AUTOMATA

TUNABLE BINARY PROCEDURES AND PROGRAMS WITH LOOPS*

V. L. Artyukhov, B. P. Kuznetsov, UDC 681.3.06
and A. A. Shalyto

A method is proposed for the evaluation of a system of Boolean formulas using a
program with a loop in which some parameters generated by a previously created
array are successively passed to a special procedure. The program with a loop is
termed a cyclic binary program, and the procedure is termed a tunable binary
procedure. Basic design principles and complexity bounds are considered.

INTRODUCTION

There is an ever-growing interest in program realization of systems of Boolean functions
(SBF), using compilers [1, 2] and interpreters {3]. Interpretation is the more promising
approach in those cases when no special requirements are imposed on the time characteristics
of the program. An interpreter is independent of the Boolean functions being realized, and
the functions are specified by an array [3). However, the generation and updating of such
an array for the specification of SBF with many variables and formulas is an arduous and
time-consuming task. 1If we can abstract from issues of time and memory optimization, which
are the primary concern of {1, 3}, and focus on simplicity of the realizing procedure (as in
the formula method proposed in [1]), the interpreter may be designed as a cyclic program
which includes a general-purpose compiler procedure with parameters. Then the specified SBF
may be represented by a table (array) of parameters, and formula evaluation reduces to
strictly sequential enumeration of the table rows and substitution of the row parameters
into the general-purpose procedure,

In this article we consider some princlples of organization and construction of tunable
binary procecures, parameter tables, and cyclic binary programs for SBF evaluation. Appro-
priate complexity bounds are given.

l. Tunable Binary Procedures

Consider a SBF of the form

Wg=ZaVZzVZ:; IV2=Z1Z2VZ3;

: (1)
W,= (Z:VZz)Zs; W.=2.2.Z,. .

Figure 1 presents graph-schemas (GS) of simple binary programs realizing these formulas.
Let us combine the GS of the separate formulas into a generalized GS (Fig. 2a), which con-
stitutes a simple binary program with four inputs and one output (Fig. 2b). To reduce the
number of inputs, we introduce the additional variables Z, and Z,, which are called formula-
tuning parameters: Zi =Zy =1 tune to W,, Z, =1 and Zy = 0 tune to Wz, Z, = 0 and Z5s =1
tune to Wy, and Z, = Zs = O tune to W,. Supplementing the GS with three nodes (Fig. 2c), we
obtain the GS of a binmary program which constitutes a procedure evalvating any of the
formulas in (1); this procedure may be utilized as a subprogram with the parameters Z, and
Zy. It may be designed as a function subprogram since computations with any of the formulas
generate the value of W equal to 1 (0). The resulting function procedure (Fig. 2c) will be
termed a tunable binary procedure (TBP), which we denote by W = W(Z,, Zs). Its tuning in-
volves assigning the constant values 1 and 0 to the parameters Z, and Zs. The formulas (1)
are then evaluated using the following relationships:

W=W(,1); W.=W(,0); W,=W(@®O,1); W.=1¥(0,0). (2)
The GS in Fig. 2¢ realizes the function

Leningrad, Translated from Avtomatika i Telemkhanika, No, 11, pp. 112-119, November,
1984. Original article submitted November 10, 1983,

