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GENERATING BOCLEAN FUNCTIONS VIA ARITHMETIC POLYNOMIALS

V. L. Artyukhov, V. N. Kondrat'ev, UbDC 519.714
and A. A. Shalyto

We will expand the concept of an arithmetic polynomial by introducing the '"abso-
lute value" operation. We propose methods for constructing a polynomial for
Boolean functions. The conditions of polynemial linearity are defined.

1. Introduction

The possibility of using nontraditional methods to generate Boolean functions arises
when microprocessors and microcomputers are used in logic control systems. These methods
are based on the extensive capabilities of the indicated hardware to do arithmetic. Among
these methods are, e.g., spectral methods, methods for computing threshold functions, and
computing by means of arithmetic polynomials (AP).

The latter group of methods was examined in [1, 2]. This work will further investigate
the issues in generating Boolean functions (BF) and systems of Boolean functions (SBF) via
arithmetic polynomials.

2. Expanding the Concept of An "Arithmetic Polynomial

It is @ well-known fact that a Boolean equation based on AND, OR, and NOT operations
can be generated via an AP by replacing the logical operations with arithmetic operations
according to the rules:

r,&r.=x,1,; $‘V12=1,+12—-1l12;. r=1-—z. (1)
Notice too, that if the Boolean functions f, and f, are orthogonal (f,-f, = 0), then
flv./:=fl+fz=/1®/:-

We will prove a theorem that frequently makes it possible to simplify an AP obtained
by means of the indicated rules.’

Theorem 1. Let x;, =,={0, 1}, and let N and k be random integers. Then

2= (2, (2)
i+t (28 -2) 2,2, t 2, = (2, +1,) ¥, (3)
(z,—x:) =]z, (4)
(r,—z,) M '=1,—2,. (5)

are valid.

Proof. The first relation is obvious. Wewill prove the others. To dothis, we consider
the binomial theorem:

N(N-1) »

_—=
12

Starting from the fact that when raising the sum of the variables x; and x, to a power

the sum of the coefficients on the binomial is equal to 2N and that Eq. (2) is valid, we
can rewrite Eq. (6) as:

(z,+z,) Nz M+Nz| ! I+ -2Iz’+ I R (6)

(z,Fz,)¥=x,+(2"—2) 2,2, F ..

When raising the difference between the variables x; and x, to the Nth power the sum
of the coefficients on the binomial is zero, and therefore
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(z,—1.)**'=x,—7. when Y=2k+1;
(z,—zy)*=2,~2r. 1,2, =1 - 2.2t 2 =(1‘—I;)’=|I.—I;|vhen N=2k.
are valid.
The theorem has been proved.

An AP in which the "absolute value' operation is used is called a closed arithmetic
polynomial (CAP).

Example 1. We will generate the formula f = x,ex, for a CAP. Using the relations given
earlier we obtain:

f=z,81,=%,1.Vz,7.,=(1—z,) 2, tx, (1-1,) =120, =221, 2, 2.t =(2,~2,) =|x,~1,].
It follows from this example that if f, and f, are conjunctions of rank r 2 1,
fi®f.=ih—fl, @)
and if f; and f, are not conjunctions,
flefz=lfl"‘fz'lv (8)
where f,' and f,' are APs of the functions f; and f,, respectively.

These relations make it possible to obtain a CAP for formulas of the indicated type
directly.

Example 2. We generate the formula f = (x,Vx,)ex; for a CAP.

It follows from Eqs. (1) and (8) that f = |x; + x, — X;%, — x3|; at the same time, Eq.
(1) makes it possible for us to obtain the AP:

=z +z,tr,—2,2,—22,1:— 222,122,275,

3. Generating Boolean Functions Via Zhegalkin Polvnomials

A Zhegalkin polynomial (ZhP) can be obtained from a given formula by using the relations
aVb=a®b®ab; a=1%a.
We will examine the other, more usual methods of constructing ZhPs. The choice of method
depends on what form (table or formula) the function being generated is in. If given as

a formula, the choice of method depends on the specifics of this formula (does the formula
allow simple disjunctive decomposition of Eq. (9) or not).

