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‘BOUNDS ON THE REALIZATION COMPLEXITY OF
BOOLEAN FORMULAS BY TREE CIRCUITS OF
TUNABLE MODULES

V. L. Artyukhov, G. A. Kopeikin, UDC 62-507
and A. A. Shalyto

Upper and lower bounds are established on the circuit realization complexity of Boolean for-
mulas in the basis of universal tunable modules.

Extensive [iterature is now available on design and application of tunable logic modules (TLM) [1-4].
There are, however, virtually no published results on the complexity of circuit realizations in the TLM basis.

The present article partly fills this gap for the case when the functioning algorithm of the device is rep-
resented by an h-letter Boolean formula defined in a basis with associative two-place operations and realized by
a tree circuit consisting of universal TLMs in the same class of formulas with k or fewer letters [4].

1. STATEMENT OF THE PROBLEM

Consider an h-letter Boolean formula {(z,, z,,..., zy) defined in a basis with associative two-place opera-
tions (e.g., {& V,—}, {& V,—, ®}).

Also given is a collection of modules M realizing all the subformulas ¢ in this basis of length not exceed-
ing k letters. A universal TLM in this class of formulas with k or fewer letters may be used to represent these
modules. in what follows, we refer to it as the k-universal module.

From the set of circuit realizations of the formula f(z,, z,,..., zp) in the basis M, we isolate the subset of
tree circuits.

Definition. A tree circuit is a single-output loopless structure in which every input variable and the out-
put of cvery element are connected dircctly with at most one input of a single element in the structure.

Among the tree realizations, there is at least one with a minimal number of modules.
Let us estimate the number of modules L(h; k) fromthe set M required to construct a given realization.

We denote the inputs of the tree structure by xj, where i = 1,...,h. Then the original formula i(z,, z,,...,
zyp) is transformed into a repetition-free formula of the form f(x, x,,..., xy).

On the other hand, we know [4] that a module is universal in some class of k-letter formulas only if its
generating function is a combination of k-letter repetition-free formulas in the same basis.

Our problem thus reduces to decompositioh of a repetition-free formula into repetition-free subformulas.

2. THE FINDINGS

Proceeding to discuss the findings, we should note that the TLM inputs may act both as information inputs
and as tuning inputs. The TLM is linked with information sources and preceding modules in the logic structure
by means of the information inputs. A TLM logic structures may be represented omitting the tuning inputs if
each module is marked with the formula that is realized.

In what follows, we will only focus on information inputs, which we call module inputs. The module inputs
to which input variables are applied are called activated; the remaining inputs are called frec.

Proposition 1. The number of modules in a tree structure is given by
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h-—1

L= P

where kay is the average number of activated inputs in one module.
Proposition 2. The minimal number of modules in a tice structure is given by
) h—1
=1t
where ]A [ denotes rounding to the nearest integer not less than A.
Proposition 3. The minimal average number of activated inputs in a single module in a tree structure is

given by

% + 1, if at least one of the numbers L or K is even;

Kav min= | k " 1
5 41— 3 if both L and K are odd,

and the maximal number of modules in an optimal tree structure is given by

Lmax’] ’20'—;1)[

Propositions 1-3 are proved in the Appendix.
Thus the number of modules in a minimal tree structure is bounded by

2(h;1) [

h—1
._...[<L<]
k—1

A method for realization of formulas in this TLM basis which attains the above bounds is presented in [5].

In conclusion note that our bounds can be extended to a larger class of modules, namely universal modules
in the class of all Boolear functions. Since these modules, in particular, are universal in the class of formulas
in the basis {&, V, —, ®}, we have the foilowing bounds on the realization of an arbitrary n-variable function de-
fined by an h-letter formula in the same basis;

|zt
k—1

APPENDIX

2(h-l-c-1) [.

Proof of Proposition 1

Without loss of generality, we can consider the case when the formulas f and ¢ are positive monotone.

Suppose that some method (e.g., enumeration) applied to a given formula has produced a minimal tree cir-
cuit consisting of L(h; k) k-universal modules. Let us analyze the resulting circuit in order to estimate the
number of constituent modules.

In a tree structure there is at least one element with all the activated inputs connected only to sources of
input variables. We assign the number 1 to this element and denote the number of its activated inputs by k.
Clearly, k, = k.

Element 1 realizes some repetition-free formula @, consisting of k, letters. Substituting ¢, for the cor-
responding group of letters in the original formula f(x,...,xy), we obtain a new repetition-free formula f{, (0,,
x()) consisting of h— k, +1 letters.

