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AUTOMATA

ALGORITHMIC GRAPH SCHEMES AND TRANSITION GRAPHS: THEIR APPLICATION IN
SOFTWARE REALIZATION OF LOGICAL CONTROL ALGORITHMS. PART II

A. A. Shalyto UDC 519.714

Methods of constructing “readable” transition graphs from algorithmic graph schemes and construci-
ing “readable” graph schemes from transition graphs are designed. Programming methods which guar-
antee readability of programs for languages of different levels are constructed. The proposed method
is compared with the basic structural programming method—the Ashcroft-Mann method. The advan-
tageous of the method are discussed, requirements for using a iransition graph as a communicative
language are formulated, and the specifications for the studied class of problems are staled.

1. INTRODUCTION

The properties of algorithmic and software graph schemes that make these schemes hard to understand are
discussed in [1]. A classification of algorithmic graph schemes is proposed. When transition graphs satisfying certain
conditions are used, specifications become readable and understandable.

In this paper, we design methods for constructing understandable transition graphs from algorithmic graph
schemes, and also solve the converse problem, namely, construction of understandable algorithmic graph schemes
from transition graphs. We shall present programming methods which guarantee understandability of programs
writte in languages of different levels that implement diverse functional problems of logical control. The proposed
method is compared with the basic structural programming method—the Ashcroft-Mann method.

2. CONSTRUCTION OF READABLE TRANSITION GRAPHS FROM
ALGORITHMIC GRAPH SCHEMES WITH FEEDBACK

We shall illustrate the method by an example. Assuming that an algorithmic graph scheme (AGS) (Fig. !)
with internal feedback (IFB) is given (in [1], this scheme is referred to as AGS1), we are required to understand this
graph scheme (GS).

By digitizing (encircled numbers) the starting point and the end point (if any), as well as the points succeeding
operator vertices (OV), and determining the route between adjacent points in the algorithmic graph scheme [2}, we
can construct a Mealy machine (MeM) transition graph with ambiguous values for output variables (Fig. 2), in which
the number of vertices is equal to the number of points introduced in the algorithmic graph scheme. This transition
graph can be effectively programmed, for example, in C, but it is not a simple matter to understand how it works
(due to the omission of certain values of output variables) and, accordingly, how an AGS! scheme functions.

Therefore, using AGS1 schemes, we shall construct a Moore machine (MM) transition graph, which must be
easier to understand by its construction principles [1]. For this purpose, let us assign every operator vertex a number
(without circles) (Fig. 1) and determine all possible routes between adjacent vertices [2]. Using this information, we
shall construct an MM transition graph with ambiguous values of output variables and containing five vertices, each
“of which is assigned a multi-digit (decimal) number (Fig. 3). This transition graph is easier to understand than the
previous graph, but is highly complicated due to the omitted values of variables.
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Fig. 4

Analyzing the values formed for different routes in this transition graph, we shall construct an MM transition
with nine vertices but no omitted values (Fig. 4). Since identic u values of output variables are formed at each of
the two pairs of vertices (41, 341) and (1, 31), the second vertex in these pairs along with the arcs labeled with one
(unconditional transition) can be excluded. The first vertices, however, in these pairs are joined to the zero vertex.
The zero vertex is joined with vertex 2, because vertex 32 in which the same values of output variables are formed
as at the zero vertex can be excluded. The MM transition graph thus obtained contains six vertices (Fig. 5). This
transition graph is “absolutely” understandable, because it is compact and no knowledge of its prehistory is required
to read it. However, its structure, contrary to the transition graph constructed in Figs. 2 and 3, is quite distinct
from the initial algorithmic graph scheme.

This transition graph is full of contradictions, but contains, like the scheme AGSI, two generating circuits
0 = | and 0 = 2. Eliminating these circuits, for instance, by introducing a variable z3 in the label of the arcs 0 — |
and 0 — 2, we obtain a correct transition graph (Fig. 6). Such changes are easily introduced without any changes
in the structure of a transition graph, whereas this needs considerable corrections in the structure of an algorithmic
graph scheme and may lead to errors.

From the foregoing, it is clear that precisely transition graphs (Fig. 6), but not AGS! schemes, must be used
as a “means of communication” with customers and as a programming specification in the absence of any stringent
constraints on the memory space to be occupied by the program. This transition graph, unlike any AGS|, describes
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the behavior of automaton (A) in an explicit and under-
standable form, and contains adequate information so that
the automaton can be formally realized by diverse algo-
rithmic models (systems of Boolean formulas, functional
schemes (FS), AGS4 [1], etc.) [3, 4].

Each of these algorithmic models, in turn, can
be isomorphically represented by a program model, but
the degree of isomorphism between program models and
transition graphs is different. Indeed, while the codes of
programs written, for example, in the C language and
formally constructed by a system of Boolean formulas or
a functional scheme are functionally equivalent to tran-
sition graphs, these codes on transition graphs are out-
wardly dissimilar, especially for a system of Boolean for-
mulas describing a functional scheme with triggers. Nev-
ertheless, this system of Boolean formulas is quite different
from the system of Boolean formulas constructed directly
from transition graphs. On the other hand, the language
contains a control construction, like a switch, which en-
sures isomorphism between program codes and transition
graphs, and this makes specifications and program codes
easily readable.

Finally, let us note that while the information
shown in Fig. 6 is essential for constructing certain al-
gorithmic and software models, for example, a system of
Boolean formulas or a functional scheme, the labels of
loops can be omitted, provided a switch is used in the
transition graph (under the assumption that the labels
of arcs outgoing from a vertex are logically complete at
each vertex), and we can define priorities, depicting them
by dashes on arcs, instead of orthogonalizing the labels.
The higher the priority, the lesser the number of dashes
(Fig. 7). This, in the general case, will greatly simplify
transition graphs and reduce the size of programs without
worsening their understandability.