1. If a Boolean function has been given and it can be written [3] as

H(X)={(g(X)), X.), (9)
where X = X,UX,, X;NX, = 0, then a ZhP can be found from the relations
=[5/ (¢=0) Vglg=1) 19¢ =[¢/(¢=0)8q/(¢=1)] @g, (10)
=lalg=0e¢/(¢=1) 197, =[g(g=0)E¢/(¢=1)]®q, (11)
which are extensions of the formulas in [4] for the random functions
=17/ (z=0) Va:f (z:=1) 18z, =[z:/(z:=0) @z f(z.~1) 1@z, (12)
=1z f(z=0) Vr.f(x,=1) }®x; =[Iif($i?0) Ozj(xi=1)]€x1. (13)

Example 3. We will define a ZhP for the formula f = x,x,VX3x,. By making repeated
use of Eq. (10) we obtain

f=z,2,Vr 2= (2,7.2,2:92,2.0) O3, =1, 222, B zs7=
= (1,2,091,7.2:1,) O2,2,9 2,7, =2,2:2:7. O 2,2, P 2571

Note that the repeated use of Eq. (10) in this case can be avoided if we consider that
Xy¥, = 19){3){“.

2. If a Boolean formula that can be written as Eq. (9) has been given, a ZhP can also
be found by using

1=H(g=0)®[f(g=0)®f(¢=1)1-¢, (14)

509



which is an extension of the Reed's expansion [3] proposed for random formulas:
f=i(2,=0) @[ [(,=0) @ [(z.=1)] Pz, (15)
Example 4. We will find a ZhP for the formula f = x;x,VX3x,. Using Eq. (14}, =: {ind
=22, (2 2.8 ) 237, =2 ., @ 1, 1,22, Pz,

3. A third approach is the following: the orthogonal normal disjunctive form (CHDF)
for the general case is found by repeated use of the rule

] =.flvf:=fxvf1_f-_-.

The V symbol in the ONDF is replaced by e and x; is replaced by lex;. Then the formulaus
are multiplied out and similar terms, if they exist, are reduced.

Notice that the amount of effort nepded to construct the ONDF depends 6n the order in
which the formulas are written. If, when this is done, §: has h; letters and - has .,
h, < h,, then ¢=¢Vg.. If h; > h,, then y=¢:Ve .

Example S. We will define a ZhP for the formula f = (X,Vx,)x,VX;%X,. It follow: from
what has been said previously that f = (X Vx,)x3Vx; X, = XX,V X 1VXy)Xg = X X,VR R, (oM, x, =
XX V(X X,VR X5X5) = X,%X,0(X,0X, )Xy = XX,9X;X30X,X;.

4, The matrix method of [5] for constructing a ZhP is based on specifying the fu:cticn
in absolute normal disjunctive form (ANDF) or in a truth table. The method is based c¢n using
a binary Pascal's triangle [6] found in a square matrix of size 27 x 2D every elenzat of
which that lies above the main diagonal is equal to zero.

For this matrix the relations

(15)
Qnt 0 10 R
j@d=]20 | jeu=| !0
Qn—l Qn—l 1 l
are satisfied.
The coefficients of a ZhP
f=g0egl-'i:n@g:«l'n—lG)g.;.‘t,,_‘.‘l‘,.® RURRL:Y RS S N (17)
are associated with the coefficients of the ANDF _
f=YoZFz.. . EaVIITs ... EncrZaVYsTy ... (i8)
e .‘r,._,f,.V e Vyz"-lx‘xz R
by the matrix relation
[G|=]0Q.|®]Y], (19)

where |G|, and [Y| are column matrixes of the coefficients for a ZhP and the ANDF, respec-
tively, @ is the symbol for the operation of multiplying matrixes in which the arithaeotic
sum is replaced by the sum in modulo 2.

As an example, we will reduce Eq. (19) when n = 2:

g&| |1 00 0} Juw| |%
g1=1 10 O,)?Iyl___yo@yl
g2 101 0|%y Y= V2
g 1111 Ys NSIRSYASEH
Making the reverse transition from a ZhP to an ANDF is done through
|Y|=10.|®]G]|. (20)

4. Constructing a Closed Arithmetic Polynomial for a Random Boolean Function

The CAP for a random Boolean formula (function) can be found as follows: a ZhP is de-
fined for the given formula (function) which in the general case is then converted to a CAP
by repeatedly using Eq. (7).