A utomaton and Remote Control. vol. 45 Ao 11, Arig A;v;:;fer

0005-1179/84/4511-1481$08.50 © 1985 Plenum Publishing Corporation 1481

»WTZ‘Z, (Z,NVZ,\VZ)NZZ(2,2,\/Z,) 3)
VZiZsZa (vazz) Vz‘zszlzzza,

which, by analogy with [4, 5], will be called the generating function (GF). Since (1) is a
system of representatives for all the PN-types of repetition-free three-letter normal
formulas in the basis {&, V, "} [4], the binary procedure may be used to evaluate arbitrary
three-leter normal Boolean formulas in this basis [4] by substituting the relevant letters
from the target formula for the variables Z,, Z;, Z3 in the function (3) and the- constants
1 and 0 for the variables Z, and Zs. For example, to evaluate the formula Y=X,X;\/X. we may
use the relationship Wa from (2), taking Z, = 1, Zy = 0. We then substitute Z; = X,, Z; =
Xs, Zs = Xa. The function (3) is thus a TBP with the parameters Z;, ..., Zs, i.e., in
general W = W(Z;, «..y 2Zs). By analogy with [4], the parameters Z;, Z;, Zs are called in-
formational parameters, and Z,, Zs tuning parameters. The TBP GF also may be represented
by a function of the form

1482

Fig. 3

W=W(Q, P, R), : (4)

where Q is the set of informational parameters, P is the set of tuning parameters, R is the
set of informational-tuning parameters {[4]. '

A Krunivérsal TBP (TBP-K) is a TBP realizing a GF whose component formulas constitute
a collection of representatives for all the PN-types of repetition-free normal formulas in
the basis {&, \/, "} with K or fewer letters (informational parameters of the TBP).

The function (3) is the GF of TBP-3 with three informational and two tuning parameters.
The GF of TBP-3 with partially overlapping informational and tuning parameters may be repre-
sented, using the method of [4}, in the form

AU AV AV AYAV XA A (5)

The PN~-type representative of the formula W, from (1) is realized in this case taking
Z, =1, the representative of W; is realized for Z; = 1, that of W, for Z; = 0, and of W,
for Z, = 0. The variables Z, and Z; are informational variables, and the variables Z, and
Z, alternate as informational and tuning parameters. The GS of the corresponding TBP-3 is
shown in Fig. 3. Note that it also may be realized as a linear GS with seven condition
nodes and two operator nodes, using the formula method.

2., Generating the TBP

The starting data for TBP generation are the formulas of the given SBF, and the output
is a procedure code. Let us consider the following steps leading to the generation of a
TBP: choosing the base SBF, constructing the TBP GF, constructing the TBP GS, coding the
TBP,

2.1. Choosing the Base SBF. The base SBF is the SBF realized by the TBP whose argu-
ments are the informational (informational-tuning) parameters of the TBF., If a concrete
unit (logical machine) is intended for program realization of a single SBF, this SBF is the
base SBF for a special-purpose TBP. If the machine is intended for program realization of
various formulas, which are not prespecified in advance, it is advisable to choose the base
SBF as a system consisting of all the PN-type representatives of repetition-free normal
formulas in the basis {&, V, -} with K or fewer letters.

2.2. Constructing the TBP GF. The TBP GF is constructed following {4]. GF construc-
tion involves filling the TBP tuning table. The tuning table of the TBP realizing the GF
(5) is shown in Table 1. :

2.3. Constructing the TBP GS. The construction of the TBP GS from the GF is a combi-
natorial problem, usually solved by heuristic methods [2, 6-8)}. Once the GS is constructed,
its nodes are labeled.

2.4, Coding the TBP, The TBP is implemented in a language whose operators mostly
coincide with those used for the description of binary programs {l1l]. It contains the
following instruction set:

1. Operators for two- and one-address conditional jumps:
M: 4f X = 1(0) then M,, else M;; '
M{ if X = 1(0) then M,;

1483

TABLE 1. Tuning of TBP-3

) Tuning -
h:

g-‘qrmb:la SBF formula (5) :it m;lii:l
number . . ﬁm 4 4

1 LVZV 2 1441 A 1

3 AN i o | %

1 +1)
i 5,7, ¢4 7, ¢ |

2. Unconditional jump operator:
M: go to M;;
3. Function header operator:

name: begin (parameter-l, ..., parameter-m), where "name" is the TBP name, “parameter-
i" is a TBP parameter, m is the number of variables in the TBP GF.

4, Assignment operators for functions:
M: name = 1(0), end;

These operators terminate the procedure and its value is set equal to 1 or 0 (since it
is a function procedure).