Let us now examine the construction of a readable algorithmic graph scheme without internal feedback from
a transition graph containing no omissions of output values. As demonstrated in [1], “badly organized” algorithmic
graph schemes without feedback (in [1] referred to as AGS2) are lLiard to read. We now show what should be the
structure of an algorithmic graph scheme without feedback so that it may be free of this drawback.

Fig. 7

3. AUTOMATA WITHOUT OUTPUT CONVERTER BUT WITH FORCED STATE CODING

Let us study the transition graph of an automaton without output converter but with forced state coding
(Fig. 8),in which there are no generating circuits for the pulse variables | and ;. The coding is called forced, because
codes defining the states coincide with the values of output variables formed in the respective states (vertices). We
use this type of coding for the reason that combinations of the values of output variables are distinct at the vertices
in the transition graph. This transition graph is used in realizing a four-layered AGS4 [1] (Fig. 9). The first layer
contains conditional vertices labeled by the variables z; and z;, and is a state decoder. The second layer consists of
conditional vertices labeled by input variables, and implements the transition functions of the automaton. The third

layer contains operator vertices, which show the output values. "I'hese output values in this case coincide with the
codes of succeeding states.

Although the values of output variables are not shown at the operator vertices, this graph scheme is easily
understood, because, unlike AGS2, there is no need Lo save the vaiues of stored values since they can he determined
by “going upward” along an appropriate route in the graph scheme.
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Fig. 8

Fig. 10 Fig. 11

This graph scheme is readable for one more reason: unlike AGS2 (Fig. 2 in [1]), it has depth, which is
determined by only one transition in the transition graph. This is an extremely important and useful property of
this class of graph schemes. Furthermore, in this graph scheme, unlike in the graph scheme of Fig. 3 in [1], there is
no need to compute repeatedly the values of any output variable, and, unlike in the graph scheme of Fig. 5 in [1],
there is no need to verify repeatedly the values of the same input variable. This graph scheme is not only structured
in the sense of traditional meaning, but is also well organized in the sense that the conditional vertices with labels
Z and X are not mixed up with each other or with operator vertices.

Such an organization of an algorithmic graph scheme (current state-transition condition-next state) is in
agreement with human normal behavior—man, on getting up in the morning, first determines his inner state {alive
or dead, healthy or ill), and only then “inquires” about the values of input variables (whether it is warm or cold
outside), and finally, depending on the values of these variables, enters the next state (for example, getting dressed
to match the weather). Obviously, behavior with regard for only the values of input variables, but with no regard
for the inner state, would be rather odd.

But the concept of a “state” is usually not used in explicit form in algorithmizing through algorithmic graph
schemes without internal feedback. The state is constructed, beginning from input variables and, then, depending on
their values, we form the values of output variables and, possibly, additionally introduced internal variables, which
determine the states indirectly (by the component method).

Although an AGS (Fig. 3 in [1]) implementing an R-trigger is in ideal agreement with the structural pro-
gramming principles, it suffers from two drawbacks which make the scheme difficult to read: recomputation of the
values of z for z; = z, = | and the absence of the values of z in explicit form for £, = z, = 0. These drawbacks
are not inherent in an algorithmic graph scheme with state decoder (Fig. 10). This scheme, though it is highly com-
plicated compared to the algorithmic graph schemes shown in Fig. 3 in 1], is easier to understand. The transition

graph shown in Fig. | is simple to read and compacl in representation. For programming, it can be simplified further
(omission of loop labels) through the use of SWITCH constructs.

1030



4. AUTOMATA WITHOUT OUTPUT CONVERTER
BUT WITH FORCED-FREE STATE CODING

We now study the construction of a flip-flop counter, whose behavior is described by a transition graph
(Fig. 12). In order to distinguish the vertices in the transition graph, we use forced-free state coding by introducing
an internal variable y that is not present in the control algorithm (Fig. 13). This coding is called forced-free, because
the values of some digits in the code are forcibly defined by the values of the output variable z, while the values
of the other digits, which are denoted by the variable y, can be chosen arbitrarily in course of software realization.
Figure 14 shows an algorithmic graph scheme, which is equivalent to this transition graph.

Since the states of the automaton A depend on the values of the output z in the algorithmic graphic scheme
of Figs. 9, 10, and 14, difficulties may arise if the output values vary in the other components of the control algorithm.
Therefore, using a Moore machine model, we shall exclude the dependence of the states of the automaton A on the
output values.

Fig. 12 Fig. 13

5. MOORE MACHINES WITH BINARY LOGARITHMIC STATE CODING

Figure 15 shows a Moore machine transition graph, which implements a flip-flop counter for binary log-
arithmic state coding, while Fig. 16 shows the corresponding algorithmic graph scheme. This algorithmic graph
scheme consists of four layers (state decoder, formation of output values, implementation of transition functions, and
formation of the next state). Its drawbacks are that the pyran..Jal decoder is rather tall, and the number of newly
introduced variables y; is unduly large, where 0 < i <]log, s|—1 (s is the number of states of the automaton. In
Sec. 7, we show how to overcome the first of these drawbacks and in Sec. 6, how we can surmount both of them.

(w27

Fig. 15 Fig. 16
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6. MOORE MACHINES WITH BINARY (UNARY) STATE CODING

Owing to such a coding of the vertices in Moore machine transition graphs (Fig. 17), which is referred to as
unary coding in [2], (the binary variable y; takes the value one only at the jth vertex, and zero at all other vertices),
we can use a linear state decoder (Fig. 18) instead of a pyramidal decoder, which is used in Moore machine transition
graphs for other coding variants. The drawback of the algorithmic graph scheme in this case is that the number of
additionally introduced variables y; (0 < j < s — 1) is far larger than in the previous case. Furthermore, each of
these variables is to be defined or discarded forcibly.