) Example 6. We will construct a CAP for f = (X,Vx,)ex5 by using the fourth method for
constructing a ZhP.
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Having found the ANDF for this function we obtain a column matrix [Y| and then we compute
he coefficients gj by means of Eq. (19):

g€ |1 000 0000} 0] {0
gl 11100 0000 !t 1
g |1 010 00%00O0] |1 1
g (11110000 _lo] |0
el [t000 100 0“1 |1}
gs| |t 100 1100 0] |o
g6 1t 0410101 0f [t 1
ezl 111111111 {o] |o

Consequently, f = go9g1X398,X,983X2X3®8,X19Z5X1X308cX1X,987X 1 X5Xg = X39K 9K 9X X, =
Il'xs = X | [xaxa |

It follows from comparing the CAPs found in Example 2 and 6 that, in contrast to the
situation for APs, the representation of a CAP is not unique. Therefore, to verify the con-
struction of the CAP the transition from the CAP to an AP must be made. 1In doing this, to
reduce the embedment depth of the '"absolute value" operators, we suggest that, beginning
with the most deeply embedded operators a Shannon expansion f = (1 — x3)f(x; = 0) + x;f(x; =
1) and the relations [x; — xj| = x; = 2x3%xj + x5, |1 = %3] =1 — %3, [x4 —~ 1] =1—x;be used.

By way of example we will prove the validity of
f=Izi=z:]~ 2,2 | =23 | =2+ 1o 2y—2,2,— 25 2y~ 22,25+ 22,7, 15,

Using the first of the relations given, we find that £ = |[x; + x, — 3x;%X,|=x5|. We
expand the internal operator in terms of the variable x,:

@i=|z,F2,—32,7.| = (1—x,) | .|+, [1-212].

We expand the operator ¢.= |1 — 2x,| in terms of the variable x,: ¢:r= (1 — x,){1] +
le—ll = 1. 1In doing this, ® = (1 — x;)x, + X; = X; + X, — X;%X,. Thus, f = |x; + x, -
X1X, — X3|. Expanding this relation in terms of x,, we obtain: f = (1 — xl)lx2 - x3[ +
%]l = x5 = (1 = x;)(x, — 2%x,%x53 + x3) + x;(1 — x3) = x; + x; + X3 = X;X; = 2%X;X3 — 2%, %5 +
2%1%X X5, ‘

In spite of the fact that the computational complexity of a CAP is no less than that
of a ZhP when using the method shown, it can be used when logical operations are absent from
the programming language as happens, e.g., in some versions of BASIC. The proposed method
frequently makes it possible to obtain a record that is more compact in comparison with the
"classical' APs.

The CAPs we have examined generate one Boolean function. By analogy with APs closed
polynomials (CP) that generate systems of Boolean functions (SBF) can be included in our
examination. For example, the SBF f, = x,ex,, f, = x,9x; can be generated by the CP: Y =
2|x; = x,} + |xy — x3|, without introducing additional fucntions. The AP for this SBF is
Y= 3x; + 2%, + X5 — 2x;%X5; — 4%X;xX5.

5. Generating a Boolean Formula Via an Arithmetic Polynomial

Generating a Boolean formula via an AP can be done by the following method, which
differs from the direct use of Eq. (1): an ONDF is defined: the V symbol in the ONDF is
replaced by a + and X; is replaced by 1 — x;; the formulas are then multiplied out and similar
terms, if they exist, are reduced.

Example 7. We will generate the formula f = (x,VX,)x;Vx;x, via an arithmetic poly-
nomial. In doing this, f = (x;VR,)X3VX X, = X XV(£,VR,)X5 = X %VX X, (%1VX5)X5 = XX,V
(X1x,Vx 1%, )%5 = %1%, + [(1 = %)%, +%,(1 = x,)1%3 = X;%, + ;X3 + X,X; — 2X;X2X3.

We will present, without proof, two statements.

1. If the given formula is nonrepetitive in AND, OR, and NOT the coefficients of the
AP are -1, 0, and 1. The converse is not true.

2. If the coefficients are =1, 0, and 1 a corresponding ZhP can be obtained from the
AP by replacing the 4+ and — signs by e.
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6. Constructing an Arithmetic Polyncmial for a System of Beolean Functions

We-introduce the concept of an extended absolute normal disjunctive form (EANDF) for
SBFs.

In doing this, we will understand an EANDF to be an expression of the type

)’=y\.§|fz “es f,._,f,.Vy.f‘fz ves ;n_lfnv ‘e (21)
o VYo Zs oo Toeidny

where v; is the decimal equivalent of the SBF values in a set i. The validity of Eq. (21)
foliows from the orthogonality of the conjunction of the EANDF.

We will seek an AP for the SBF Y as
Y=a,4 0,2, 020y @2y ZTat .. FAA T2 Tae (22)

Equation (22) was obtained from Eq. {21) by replacing the y; with aj and eliminating
complemented variables.