5. Procedure end operator:
End name; : : -

The operators M, M,, andM: specify operator or jump labels. When two-address condi-
tional jump operators are used, the TBP is coded starting with the GS root node, which is
followed in arbitrary order by two-address conditional jump operators with labels corre-
sponding to GS labels. If only single-address jumps are allowed, the transition from the
GS to TBP code is essentially more difficult and it should be considered as a problem of
minimizing the number of unconditional jumps [7]}. For TBP-3 with the GS shown in Fig. 3,
a procedure using only single-address conditional jumps has the following form:

TBP-3: begin (Z:, Za, Z3, Zu)}

A: if Z, = 0, then D; G: TBP-3 = 1, end;
: if Z, = 1, then G; D: if Z, = 0, then H; (6)
C: if 2, = 1, then G} E: if Z, = 1, then F;
= 0, end;

F: if Zs = 0, then H; H: TBP-3
'~ End TBP-3;

3. Decomposition of a Given SBF

TBP-K can be used to realize arbitrary formulas in the basis {&,\/"}- To this end we
have to decompose each formula in the basis of TBP-K formulas. The decomposition process is
analogous to the process of formula realization on K-universal modules, described in [4, 9].

For example, given a SBF of the form .
—Xg (X;VX;) VX (XzXzVXz (X;V‘X ;)),
Y,=X\VX;; €))

YJ=X2(XlXSXIVX—lXSX!VXlX(X!) VX:XaXsVXaXc,

we can represent Y; from (7) by the following decomposition into TBP-3 basic formulas:
Y'=X, (X;VX‘)VX. (XgXaVX: (X;VX-;)) =V‘VX' (X;X;VV3)=V5V71VS=VI') (8)
where

_X!(XSVX-&), _X (lefri)!
Vi=X.X,\VV,, V=V,VX\V.
Here V, and V, are the fragments of the original formula realized by the formula W,

from (1), and V5 and V, are the fragments realized by the formula W; from (1) by appropriate
substitution. The decomposition process is accompanied by filling a decomposition table.

1484

TABLE 2. SBF Decomposition Table

v
8 Substitution of TBP -
2 . parameters (inputs) &
§. g a B o 2 o < B | E o~
EE | 28 |33 283
S a E 8 LE]
g8 | 8% |=Zgs) = | = | = | » |Bzs
1 | 2 | 3 % 5) 1 8
1 X: (X X+ 1)1 X, X, 0 X, "
-2 (X2 X)) Xej(1 1)1 X, X, 0 X Vs
3 XeXs\/ Vol 241 A X, 1 Va A
4 X,VsVV: | 241 X, Vs 1 1A Y,
5 (X V)1 ld+1n)1 X, | X 0 1 Y,
6 X, X, X, 3 X, X, X, Vi
7 X, X, X, 3 X, X, X, 0 Vs
8 | X, X, x, 3 X, X, X, 0 Vs
9 ViVVaV Vil 141 " Vs Vs i Vi
10 X. X, X, 3 X, . X, X, 0 Vs
11 XX, VVs| 241 X, X, 1 v, Vs
12 XaVeVVs | 241 X, Y. 1 V. Y,
TABLE 3. The Array S Ior SBF
| - TEP inputs ,< TBP inpun
] 8 o g s
1 23 z |z |z |z |Balz? oz | oz B
E z Gy S | s [0 ESE3 G0 [ew |0 |sw |3 &
1 X, | X, 0 L iln 7 | X 1 X | X 0 Vs
2 X | X, 0 X | Vs 8 | x, | x| x4 0 Vs
3 X. | X, 1 Vs | Vs 9 vy | Val| Vs 1 | v,
s | X% | v 1 Vi | Y 10 | X [Xs | X; o | v,
5 X | x| o 1 fye | 18 | X | X 1 | Ve | Vs
6 X, | x| x, o { v 12 | X, | A 1 Ve | Yy