Ye=1: !/r=!/z=4/;’”i

Fig. 17 Fig. 18

7. MOORE MACHINES WITH MULTIVALUED STATE CODING

The disadvantages inherent in the previous coding methods are eliminated by using multivalued coding of
the states of an automaton (5, 6]. For the Moore, Mealy, and combined-type automata implemented as one unit,
their states can be coded by one s-valued variable Y, which needs no forcible elimination since it is au’ ~matically
reset when passing from one value to another. For implementing an N-component control algorithm (realized by N
graphs) by these classes of automata A, we require N multivalued variables Y, where j = 0... N —1. We believe that
this coding variant, which is almost not realizable in modern automata, will become the basic method of software
realizations of automata when no stringent constraints are imposed on the memory space occupied by programs and
when there is the possibility of using multivalued variables.

Figure 19 shows an algorithmic graph scheme in this coding variant constructed from the Moore machine
transition graph of a trigger (Fig. 7 in [1}). In this graph scheme, the conditional vertex ¥ = 3 and the second
operator vertex z = | can be discarded by slightly reducing the degree of understandability.

An algorithmic graph scheme of such similar structure can be constructed for any Moore machine transition
graph. However, unlike graph schemes, such an algorithmic graph scheme will always be planar. The application of
only one intermediary variable, if the structural organization is “good,” will make an algorithmic graph scheme of
this type attractive in practice. The only disadvantage of this type of structures, besides being cumbersome (when
the values of output variables are not omitted) is that the generating circuits are not easily detected by inspection,

since the fragments are not directly connected as in any transition graph, but are refated indirectly through the
values of the variable Y.
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Fig. 19 Fig. 20

Hence, in those cases in which an algorithmic graph scheme without internal feedback is chosen as a com-
municative language for some specific reason, it is more preferable to use algorithmic graph schemes with a decoder
for decrypting multivalued state codes.

Multivalued coding additionally opens a way (effective from the viewpoint of graphic representation) to
providing connections between control algorithm components (even in parallcl processes), because the decimal values
used in the interaction of the numbers of states can be substituted for the components (interaction with input, output,
and additionally introduced internal variables is preserved). For example, let us assume that the second component
is to be transformed from the first state into the third state, and the third component is to be transformed from
the fourth state into the fifth under the condition that the first component exists in the sixth state. Without
introducing any additional variables, this parallel process can be visually represented by a fragment of the system of
interconnected transition graphs shown in Fig. 20. Interconnected transition graphs, as demonstrated in (7], possess
wide graphic representation capabilities; in particular, they depict such important properties as parallelism and
hierarchism in explicit form.

However, a transition that is sequential with respect to states is usually a parallel process with respect to
inputs and outputs (see the transition graphs shown in Figs. 7 and 8).

8. MEALY MACHINES WITH MULTIVALUED STATE CODING

Mealy machines, like Moore machines, admit the use of various types of state coding. But, in light of what has
been discussed above, we only examine multivalued coding. Figure 8 in [1] shows a Mealy machine transition graph
capable of implementing a flip-flop counter for multivalued coding, and Fig. 21 shows the corresponding algorithmic
graph scheme. The conditional vertex Y = 3 and the secondary operator vertices z = 1 and z = 0 can be excluded
from this graph scheme. This graph scheme differs from the Moore machine graph scheme in the location of the
layer containing operator vertices labeled by the values of the output variable: this layer is not located before the
decoders which decrypt the values of input variable, but after them.

Another example of implementing this class of automata is shown in Fig. 22 for a sequential single-digit
summator (Fig. 10 in [1]). In this graph scheme, the number of vertices is minimized by placing the layer containing
the values of the output variable z after th.. layer containing the vaiues of the succeeding state p. This graph scheme,
containing in all nine vertices, is constructed by a modified Bloch method (8].

r=d

26>
/

g & ! g X !
a < ; / [4 z, !
p=a p=/
z=J z2=7

Fig. 21 Fig. 22
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n COMDBINRBRD - T'VENL AUTOMATA WITII MULTIVALUED STATE CODING

Figure 23 shows an algorithmic graph scheme implementing a combined-type C-automaton with flag (see
Fig. 11 in [1]). This graph scheme contains five layers: a state decoder, a layer for forming the values of output
variables, a layer for implementing transition functions, a layer for forming the flag values, and a layer for forming the
succeeding state. The variable z, in this scheme determines the contents of the flip-flop counter (another component
of the control algorithm), which is also controlled by other data sources—buttons. Unlike in transition graphs,
contradiction in this scheme is eliminated by orthogonalization and use of the Boolean criterion T instead of the
inequality £ > D.

While every component is closed in combined-type transition graphs, contact operation in graph schemes
incorporated in programmable logical controllers [9] is effected for the control algorithm as a whole.

Fig. 23

10. PROGRAMMING OF TRANSITION GRAPHS AND ALGORITHMIC GRAPH SCHEMES
WITH MULTIVALUED STATE CODING IN HIGH-LEVEL LANGUAGES

Using multivalued coding, we can convert AGS4 schernes and graph schemes isomorphically into program
codes without constructing intermediary graph schemes (1]. Although graph schemes contain loops and (non-
generating) circuits, there is no need to deloop or structurize them. These problems can be solved in the course of
programming through appropriate choice of contro! constructs.

The easiest way of achieving this end is to use such a controlling construction like the switch operator in the

C language 5, 6, 10]. Let us illustrate the use of this switch for realizing a Moore machine transition graph (Fig. 7
in {1]) or an algorithmic graph scheme (Fig. 19).

switch (V) {

case ( : z=0;
if (z) Y =1
break;

case | : z=1;
if (1z) Y =2
break:

case 2. [az=1; »/
if (z) Y =3;
break;

case J : z = (;
if ('z) Y =0;
break; }
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This program has a fascinating property—along with full guarantee, it does only what is described in the
transition graph and does not perform anything else. This can be verified by collating the program code with the
transition graph, because complete isomorphism must exist between them when the transition graph is transformed
into the program code without any error. This property is not inherent in all algorithmic models. For example, if
an automaton A with s states is realized by a system of m Boolean formulas (m =] log, s[), s # 2™, then the system
realizes another automaton with 2™ states, in which the initial automaton only serves as a kernel for the newly
constructed automaton, and transitions from the new 2™ — s states into given states will depend on the method
applied to complete the definition.