By substituting the 21 values of the x,, xz,v..., X, and setting Eq. (21) equal to
Eq. (22) we obtain 2D equations from which expressions for the AP coefficients can be.
found via the EANDF coefficients by substitution.

These equations can be given in a matrix form similar to Eq. (19) and which is also
constructed as a binary Pascal's triangle:

[4]=|Pa|-1Y], (23)
where |A| and |Y| are respectively column matrixes for the AP and EANDF coefficients.
For a matrix |P,| the relations:
Pn-—l 0 1 0
P" = ' I b P =I 1
| l _Pn—l et I ll 11 (24)

are satisfied, where P,.; is a matrix obtained by changing the sign of the unit elements
in the Pj.; matrix.

By way of example we will reduce Eq. (23) when n = 2:

a, 1 0 0 0] |y Yo

a|_[—=1 1 00ty |—v+uy ] (25)
a, —1 0 10} jpa] | —Yotue

a; U —1 —1 1] sl (Yo— =t

Example 8. WE will define an AP for the formula f; = x,x,, £, = x,ex,. Having set
up a truth table (EANDF) for these functions we find that y, = 0, y; =y, = 1, and yg = 2.
When this occurs it follows from Eq. (25) that ag = 0, a; = a, = 1, and a; = 0. Therefore,
Y = a, + a;x, + azx; + azx;X; = x, + X;.

THEOREM 2. If an SBF has been defined in B(8 < 2") sets of input data X;, X5, ...,
Xps it is always possible to construct an AP that has no more than B nonzero coefficients.

Proof. It follows from Eqs. (23) and (25) that an aj is computed via a y; and there-
fore, if the y; has not been defined its value can always be chosen so that aj will be zero.

Example 9. We will define an AP for the SBF Y(X) = {f,(x;, x,), f,{(x;, x,)} specified
in the three sets numbered X = {0, 1, 2} and using the values Y = {1, 2, 3} in these sets.

It follows from Eq. (25) that, having chosen y; = 4, we obtain a; = 0. Ih doing this
}'=1+12+2I‘. .
The reverse transition from an AP to an EANDF is accomplished via the relation

1Y]=10u]-14]. (26)

7. The Condition for a System of Boolean Functions to be

Representable via an Arithmetic Polynomial

The condition for an SBF to be representable via a linear AP is determined from Eq.
(23) by setting the coefficients of the nonlinear terms in Eq. (22) to zero and representing
them via the base values yj, where i =0, 1, 2, 4, ..., 2n-1,
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In doing this the linearity condition AP for a SBF is defined by the relations:
ISIS2—f, 27,2, ., 2%,

. N (27)
y.= Z Ling1Yom ~'L(.i ~ Zl I'N+|)y°v -

ma={log,l) ma={log,i}
biﬂ I=I(|c,g, 1141 loga 1) « « » I,Xy,

J~ere Yo. ¥y, and y,m are the decimal equivalents of the SBF values in the sets having the
~mbers 0, £, and 20, respectively; bin £ is the binary equivalent of 2.

A more obvious form of this condition is acquired in matrix form:
\Yi=IDC)-[Yol, . . (28)
shere |Yg| is a column matrix of the y;.elements; |Yp| is a column matrix of the base y,,

Vi Y2+ Yus +e+s Yan-1 elements; D is a submatrix, each row of which is bin £; and C is
a column vector, each value of which is equal to one minus the sum of ones in bin ¢.

As an example, we will reduce Eq. (28) for n = 3:
¥s 01t —1t Y Yo+ Y1— Yo
ys| |1 01 =1 wf lutvi—¥
vs| |1 10 =1 || [vsty2—1s
Yz 1t 11 =2 |y s+ v+ n— 20,

We will point out two special cases of AP linearity.

(29)

1. If Y=1c; + c,d (d is the decimal equivalent of the input sgt), the AP will have
the form

Y=c,te, Z, VAR
Temt

n

2. If Y=c,+c22 z;, the AP will have the same form.

Toml
Example 10. We will determine whether or not the SBF [i=xur:, =V, fi= £,®z; can be

represented by a linear AP and generate this SBF.

We write a truth table for this SBF. We include the columnY: y,=0,y,=y,=3, y; = 6.
The linearity condition is satisfied:

Y2
lys|=]1 1 —1]-|n =|!ie+!l1"yo|-
Yo

The values of the AP coefficients are found from Eq. (25): a, =0, a; = 3, a, = 3,
33 = 0. When this is done, Y = ag, + a;x, + ayx; + azx;x, = 3x; + 3x,. A similar result
is obtained from the second special case: n =2, ¢; =0, c, = 3.

