored values of
the variables Y and Z are neglected.

It is also difficult to understand the schemes of the subclass AGS2 if the values of variables depend on
their prehistory (values of the corresponding variables stated at the preceding operator vertices). These schemes
are especially difficult to read if the values of variables not only depend on the prehistory, but also vary with the
prehistory, i.e., depend on the routes leading to the operator vertices. In the latte: case, serious difficulties arise in
recording the changes occurring in graph schemes without errors.

While it is quite natural for a programmer to verify the variables Y and Z and meaningful for a designer, the
presence of these variables for a customer, an operator, or a controller is unacceptable, because the customer usually
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does not require the unit value for any internal variable in specifications. Serious reading difficuities may arise if the
variables Y and Z in an AGS2 scheme vary under the action of other control algorithm components realized in the
same computer.

From the foregoing, it follows that while the schemes AGS1 and AGS2 in which the variables Y and Z are
not verified at conditional vertices show only the semantics of the control algorithm, the schemes AGS2 with such
verification procedures are indeed algorithms for computer-aided realization of control algorithms. Therefore, such
graphic schemes not helpful as a communicative language.

The construction of schemes of the subclasses AGS1 and AGS2 does not end here, because an AGS3 must
be constructed from the initial algorithmic graphic scheme with regard for the basic properties of the controlling
constructions of the programming language to achieve errorless transition to software graphic schemes and for consul-
tation (for vital objects). For example, in most programmable logical controllers, for the IF command, only forward
transitions are allowed, whereas backward transitions are prohibited. Another specific feature of the IF command
in many programmable logical controllers is that they are, first, single-address controllers, and, second, they possess
a unique property, namely, if an IF command transfers the control to the CONT command (flag) when appropriate
conditions are satisfied, then all other IF commands occurring between these two commands must also transfer the
control to the flagged CONT command when the conditions are satisfied [34]. Moreover, the unconditional transition
STOP command aids in realizing only external feedback.

Under these conditions, the schemes of the subclass AGS3 must be linearized and structured only with controlling
constructions “sequential union” and “incomplete selection.” If the initial AGS2 possesses such a structure (see
Fig. 3), there is no need to construct an AGS3. But, if an AGS2 implementing a single-cycle automaton described by
one of the Boolean formulas z = Z, &z, V£, &ZF, = ) ® z; has a “planar” (Fig. 4), but not a “linear” structure, then
we must preliminarily construct an AGS3 in order to transform the algorithmic graph scheme to a software graphic
scheme and the program code (Fig. 5). The last graphic scheme is more difficult to read than the scheme AGS2
(Fig. 4) (even though the variables Y and Z are not verified in these graphic schemes), because input variables are
to be repeatedly verified in passing over any route in AGS3. Nevertheless, if the Boolean formulas are programmed
in operator form (directly from formulas), the scheme AGS2 will always have a linear structure. This, indeed, in the
general case will reduce operation speed and require the use of intermediary variables.

In computing devices in which input variables are fed as needed (as in certain programmable logical controllers),
in every pass over an algorithmic graph scheme, these variables are not only verified repeatedly, but they vary their
values as well. This may violate the functional transformation defined in the specification (truth table). By analogy
with hardware realization, this violation can be called the program realization risk. Risk in such programmable
logical controllers can be reduced through bifurcation or maximal nonrepeated realization.

Thus, while an AGS1 depicts only the semantics of the control algorithm, and AGS shows, in addition to semantics,
the possibility of realization of control algorithms consisting of several components in one computing device, AGS3
reveals the specific features of the controlling constructions of programming language as well. But such an AGS3 is
still far being a software graphic scheme, because the latter must also show the semantics of all applied commands
or operators of the programming language. Furthermore, references to those architectural features of the computing
device that are not used in the algorithmic graph scheme appear in software graphic schemes. For example, Fig. 6
shows a software graph scheme for implementing an AGS2 (Fig. 3), in which BS stands for binary summator of the
programmable logical device. From the foregoing, it follows that software graphic schemes, especially program codes,
must not be used as a communicative language.

Therefore, only AGS! without omissions can be a candidate as a communicative language. But problems related
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to delooping, linearization, and structurization are encountered in programming AGS1. For this reason, AGS2 are
constructed in favorable cases and, avoiding the construction of other graphic schemes, program texts are written in
an informal form.

Additionally, we encounter the problem of selection of texts and proof of the validity of the program, because,
since there is no “distinct” specification, it is not possible to judge whether a problem is understandable or not.
Moreover, the t.est.mg the “validity” of a program is shifted off to experiments which reveal what is wrong in a
program. But it is rather difficult to detect whether a program if it contains bugs, can do anything that is not
defined in the specification.

This problem is further complicated by the fact that in practice the usual method of verifying the operation of
a program is represented as a two-column table showing the values of input and output. But such a verification,
which is appropriate for single-cycle automata, is not suitable for sequential problems. Because of the unwieldly
large dimension, it is rather doubtful whether a test could be designed that could take account of the values of all
internal variables, as well as their preceding values in certain cases, especially if the algorithmic graphic schemes are
structurally disordered.

In my opinion, all these problems mainly result from the fact that the concept of “internal state” of a component
as a whole is not used in algorithmic graphic schemes, software graphic schemes, and programs; only separate
binary variables that characterize the internal state in an indirect manner are used in them. In the sequel, we refer
to this internal state as simply “state.” Introduction of this concept will permit us to pass on from algorithmic

graphic schemes to transition graphs and vice versa, and to use transition graphs as a communicative language and
specification.

3. TRANSITION GRAPHS. CLASSIFICATION

Definition 1. A transition graph (TG) in which the values of every input variable are specified at every vertex
is called a Moore machine (MM) transition graph with explicitly defined values of all output variables.