In this program, the value of the output variable that does not vary during transition from the preceding
state is deleted from state 2 (case 2). On the one hand, this reduces the memory space occupied by the program,
and, on the other hand, preserves good readability of the program. Every BREAK operator in this program transfers
controls outside the closing brace. Consequently, if the condition the [F operator is not satisfied, the preceding state
is retained. But, if the condition is satisfied, not more than one transition is accomplished in the transition graph.
However, not more one transition per program cycle is accomplished in every transition graph of combined-type
transition graphs. Hence the number of any state of the automaton is accessible to the other components of the
control algorithm, no matter what the values of the input variables. On the contrary, in AGS2 (Fig. 3 in [1]), the
value of z = | for £, = z; = | is not accessible Lo other control components.

For example, if the first component of the control algorithm is realized as described above and the value of
the variable Y |, which is equal to six, is accessible to the other components, then a fragment of the interconnected
transition graph (Fig. 20) corresponds to the succeeding fragment of the program which uses the sixth state of the
first component as a transition condition in the other two components:

switch (Y2) {
case | : if(Y! ==6) Y2 =23;
switch (¥'3) {

case 4 : f (Y1 ==6) Y3 =5

From the foregoing, we discover a very unpleasant fact—the specific properties of software realization distort
not only the reading of a program code, but also the reading of specifications of transition graphs or combined-type
transition graphs. Therefore, Lo ensure universality of graphs, including transition graphs with unstable vertices, we
must preferably assume that not more than one transition is accomplished in passing through every transition graph
with proper program support.

We now give an example of a program constructed from a Mealy machine transition graph (Fig. 8 in [1])
and an AGS4 (Fig. 21), assuming that initially ¥ = 0 and 2 = 0:

switch (Y7) {

case 0 : if (z) {z=1, Y=1}
break;

case | : if (z) {(/ez =1, /Y =2;}
break:

case 2 : if (z) {z=0. Y =3}
break;

case 3 : if ('z) {/2z2=0; /Y =0;}
break; }.

Using SWITCH control constructs, we can cffectively implement C-automata as well.

First, a transition graph can be used as a specification for control algorithms, as well as programs. Second, if
SWITCH control constructs are incorporated, this graph can be isomorphically mapped into the code of a structured
program, which can be observed not only by binary cutputs, but alsn, and this is most important, by the decimal
numbers of states. Moreover, it suffices to display only one decimal internal variable (signature) for every transition
graph of Moore machine or Mealy or combined-type automaton on the monitor in order to verify the program. This
will enable us Lo study the dvnamic behavior of an automaton by tracking the values of this variable (if, for example,
for a Moore machine, the correspondence between the number of the state and the values of output variables in this
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state is preliminarily determined), instead of using several binary internal variables as practiced in the traditional
approach.

Thus, in programming, we can introduce the concept of “observability” in analogy with the Zadhe concept
of “measurability” used in automatic control theory [I1].

The programs thus designed exhibit high capabilities (in the sense of easy control) and are easily readable,
provided the values of output variables are defined uniquely, because they, in this case, depend on the prehistory.
Transition graphs of automata with flags can also be mapped isomorphically into program codes with the help of
SWITCH control constructs. But, since the succeeding state depends on the prehistory, they perceptibly lose their
modification capabilities.

The main reason why changes can be easily introduced in programs thus constructed from transition graphs
is that the graph vertices are directly interconnected. On the contrary, in graph schemes in which operator vertices
are largely joined through conditional vertices, the changes taking place in a transition generally exert considerable
influence on other transitions.

In our approach, a program can be easily verified by collating the program code with its transition graph.
For one-component control algorithms, the transition graph can be used as a test for verifying the program, whereas
for multi-component control algorithms (in analogy with Petri networks), we must construct, using transition graphs
of combined-type automata, a reachable label graph that is helpful in studying the functional capabilities of the
system and represent the behavior of the system by one transition graph. This problem is resolvable in the absence
of any parallelism between the states in control algorithms or for low-dimensional problems. There is no need to

construct a common transition graph for independent parallel processes, because each of these processes can be
verified separately.

11. PROGRAMMING OF ALGORITHMIC GRAPH SCHEMES WITH INTERNAL FEEDBACK
IN HIGH-LEVEL LANGUAGES

The approach designed in this paper is useful in constructing a direct programming technique for algorithmic
graph schemes with internal feedback. Such schemes in multi-task mode cannot be realized by the traditional method
without preliminary delooping [1].

The method essentially consists in constructing from a given algorithmic graph scheme an equivalent tran-
sition scheme, which is isomorphically mapped into the program code with a SWITCH control construction.

Let us suppose that we are given an algorithmic graph scheme with internal feedback (Fig. 1). Using this
scheme, we must construct a Mealy (Fig. 2) or Moore (Fig. 3) machine transition graph in such a way that each
machine is uniquely realized by a SWITCH construction. Although the programs thus designed are compact, their
transition graphs contain generating circuits which are not easy to understand because of the ambiguity in the values

of the output variables. Programs constructed from a transformed Moore machine transition graph (Fig. 7) do not
suffer from such shortcomings:

switch (¥') {
case 0 : z1 = 0; 29 = 0; 23 = 0;

if (z,&z3) Y =1;

if (z,1&z,&z3) Y 2

break;
case | : 2y =1 /%29 = 0; 23 =0; »/

if ('za) Y =0;

if (z3) Y = 1; break:
case 2: [az =0;«/ =l [ez3 =0/

if ('z3) Y =0;

if (z3) Y = 4; break;
case 3: [Jwz =0; %/ 29=0; [wzz=1;%n/

Y = 0; break:

casc 4.  /Jxz; =0; 2= 1, w/zy=1;

if ('za) Y =3;

break;
case 5. [wz =1 20=0;, w/z3=1;

if ('z3) Y =0;

break; }
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Fig. 24

The number of rows in this program is s + d + I, where d is the number of arc< (including loops) in the
transition graph. In CASE 0, the IF operator corresponding to the arc with the highest priority emerging from
the vertex 0 is located below the IF operator corresponding to the arc with the lowest priority. In such a software
realization, the problems of delooping and structurization of the initial algorithmic graph scheme are automatically
solved in the course of designing the program. It should be mentioned that here the construction of a transition
graph from an algorithmic graph scheme with internal feedback is not obligatory. To write a program in this case,
it suffices to apply multivaiued coding (Sec. 2) for the operator vertices in the algorithmic graph scheme (in order to
construct a program corresponding to the Moore machine) or for the points located after the operator vertices (in
order to construct a program corresponding to the Mealy machine).