The linearity condition for a ZhP has the form: -
|Y:|={DB|®|Tv|, (30)

where B is a column vector, each value of which is equal to the sum in modulo 2 of the ones
and the ones in bin .

As an example we will present the condition for n = 3:

ys‘ 0111 I!hl Uz@yle‘yo!
¥s) _ 1011 o Y2 ___:'.'/4@!/1‘3!/0'.
Yo 110 1%y YsS Y & Yo
Y2 1110 Yo ‘y.;@yzeyx
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8. Minimizing an Arithmetic Polynomial

" The linearity conditions obtained for an AP can be used for minimization by changing
the order of writing the functions in the SBF and introducing auxiliary functions {1, 2].

Using the linearity conditions makes it easier to find a linear form, if it exists,
because rather than obtain an AP at each step of the minimization, only a test for linearity
need be made.

Example 11. We will generate the SBF f; = lex,ex,®x;, f, = x,¥x,Vxy via an arithmetic
polynomial. The linearity condition is not satisfied for this SBF. Now, Y = 2 - {(x; + x, +
x3) + 3(x;%, + X3X3) — 7X;%X,X3. Substituting the functions f, and f, simplifies the poly-
nomial, but does not lead to linearity:

Y=1+z,+z.:} 222,225,
»

To ensure linearity we introduct the auxiliary function f; = X;X,X3VX;X,x; at the second
position: f,, f3, £f;. Now, Y =3 + x; + x, + x5.

The question of intentionallyusing the linearity conditions for the purpose of minimizing
an AP for completely defined SBFs remains open.

For incompletely defined SBFs relations of the type given by Eq. (25) and {29) make
it easier to find minimal APs due to choosing those values for the undetermined coefficiencs
yi that ensure that zeroes will be obtained for the values of the coefficients or that the
linearity conditions will be satisfied. A similar conclusion may be drawn for ZhPs [7].

Computational complexity can also be reduced by converting the polynomials to parentheti
arithmetical form (PAF).

_ Example 12. We will define the PAF for the SBF f; = x;X,X3, f, = x,(x,0x;), f3 =
X1X,X3VX;X,X3. For this SBF (without introducing auxiliary functions) the AP has the form:

Y=4f 421"+ =2, 2s 2,25+ 225+ 14
Converting to the PAF, we obtain
Y=z(1+z,+2,) 2,25,

Taking Eq. (2) into account, an AP can be converted to PAF as follows:
Y=xt$2+3tza+xz$:+xlz=zl(31+1'2) + (I|+Iz)3a =(z,+,) (2, +z,).

9. Conclusion

Thesis reports of the 10th All-Union Conference for Problems in Control which contains
the works [8, 9] were published after this article was submitted. Some of the results in
those publications coincide with those obtained here. Also, a number of definitions that
are of particular interest in classifying polynomials are found in [8)}. From what has been
said, we can make a few comments.

1. In keeping with [8] we will use the acronym AP to denote a polynomial for one
Boolean furiction and the acronym PM for the polynomial of an SBF. A PM can be constructed
with, or without using auxiliary functions. In the first case the bits corresponding to
auxiliary functions must be masked in order to obtain a result after the polynomial is calcu-
lated, and in the second case the desired result is formed immediately upon completion of
computing the polynomial.

From what has been said and because the masking operation is extremely difficult, e.g.,
for several high-level languages the PMs can be divided into two classes: with masking and
without. ’

When this is done it must also be noted that the formulas examined in Example 2 can
be replaced by an SBF and generated by a linear PM having a mask

Y=3z,4+3x,42z,,
as the APs that generate this formula directly are nonlinear.

2. Equations (16) and (24) for Q, and P, are the Kronecker n-th power of the matrixes
Q, and P, respectively(9].
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3. .Bquations (19) and (23) are called, in keeping with [8], a direct conjunction trans-
form (CT) with matrix operations {e,*} and {+,°}.

4. Equations (20) and (26) are called, in keeping with [8]}, an inverse CT with matrix
operations {e,-} and {+,°}.

5. PFast direct and inverse CTs are examined*in [8]
6. By analogy with [8] Egqs. (19) and (26) define the conversion from an AP to a ZhP:
[G[=[Q.1®1Y|=[Q.| ®]Qu]- 41,
and Eqs. (22) and (20) define the conversion from a ZhP to an AP:
|A|={Ps|-[Y][=|P.|-|Qa| ®|G].
7. The use of a PM and a CP makes it possible to compute an SBF in parallel (9].
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