In this case, the output values correspond to the number of the vertex and do not depend on the prehistory. For
this reason, such a transition graph is easy to understand and changes are easily entered in it.

Definition 2. A transition graph at whose vertices, along with explicitly defined values of some variables,
implicitly but uniquely defined values of other variables are also used is called a Moore machine (MM) transition
graph with implicitly defined values of output variables.

Implicit specification of a variable at a vertex is indicated by a dash, which represents only one value of a Boolean
variable. The variable at a vertex retains the value assigned to the variable at all “adjacent” vertices. Connection
between two vertices can be a direct arc interconnecting the vertices or a transit arc through other vertices in which
dashes are used to denote the values of this variable.

As regards reading, transition graphs of this type are somewhat worse than the MM transition graphs of the first
kind, but these transitions graphs are helpful in reducing memory space occupied by a programs which isomorphically
maps MM transition graphs. Transition graphs of this class can be mapped such that every vertex explicitly shows
the values of every output variable, and the values of these variables which vary at “adjacent” vertices are labelled
by a cross.

Definition 3. A transition graph in which the explicitly defined values of some variables and implicitly but
uniquely defined values of other variables are used at vertices is called an MM transition graph with ambiguous
specification of the values of output variables.

Transition graphs of this class may contain a fewer number of vertices for a problem than the MM transition
graphs of other two types mentioned above, because at a vertex, instead of one value of a neglected variable, different
values of a variable may be formed and, consequently, different sets values of output variables may be formed at this
vertex. Thus, one such vertex may become equivalent to certain definite vertices.

This seeming merit from the viewpoint of compact description and program size reduction leads to serious short-
comings of the transition graphs of this type—the graphs are difficult to read and understand. Precisely for this
reason, such transition graphs are not useful as a communicative language.

Specifications for the problems of this class are best defined through the first two MM transition graph models,
whereas, if AGS1 is used in specification, AGS1 must be transformed into one of these MM transition graph models.

This, however, does not exclude the use of transition graphs for other automaton classes. Analogous classifi-
cation can be made for the Mealy machine (MeM) transition graphs, in which the values of output variables are
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formed not at graph vertices but on arcs {36]. In many logical control problems, the number of states (number
of vertices in the transition graph) is not reduced in passing from a Moore machine model to a Mealy machine
model. Figure 7 shows an MM transition graph implementing a flip-flop counter, while Fig. 8 illustrates this problem
in terms of an MeM transition graph. In other cases, transition from MM transition graphs or from automaton
transition graphs without output converters to MeM transition graphs reduces the numbers of vertices. Figure 9
shows the transition graph of a machine without output converter having four vertices that realizes a sequential
one-digit summator. In Fig. 10, this algorithm is described in terms of a Mealy machine with two vertices.

It must be noted that while for Moore machines and machines without output converter with unique specification
of the output values the number of states is equal to the number of combinations of these values (including repeated
values), for automata in which all combinations are distinct the number of states is equal to the number of distinct
combinations. For automata of these classes with ambiguous specification, the concept of “state” is loosely related to
output values. Therefore, this concept for these automata is rather abstract and less comprehensible. This situation
becomes rather complicated for the Mealy machines. In [37], for Mealy machines with ambiguous output values,
the concept of “situation” was introduced instead of the concept of “state,” and the term “transition graph” was
replaced by the term “switching graph.” Although a switching graph may contain a fewer number of vertices than
an equivalent transition graph, a switching graph is not helpful as a communicative language, because this graph is
rather difficult to understand.

An analogous situation may also be observed for the number of states due to the omission of values of the
variables in mixed machines, i.e., “machines without output converter” (mixed Mealy machines of type 1), “Moore-
Mealy machines,” and machines of all these classes with flags, in which the same variable may be used in some
transition graphs as an input variable as well as an output variable.

In several cases, variables can be used as a flag, provided they are stored in memory cells, their values are verified
by an automaton and can be varied not only by some external data source, but also by the internal data source of
the automaton. In Moore-Mealy machine transition graphs (Fig. 11), a variable z, can be used as a flag. The values
of this variable are stored in an external binary memory cell and can be changed in stable states of the machine by
some button or by the machine itself in the course of transition 0-2 induced by the input variable. The machine not
only forms the values of the variable z,, but also verifies them in the course of transitions 0-1 and 2-3.

Typically, flags are used as additional variables, which act at the memory cells with fixed contents, i.e., they
cannot be changed by other data sources. For the flags introduced in machines without output converters, these
memory cells may be regarded as integral components along with the cells containing the values of variables which
differentiate states. '

For Moore, Mealy, and mixed machines, as flags we can use additionally introduced variables F, whose values are
stored in external memory cells. If multivalued coding is used to encrypt the states of a complex machine belonging
to one of these classes, it suffices to have only one intermediary variable in the machine. In such cases, upon the
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introduction of flags in an external environment, additional memory cells, including multivalued cells, are generated.

However, the number of succeeding states depends not only on the number of the state and the input action (as in
the case of machines without flags), but also on the prehistory.

In these machines, not only the output but also the states may depend on and vary with the prehistory. Conse-
quently, they cannot be easily read.

Figure 12 shows an MM transition graph with ten vertices, none of which is stable. The number of vertices can
be reduced to seven by introducing a binary flag F,, which is formed only by the machine, making the flag values

at certain vertices ambiguous (Fig. 13). The number of vertices can be reduced further by introducing an additional
multivalued flag F2 and omitting its values (Fig. 14).

In Part I1, we shall elaborate methods for constructing understandable transition graphs from algorithmic graph

schemes and understandable algorithmic schemes from transition graphs, as well as methods of programming these
graph models in languages of different levels.
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