The speed of a program can be enhanced by refining its structure:

switch (Y) {
case 0 : z; =0; 22 = 0; 23 =0;

if (z,&z2&23) {Y = 2; break;}

if (z,&z3) Y =1

break;
case | : 2 = 1; /%29 =0; 23=0;»/

if (za) Y = 0;

if (za) Y =1, break;
case 2: /xz, =0; %/ z2=1; [xz3=0;%/

if (1z3) Y =0;

if (z3) Y = 4; break;
case 3: [wz =0;x/ 22=0; [xzz=1;»/

Y =0, break;

case 4 :  [wz =0 z=1; wfz23=1;

if ('z3) Y =3;

break;
case 5: [wz, = I; 20=0; w/z3=1;

if ('z3) Y =0;

break; }

In this program, the fragment which corresponds to an arc of high priority emerging from the zero vertex is
located above the fragment corresponding to the arc of lower priority emerging from the same vertex.

By way of another example, let us construct the equivalent Moore machine transition graph (Fig. 24) for
an algorithmic graph scheme with internal feedback (Fig. 2 in [1]). In this transition graph, which is a component
of the controller, to every unit at the positions t; and ¢, there is an inversion of TIME operation (i, D), where D

is the delay of the ith delay unit. This transition graph, like the previous graph, is implemented with a SWITCH
construction.

12. PROGRAMMING OF ALGORITHMIC GRAPH SCHEMES AND TRANSITION GRAPHS
WITH MULTIVALUED STATE CODING IN LOW-LEVEL LANGUAGES

As observed in {1}, in order to take account of the properties of control constructs of the programming
languages used, we must preferably transform the nitial algorithmic graph scheme ito program codes not directly,
but through an intermediary graph scheme (which is referred to in [1} as AGS3).

1037



vesd

Y=y

Figure 25 shows an algorithmic graph scheme which is the equivalent of the algorithmic graph scheme shown
in Fig. 19 and which is linearized and structurized in a special manner (every conditional vertex in every block
transfers the control to one point if the conditions are not satisfied. This equivalent graph scheme, in turn, can be
almost isomorphically transformed into an algorithmic graph scheme which takes account of the semantics of the
commands and the computer architectural specifics, for example, programmable logical controller [12], by which the
program code can also be isomorphically constructed in the mnemonic code of the controller:

STR R C 0; Input 0 in registering summator (RS:=0)

EQU R M Y; if (Y =0) binary summator (BS=1)

IF T ; if (BS) go to the next command, else to
; label CONT

EQ RO z; if(BS)z=0

IF I z; if (z) go to next command,; else to

; label CONT
STR R C 1; RS:=1
EQ RSM y, if(BS)y=0

CONT ., go to next command
STR. R C 1

EQU R M Y

IF T

EQ SO :

IF I =z

STR R C 2

EQ R SM y

STR R M y; RS:=y
EQ R M Y; Y :=RS

STOP ; transfer control to program start
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Fig. 26

Instead of an algorithmic graph scheme, using a transition graph (Fig. 17 in [1]) as a specification language,
we can almost isomorphically transform the transition graph into the program code

STR R C 0; Input 0 into registering summator (RS:=0)
EQU R M Y, if (Y =0) binary summator (BS)=1

EQ RO z; if(BS) z=0

AND | z; BS:=BS&=z

STR R C |1; RS:=1

EQ R SM y; if(BS)y=1

STR R C 1; RS:=1

EQU R M Y; if(Y =1) BS=I

EQ SO :z; if(BS)z=1

AND 1 z; BS:=BS&r

STR R C 2, RS:=2

EQ R SM y; if(BS)y=2

STR R M y;, RS:=y

EQ R MY, Y:=RS

STOP : transfer control to program start

This program contains fewer commands than the prev. us program. It does not include any conditional
transitions and all commands in it are executed sequentially. Therefore, the program can be further simplified by
excluding the third command, provided the ninth command is replaced by the command EQ 0 z {z := BS) under the
condition that z is equal to 0 at the program start. This is explained as follows: as long as automnaton A exists in the
first vertex, a unit value is entered in the cell z and when A “quits” this vertex, a zero value is entered. The program
can be siniplified still further by reducing the degree of its isomorphism with the transition graph. Furthermore,
each pair of commands 5-6 and !1-12 can be replaced by an INC R M y (y:= y + 1) command.

The programs examined above can execute one program cycle of not more than one block in the algorithmic
graph scheme (Fig. 19) or one transition in the transition graph (Fig. 7 in (1]), since an auxiliary multivalued internal
variable y is incorporated for holding the value of Y in the course of a program cycle.

However, it must be mentioned that one auxiliary variable y is adequate for realizing any system of inter-
connect transition graphs. Discarding the condition that not more than one transition in the transition graph is
accomplished in one cycle, we can transform the algorithmic graph scheme of Fig. 25 into the algorithmic graph
scheme of Fig. 26. Thus we can greatly simplify the programs presented above. The algorithmic graph scheme thus
constructed is valid, because the input variables do not change their values in the programmable logical controller [12]
when the program executes a cycle.