Table filling can be approximately described in the following form. Identify a separable
fragment in the original formula (or in the formula obtained in the preceding decomposition
step) [4]. Using the TBP-K tuning table identify the basic formula. In the next row of the
decomposition table enter the step index, the realized fragment of the original or the pre-
viously transformed formula, the arithmetic polynomial of the TBP basic formula, the vari-
ables and the constants determined by the corresponding row in the TBP tuning table (Table
1), and also the symbol of the fragment or the output variable realized in the particular
step. The fragment is then considered as a new letter (intermediate variable) which is
saved in the main memory. Table 2 is a decomposition table for the SBF (7).

4. Cyclic Binary Programs

The simplest technique for designing a program that will realize a given SBF by using
a TBP involves writing out a sequence of assignment operators in which the left-hand parts
are an intermediate or an output variable and the right-hand part is the TBP name with the
parameters listed in the corresponding row of the decomposition table. For example, a pro-
gram realizing the SBF (7) using TBP-3 with Table 2 has the form

1. V,=T8p- 3(X,, X, 0, X,);

. Y, =TBP- 3(X,, Vs, 1, V)5

.o,

1.2. }’3='. TBP' 3(X2v Vh 11 p")’

A sequence of identical assignment operators may be replaced with a loop, in which the
loop parameter (i) is the row index in the decomposition table. The input and the output

1485

Input
variables;
§1—=2s Sig—=1z
Sig =3 Sy

2781 2=y |6, TBP-3
257531 447 Siy 1
; .
8= TBP-3 t=i+
yes
|)
b

Fig. 4

(intermediate) variables are then moved outside the program and are represented by an array
(Table 3), which is henceforth denoted by S. This array is generated from Table 2 by de-
leting columns 2 and 3.

Figure 4 shows flowcharts of SBF-realization programs using TBP. In Fig. 4a, the SBF
is evaluvated infinitely many times, which is usually required under program control, and
all the input values are entered simultaneously for each SBF realization before the first
row of the array S is processed, In Fig. 4b, the SBF is realized only once, and for each
loop execution we only enter the variables corresponding to the row i in the array S.

As an example let us evaluvate the formula Y, from the SBF (7) using the program from
Fig. 4a. Let X,=1,X2 =1, X5=1,X, =0, andXs =0; thenfor i= 1from thefirst rowin Table 3 we
get Z, =1, Z, = 0, Z, = 0, Z, = 1. Then, following the code of the procedure TBP-~3 we ob~-
tain the sequence of jumps A, B, G (identified by the labels in the procedure (6)) which
generate V, = 1, For i = 2: 2, =0, Z3 =1, Z3 =0, Z, = O0; the jumps are A, D, H and V; =
0, Fori=3: Z2,=1,2,=1, 23 =1, Z, = 0; the jumps are A, D, E, F, G and V, = 1, For
i=4: 2,=0,2,=1, Z, =1, Z, = 1; the jumps are A, B, C, G and Y, = 1.

The other formulas in the SBF (7) are similarly evaluated.

Programs with loops using TBP to process arrays of this type will be called cyclic
binary programs (CBP). The CBP using TBP-K is independent of the particular SBF being re-
alized and in this sense is general-purpose.

CBP may be used with array S of infinite length, and yet it is always easy to recover
the specified SBF and to modify it as necessary.

5. Complexity Bounds

The CBP occupies a fixed space in memory and is characterized by a virtually constant
loop execution time t.. The memory required to store the array S is given by

where m is the number of variables in the TBP GF; L is the number of rows in S (the number
of decomposition steps). From [5} we thus have

X—-1)
m=K+]log,(2+ ¥ o) —1[, (10)
f=]K/2{
where Q(j) is the number of PN-types of repetition-free j~letter normal formulas in the ba~
sis {& V,} [4]..
By analogy with [4, 9] we have the bounds

1486

]

|2

where L is the number of SBF decomposition steps, h is the number of letters in the right-
hand part of a formula, N is the number of formulas in the SBF, H is the total number of let-
ters in the right-hand parts of the SBF, .
. _ , .
H=Zhl.