In the remaining part of the structure there is an element (to which we assign the number 2) whose input
variables belong to the set formed by the h—k, free inputs left after the extraction of the first element plus the
first-element output. Suppose that element 2 realizes a repetition-free formula ¢, consisting of k. letters. Sub-
stituting ¢, for the corresponding group of letiers in the formula {, (¢, x(‘)), we obtain either a formula £, (¢,
¢y x), or a formula £, (e,, x),both consisting of h—k,—k,+1+1 = h—k,— (ky— 1) + 1 = h— (k, +k,) ~ 2 letters.

Continuing the structural analysis, we finally "traverse" the entire L-element structure and arrive at the
single cutput. At this point we have
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L
h- 2k4+L=1, (A.1)

fomi
where k; is the number of activated inputs of element i.

If the number of activated inputs kj in (A.1) is expressed in terms of the module inputs k and the number
of free outputs is expressed by j;—kj = k—j;, (A.1) takes the form

L

h-Lk +2i,+L=x. (A.2)

fmnt
The total number of free inputs in the circuit is denoted by
L .
i= N (A.3)

and we obtain for the total number of elements

h—1+j (A.4)
k-1

In order to express the number of elements as a function of fewer parameters, we introduce the notion of
the average number of activated inputs.

Definition. The average number of activated inputs of the structure elements is defined by

gy = ik‘ /L. (A.5)

fomt

The equality (A.1) thus takes the form '
h=L (k1) =1. (A.G)

Hence,
h-1
L= P . (A.7)

This expression establishes the dependence of the total number of elements in a structure on the number
of letters h in the formula and the average number of activated inputs in the structure ky.

Proof of Proposition 2

Consider a structure to which all the inputs of each element are activated. In this case kyy attains its
maximum value and is equal to k.

The number of elements L in this structure realizing an h-letter formula is minimal. It is obtained from
{(A.7) by substituting k for k,:

A—1
=77 (A.8)

Since a structure may only contain an integer number of elements, which should be sufficient to reatize
the formula, we have

. h—1
Lpin= %1 [ {A.9)

We thus have the bound

]_"-_‘[<L, (A.10)

5t

Analyzing the Lower Bound. Because of rounding to the nearest larger integer, the number of modules
remains minimal also for k,, slightly less than k. This fact is demonstrated in Table 1, which lists the values
of kyy for which the following equality just holds:
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TABLE 1. Values of kyy = f(h, k)

k
A
3 4 5 [ 7 8 E] 10
" 10 28 4 4 55 55 53 55 10
20 29 374 48 515 575 7.33 7.35 7.35
30 293 9.3 462 5.8 6.3 68 825 8.25
40 295 4 49 587 6.37 1.5 8.8 88 _
50 2.96 39 476 59 6.45 8 8 9.45
60 2,965 395 494 592 69 7,55 8.37 94

{A.11)

h~1 h—1 [
kpy-t | k-1

Examination of Table 1 shows that in most cases the minimal value of elements is robust to quite large
changes ink,y,.

Proof of Proposition 3

Consider an arbitrary Boolean formula in the basis of associative two-place operations, f(z,, z,,...,2p)-
Transform it into a repetition-free formula f(x,, Xpses Xp)e

Definition. A subformula is called separable if the value of f docs not change when the subformula is en-
closed in parentheses.

In the transformed formula, identify all the maximal separable nonintersecting subformulas ;, consisting
_of 1= h; =k letters. Then the formula f takes the following form:

1z T2 ooy 2)=%12 622 Pt sPr.
Here « relates to the previously mentioned basis of associative two-place operations.

Regardless of the specific order of operations, the formula contains at least two subformulas ¢ and ¢,
joined by the symbol » which are not separated by precedence-changing parentheses.

LEMMA 1. The realization of subformula ¢;* ¢, requires two k-universal modules only if
hitheg k41 ’ {A.12)

Lemma 1 leads to a number of corollaries.

COROLIARY 1. For a pair of k-universal modules (j, j +1) realizing thc subformula di* Ui+ for which
(£.12) is true we have

kitkpak+2. (A.13)

COROLLARY 2. The average number of activated inputs for the above pair of modules is given by

i kstkjon K
ay | = e A1)

COROLLARY 3. A pair of k-universal modules realizing the subformula ¢;*{;,, can always be chosen so

that in a module whose activated inputs are all connected with the inputs, the number of activated inputs is given
by

e for odd k
= for .
2 ) A .15
ks> (A.15)

7+ { for even k.