Il a transition graph is used as a specification lapguage and the constraint restricting the number of transitions
executed in one program cycle is discarded, then such unconventional constructs like step register (SR) inherent in
the instruction sets of many programmable logical controllers {9, 12] can be used for compiling programs. In [9, 12],
a step register is used for generating sequential steps and no mention is made of its use in implementing arbitrary
automata. Therefore, we believe that our studies pave the way for such a use.
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By way of example, we present a program implementing a transition graph (Fig. 7 in [1]), in which the zero
(out of 32) step register initially exists in the zero step (the zero state) (out of the 256 permissible steps):

READ S 0; Selection of a step register as 0 step

STR S 0; if (S=0) BS=1 .
EQ RO z; if(BS)z=0

AND Il z; BS := BS&=z

STEP S 1;if (BS) S=I

STR S 1;if (S=1) BS=1

EQ SO =z if(BS)z=1

AND NI z; BS := BS&!z

STEP S 2;if (BS) S=2
STOP
Since this program also does not contain any conditional transitions, the third command can be discarded
by replacing the seventh command by the command EQ 0 z, provided z = 0 at the initial instant.
The approaches presented in this section are equally applicable to Mealy machines, combined-type C-

automata, and automata with flags. For example, the Mealy machine transition graph (Fig. 8 in [1]) describing
the program below written in C language

Y =0;

M: if((Y==0)&z) {z2=0;, Y=L}
(Y ==1)&!z) {z=1; Y =2}
if((Y ==2)&z) {z=1;, Y =3;}
f((Y ==3)&!z) {z=0;, Y =0;}

goto M;

is implemented by the following program incorporating step registers:

READ S 0 STR S 1
AND NI ¢

STR S 0 EQ S0 :

AND [ =z STEP S 2

EQ RO :z ...

STEP S 1 STOP

From the foregoing, it is clear that the step registets aid in greatly enhancing the level of mnemonic pro-
gramming of automata. This is also observed in implementing controllers, because in many cases delay units can
oe realized through the NEXT Si D command, which, if a step register resides for D seconds at the ith step, will
promote transition to the i + 1th step. In order to apply this command, the initial transition graph may have to be
appropriately transformed (by increasing the number of vertices) so that transition is effected only to the adjacent
vertex at the end of the time delay. However, in this case, the controller is not decomposed into an automaton and
delay units, but is programmed as a single entity. By way of example, we now construct a Moore machine transition

graph with flag (Fig. 11 in [1]), preliminarily increasing the number of vertices in the graph to five, an assuming
that z; = 2z, = 0 at the start of the program:

READ S 0 STR S 2
IF S 0 AND NM =z,
STR M =z, STEP S 3
STEP S 1
STR I zo STR S 3
EQ SM z, EQ 0 z,
STEP S 2 NEXT S3 D
CONT

STR S 4
STR S I STEP S 0
EQ 0 22

NEXT SI D STOP
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Isomorphism of this program with the transition graph is guaranteed by the vertices in the transition graph.
Here the program fragment corresponding to the arc with higher priority emerging from the zero vertex is located
below the fragment corresponding to the arc of lower priority emerging from the same vertex. Since the commands
which transfer the output values of output variables are contained only in the “linear” segment of the program (i.e.,
not “protected” by an [F command), no commands are used to form the zero values of output variables, and the
commands EQ 0 z; are used to generate their unit values.

If isomorphism is ensured not only with respect to the vertices, but also with respect to the arcs in the
transition graph, then the program fragment corresponding to an arc of higher priority is located above the fragment
corresponding to an arc of lower priority:

READ S 0 STR S 2
AND NM 1z

STR S 0 STEP S 3

AND I zo

EQ SM =z, STR S 3

STEP S 2 EQ 0 z

STR S 0 NEXT S3 D

AND M I,

STEP S I STR S 4
STEP S 0

STR S 1

EQ 0 z; STOP

NEXT St D

13. OUR APPROACH VERSUS THE ASHCROFT-MANN METHOD OF CONSTRUCTING
STRUCTURED GRAPH SCHEMES

Ashcroft and Mann [13, 14] designed a universal method of constructing structured algorithmic graph
schemes. Using their method, we can construct a structured AGS1 or AGS2 with multivalued state coding from
unstructured AGS1 or AGS2 (see [1] for the definitions of AGS1, AGS2, AGS3, AGS4, and AGS5).

In our opinion, their method is not helpful in constructing understandable algorithmic graph schemes because
of the following deficiencies:

(1) the concept of a “state” is not used in explicit form,

(2) automata and variables are distinguished by types,

(3) only one type of coding is used for the fragments of an unstructured algorithmic graph scheme in
combining them into a canonical structure,

(4) the generating “circuits” are visually not detectable from data due to the interconnections between the
fragments of a structured algorithmic graph scheme,

. (5) the depth of a structured algorithmic graph scheme is not restricted to one transition, and this may
hinder the use of the values of certain inte. ..al variables in other co..ponents of the control algorithm,

(6) the ambiguity in the output values is not eliminated when AGS] is used as the initial representation,

(7) when an AGS2 is used as the initial representation, the ambiguity in the output values is not eliminated
and, additionally, AGS2 may contain a large number of binary intermediary and flag variables (even omitted values)
which do vanish in the course of structurization and an additional multivalued variable corresponding to the numbers
of selected structured fragments is introduced,

(8) man gets accustomed to and understands the familiar initial representation of the control algorithm, and
is psychologically not prepared to handle other novel forms of algorithmic representations, and

(9) the method is primarily oriented for use with high-level languages.