L is thus linearly dependent on the number of letters in the given SBF. Here

(a1

(12)

T=tcLs (13)
. where T is the time to process the array S once. .

Therefore T is also linearly dependent on the number of letters in the SBF being re-

. alized.

CONCLUSIONS

1. A new class of programs is proposed for the realization of SBF. These are so-called
cyclic binary programs (CBP) in which the body of a loop includes a tunable binary procedure

(TBP) capable of realizing any of the formulas in the base SBF when the values of the tuning
parameters are specified.

- 2. The SBF is prepared for realization by stepwise decomposition into the formulas of
a K~universal TBP, which involves constructing a decomposition table and generating from it
a parameter array whose rows are then processed in strict sequential order by the CBP. This
ensures SBF realization with linear complexity bounds, while preserving readability and ease
of SBF modification.

3. CBP of this type may be used to realize arbitrary SBF specified in the basis
ﬁ&,\/."} in accordance with the above-given bounds. This approach, however, is more effec-
tive for the realization of weakly connected formulas with infrequent repetition of variables
which is the common case in industrial automation systems [4].

4. The proposed approach may be used to construct CBP with TBP which will act as gen-
eral-purpose programs for some classes of formulas and functions. If we use a general-pur~
pose TBP on the class of DNF, then we obtain the bounds derived in [4]. If we use a gen-
eral-purpose TBP on the class of K-letter formulas in the basis {&, \/, -, ®} then the corre-
sponding CBP will realize with the above bounds arbitrary formulas and systems of formulas
in the basis {&, V, ", ®}. The upper bounds from (11) and (12) are also valid for CBP which
use general-purpose TBP on the class of arbitrary functions of K variables.

LITERATURE CITED

1, 0. P. Kuznetsov, "Program realization of logical functions and automata,™ Avtomat.
Telemekh., No. 7, 163-174 (1977).

2. V. L. Artyukhov, V. 1. Rubinov, and A. A. Shalyto, "Constructing generalized binary
programs for systems of Boolean functions,” in: Issues of Ship Building, series
“"Naval Automation” [in Russian]}, No. 27, Leningrad (1982), pp. 38-46.

3. E. I. Pupyrev, "Interpreters realizing Boolean functions and automata," Avtomat,
Telemekh., No. 1, 132-140 (1982).

4. V. L. Artyukhov, G. A. Kopeikin, and A. A. Shalyto, Tunable Modules for Logical Circuit
Control [in Russian], Energoizdat, Leningrad (1981).

5. V. L. Artyukhov, G. A. Kopeikin, and A. A, Shalyto, Naval Logical Control Systems.
Unified Logical Circuits [in Russian], Izd. Inst. Povysheniya Kvalifikatsii
Rukovodyashchikh Rabotnikov i Spetsialistov Sudostroitel'noi Promyshlennosti, Leningrad
(1981).

6. E. Humby, Programs from Decision Teachers, American Elsevier (1973).

1487

7.

8.

logical-control algorithms in special-purpose programmable logical units,"

Yu, N. Butin, M. Ya. Zolotarevskaya, A. P. Kirillov, and V. N." Yung, "Realization of

Avtomat.
Telemekh., No. 6, 131-141 (1983).)

B. P. Kuznetsov, "Structured binary programs,” in: Issues of Ship Building, series
"Naval Automation" [in Russian}, No. 29, Leningrad (1983), pp. 27-35.
V. A. Artyukhov, G. A. Kopeikin, and A. A. Shalyto, "Complexity bounds for the realiza-

tion of Boolean formulas by tree networks of tunable modules," Avtomat. Telemekh., No.
11, 124-130 (1981).