This corollary follows from the fact that if hj+ h;, Zk+1, then at least one of the terms h; or h;,, is not

k E+i 3 k
tess than ]—; [:‘”T‘ for odd k and is not less than 74-1 for even k.

4 -

We now continue the proof of Proposition 3.
p p
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Realize the subformula ¢;+¢;,, using a circuit consisting of two k-universal modules kj, kj., denoting
its output by z,. ’

- The residual formula then takes the form
f=YiePar... 0250 . 0,

This formula is transformed so that all the separable nonintersecting subformulas are of maximallength
not exceeding k. This involves incorporating z, (if possible) in one of the subformulas ¢. Lemma 1 and its
corollaries can be applied in performing this transformation of the residual formula.

Thus, in the residual formulas we again identify a pair of subformulas whose realization requires a pair
of modules (j +2, j+3) with number of inputs given by (A.13), (A.14) (see Corollaries 1 and 2 of Lemma 1).

Therefore, for structures containing an even number of k-universal modules, we can propose a construc-
tive realization procedure, such that for each pair of modules (A.14) is satisfied and the pairs are disjoint.

Therefore, for optimal tree structures with an even number of k-universal modules, we have the inequal-
ity

kay=k/2+4, (A.16)

Hence,
2(k—1)
Loven < ] — [ (A.17)

In order to show that this bound in genex“al cannot be improved, it suffices to give an example of a mini-
mal structure on which this bound is attained.

Example. Realize the formula j=(z,2;Vzsz()z5Vzezs 'using 3-universal modules.

The minimal realization of this formula requires four modules; @i=zz; Qe=@iVzszi; Pa=@27s; Qi=G:Vzaz1

Thus,
2+3+243 25 3 ¢ L= 26 -
e L o B
For even L we have established that the number of modules in a minimal tree realization is bounded by
h—1 2(h—1
- [ <L< ] =D [
k-1 k

Now suppose that the number of modules L in the minimal tree structure realizing some Boolean function
is odd.

By Corollary 3 of Lemma 1, for every k there is a module such that all the activated inputs [the number
of these inputs is given by (A.15)] are connected with the input variables.

Introduce this module in the structure, and then delete it. The remaining fragment of the structure con-
tains an even number of modules equal to L—1.

By (A.16), we have for this fragment
kyy =h/2+1.
If k is even, then for the entire structure we have

k 1 +(L k 1
S e (T ) k (A.18)
fav® L Tt

Thus,

(A.15)

If k is odd, then for the entire structure
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TABLE 2. Number of Letters h in Formulas Realizable by the Upper

Bound
- L

Rk T
t 2 3 ‘ 5 6 7 8 s 10 11
2 2 3 4 5 6 7 8 9 | 10 ] 1 12
3 2 4 5 7 8 10 11 13 | 14 | 18 17
4 3 5 7 91 1 13 15 | 17 19 | 2 23
5 3 6 8 | 11| 131 16 18 t 21 | 23 | 26 28
6 4 7] 10 | 13} 16 19 22 | 25 | 28 | 3t %
7 4 8 | 11 13 ] 181 22 25 ) 29 | 21| 36 39
8 5.0 9| 3| 17| 21 25 | 20 | 33 ] 37 | 4t 45
9 5 10 14 § 19 | 23 | 28 | 32 [ 37 | 41 | 46 50
10 ) 1 16 { 2¢ | 26 | 31 38 { 41 | 46 | 51 56
11 6 ©2 | 17 § 23} 28 | 3% | 3| 45| 0] 56 61

+1 1 k ;
_ +(L—)(—2-+ ) e (A .20)
kyy 7 =+ =

) Thus, for a minimal tree structure with an odd number of k-universal modules and odd k, we have the
inequality

k,

av. min<H/2FL.

Let us find an upper bound on L in this case. Substituting (A.20) in (A.7), we obtain

2(h-1)
P gLy

Solving this equation for Lup’ we obtain

Lup = P (A21)
Seeing that Lyp and k are odd, we have
2(h—-1)
Lyp = ] 3 [ (A.22)
Thus,
2(h—1)
Logq< ] - [ (A.23)
Combining inequalities (A.17), (A.19), (A.23), we obtain for all L, and k
2(h-1) (A.24)
< ] - [

Analyzing the Upper Bound. Let us establish for what L, k and h the upper bound is attained and consider
some examples. .

We have seen that for even L and arbitrary k, and also for odd L and even k, we have
Lyp =2(n~1) /.

For these L and k, the sought values of h are given by

L (A.25)
2

assuming that h, L, and k are integers.

For odd L and k,
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