Since their method is designed for developing structured algorithmic graph schemes, as implied in its design
philosophy, it must not be applied to an already structured algorithmic graph scheme. For this reason, if a structured
AGS? is used as the initial representation (Fig. 3 in [1]), from what has been said above, it follows that the initial
representation must not be subjected to further transformation. But, as demonstrated in [1], this algorithmic graph
scheme is “badly” understood and, therefore, the algorithmic graph scheme shown in Fig. 10 or the transition graph
shown in Fig. 11 is preferable to a structured AGS2 as a means of communication.
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r(d:L I O

Z=y/Node:=r Yy x/y=y-x

Fig. 27 Fig. 28

Thus, the idea due to Ashcroft and Mann is full of defects, because it is not clear whether or not to
construct first an unstructured algorithmic graph scheme and structure it subsequently. What is most important
is that right from the start we must either straightforwardly construct a structured algorithmic graph scheme with
a state decoder for the coding variant used, or, what is more preferable, implement the initial description as a
transition graph for the chosen type of automata, which (whenever possible) must not contain any omitted values
of variables and which is isomorphically implemented, say, by SWITCH constructs of the C language capable of
concurrently executing delooping and structurizing operations and at the same time providing access to any value
of the multivalued variables representing the states of the automaton. The approach is also applicable to low-level
languages, for example, mnemonic codes of programmable logical controllers.

If the concept of a “state” is introduced, then every component of the program becomes intrinsically “ob-
servable” (through a multivalued variable) with respect to not only inputs, but also outputs. Moreover, it is a simple
matter to introduce changes in the programs thus compiled. Owing to the isomorphism of these programs with the
initial description, they easily yield to verification (when the transition graph is used as a test).

Transition graphs, by form of representation, being in general “essentially planar,” transform control algo-
rithms in a more natural form than a graph scheme or Grafset diagram (9] that are transformed, in compliance with
standards, usually in a form close to top-to-bottom linear representation. Such a representation is in agreement
with book layout and general reading practice, but not with planar (parallel) picture representation, which is more
convenient for man’s perception. Naturally, transition graphs must be as planar as possible. Unlike the other graphs
examined in this paper, transition graphs form the initial “framework” of algorithmization theory. Therefore, accord-
ing to the Occam principle [4], which asserts th~t “essen-e must not be overemphasized unless there is a necessity,”
such a necessity hardly arises in most logical control problems.

Nevertheless, transition graphs, unlike transition tables based on minterms and usually containing a large
number of empty cells, are tangibly more visible and virtually applicable to every large-dimensional problem. The
main advantage of transition graphs in describing large-dimensional problems is that the transition between two
vertices in an orthogonalized graph is determined by not all input variables stated in the labels of all arcs as in
transition tables, but only by those input variables that label the arc between a given pair of vertices. This property
is known as local description.

If these contradictions are eliminated not by orthogonalization, but by proper placement of the priorities,
omissions of certain input variables worsen the readability of the transition graph, because it is not possible to
determine (read) at once the list of all variables governing every transition from arcs with lower priorities emerging
from a vertex. To find this list of variables, we must examine the labels of all arcs emerging from a given vertex.
But the locality of description in this case is reduced.

The hurdles encountered in large-dimensional problems when using a transition table as the main model
for which algorithmization algorithms are available for use in binary apparatus, especially in asynchronous imple-
mentation, constitute, probably, the restraininy factor, which, by tradition, is also extended to transition diagrams
(the basic name used in algorithmization theory to denote transition graphs). These diagrams, which are used as an
auxiliary (illustrative) model in algorithmization theory, thus far hinder the extensive use of transition graphs as a
communicative and specification language in software realization of logical control problems for which the traditional
problems of the algorithmization theory are either nonexistent or not decisive.

In my opinion, in light of the present-day developmental level of the elemental base of software realization
of practical logical control problems, the fundamental criterion for program design must be good readability and,
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as a consequence, buglessness. All other criteria must merely serve as ancillary tests (although limited resources
of programmable logical controllers may dictate the choice of models for algorithmization). Therefore, the ideas
developed in this paper may be expected to promote the use of transition graphs in software realization of this class
of problems.

Our method is useful not only in logical-time control algorithms, but also in logical-computing algorithms.
Figure 27 illustrates an AGS! implementing an algorithm for determining the greatest common divisor of two positive
integers Af and N (the Euclidean algorithm). This algorithmic graph scheme is not an automatic, but a logical-
computing scheme. Being a flagged Mealy machine, this scheme can be programmed by our method from a transition
graph describing the logical-computing process (Fig. 28). 1t must be noted that this transition graph is far more
compact than the corresponding algorithmic graph scheme.

Finally, I hope that my method may prove helpful to object-oriented programmers as a mathematical tool
for handling the “states” introduced for describing “objects.”

14. CONCLUSION

The method presented in this paper, which we refer to as the SWITCH-technology of algorithmization and
programming of logical control problems, is one of the rapidly advancing recent trends in CASE-technology [15]
(Computer Aided Software Engineering) (surprising coincidence between the prefixes CASE and SWITCH). There
is “virtually no alternative” to this technology, “because it is absolutely impossible to compile specifications for a
system that would adequately take account of all finer details of the behavior without special methodology and
apparatus” [16]. This is especially true in light of one of Murphy’s laws: if something is apparently simple, it is
usually complicated; if something is apparently complicated, it may generally be unrealizable [4].

Our approach gives all developers not only a chance to control the behavior of the “black box” —a program—
as is usually done, but also permits them to “peep into” the box in order to observe the internal states of each of the
components, by tracking only one component, and to verify, if the need arises, the program codes implementing the
functional tasks. For this purpose, | elaborated a program shell for configuring large-dimensional systems of control
algorithms defined by interconnected transition graphs and written in C, and jointly with Kuznetsov (Avrora, Inc.)
developed a compiler for the C-instruction set incorporating the specifics of software realization of automata in
programmable controllers described in [12].

The program shell simulates not only control algorithms, but also control algorithms along with the controlled
object as an integrated system, in which the components of the model of the object (for example, valves) are also
described by transition graphs. Furthermore, the shell provides an opportunity to change the values of input variables
and to observe the generated values of all output and time variables, as well as the values of the numbers of the
states of every component of the system both in step-by-step (ore program cycle) and in automatic (from one stable
state to another) operation modes.

Our approach clearly partitions the tasks and, most importantly, the responsibilities between customer
(technologist), developer, and programmer in the event that they represent different institutions, especially different
countries; otherwise, language and, eventually, economic barriers would arise. In this approach, the programmer
need not necessarily know the specifics of the technological process, and the customer is not assumed to possess
programming skills. Moreover, the approach paves the way for communication between the customer, developer,
programmer, and operator not through the traditional route in terms of the technological process (for example,
emergency start is “ON”), but through a completely formalized language (a specific sort of technical esperanto). For
example, the progress message, “in the third transition graph of the fourth unit, the value at the fifth vertex has
changed from 0 to |” will not be interpreted by different people differently, as may happen in any language (for
example, “ambassador lies abroad for the good of his country”) [17], and does not require the service of specialists
knowledgeable in technological process in order 1o make changes. Furthermore, if programming is left to the “discre-
tion” of the developer (of course, this may not be always true of developers working with certain foreign companies),
he has a right and may refuse Lo seek the services of a functional programmer and take recourse Lo computer-aided
programming.

Nevertheless, in most cases, while using algorithmic graph schemes, it is not a simple matter to switch over
from algorithmization to programming in problems of logical control of complex technological processes. This can
be explained as follows: almost always algorithmization does not end there where it ought to end—the creation
of an algorithm in the mathematical sense, which, by definition, must uniquely accomplish every computation
and terminate in some “pattern” called the algorithm, which is to be conceived to some degree in the course of
programming. In this situation, either the developer himself must compile the program, or the programmer must be
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aware of the minutest details of the technological process, or both of them together must eliminate the inevitable
pitfalls inherent in the traditional design of programs via testing.

In our approach, algorithmization must proceed and end in a different level--in the process of interaction
between the customer and developer. Delivery of technical specifications is a single one-time event followed by
subsequent addenda and ends with the creation of a system of interconnected transition graphs, which takes full
account of the minutest details of every transition. Here there is no need for the programmer to invent anything
for the functional problems; he is merely called upon to realize this system of transition graphs in a unique way.
Consequently, the stringent requirements on the programmer’s skill and qualification can be slackened.

Our approach was successfully tested by AVRORA, Inc. (Russta) jointly with NORCONTROL Ltd. (Nor-
way) in designing a logical control system for a marine diesel generator [18) and in creating a control system for
the same type of diesel generator, “SELMA-2,” manufactured by ABB STROMBERG (Finland) [19]. In the first
case, programming was implemented in the PL/M high-level language, whereas in the second case, programming
was implemented in a special functional block language.

For the second case, jointly with V. N. Kondrat'ev (Avrora, Inc.) we developed a scheme based only on the use
of functional library blocks (digital and logical multiplexers) which ensure tsomorphism between the transition graphs
approved by the customer and the generated functional scheme. This approach radically differs from the traditional
method which aims at achieving only functional equivalence between the functional scheme and specifications (if
any), but does not ensure their selective equivalence—a useful tool for verifying the image representations. In the
traditional approach, a functional scheme realizes a given behavior, but describes this behavior in a form that does
not reveal the dynamics of transitions from one state into another or the dynamics of the changes taking place in
the values of output variables of the automaton.

While the specifications realized by control algorithm are implemented with the help of a functional scheme
based on triggers and logical circuits incorporating feedbacks, it is rather difficult to understand a functional scheme,
although it is, unlike the original specifications, completely defined (completeness (if any) is lost in the course of
construction of the scheme) and does not contain omissions (except for, probably, the types of triggers not specified in
the scheme); therefore, like transition graphs, it can be formally and independently programmed. The reason for this
situation is that, first, a functional scheme, in contrast to transition graphs, is not local in description (if the scheme
contains several input variables, only an in-depth analysis can reveal which of these variable exercises influence on a
transition from a given state into the succeeding state). Second, in interconnected realization, a functional scheme
does not exhibit the property of locality with respect to changes and, this is most important, does not contain any
predefined values for states and output variables. Therefore, reading a scheme consists in logically computing the
values of intermediary variables of triggers and in storing these values at the “head” of the scheme. A functional
scheme is usually tested (for consistency, missing generation, sequence of generation of the values of output values,
etc.) by feeding the input action and then computing the output responses. [t is not a simple matter to design
these tests, because triggers and feedbacks create serious difficulties in designing suitable tests for determining the
functional capabilities of a scheme. Therefore, verification is preferable to testing, i.e., formal compilation of a system
of Boolean formulas for the functional scheme, formal construction of a transition graph on the basis of this system,
and an analysis of the behavior of the transition graph.

If the transition graph thus constructed behaves differently than what it is expected to do, then, instead of
changing the initial functional scheme, we must construct a corrected transition graph, which, in turn, can be realized
through various algorithmic models, even models differing from the functional scheme. In using the functional scheme
along with the new transition graph, we must formally construct » . :w system of Boolean formulas such that it can
be realized formally by the functional scheme.

Although in hardware (especially in asynchronous) realization, a real scheme may exhibit behavior different
from the behavior defined by the model, in software realization this discrepancy is easy Lo avoid; for example, in a
system of Boolean formulas, this hurdle can be surmounted through the use of a different sct of notations for the
internal variables.

An analogous approach can be applicd when relay-controlled (ladder) circuits are used as the programming
language.

Our approach aids in programming from a unified standpoint in different languages used in modern pro-
grammable logical controllers like the programmable logical controllers {20] for which programming can be carried
out, in languages recommended by the international standard |EC 1131 (sequential function chart, function block
diagram, ladder diagram, and instruction list languages), as well as in Assembler and C languages.

Our approach is idealogically close Lo the method used in elaborating the “YARUS” language by Kuznetsov
(Institute of Control Sciences, Moscow) [21] and its modifications [22], and can be regarded as a refinement [23]
The approach is in line with the basic trends presently being developed for designing automatic control systems foi
sophisticated power-production complexes {24].
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