ol

AUTOMATIC .
- CONTROL ‘
AND COMPUTER
SCIENCES

(Avtomatika |
; Vychlslltel naya Tekhnlka) ;

Vol 22 No.®+.
26 o

M.LT. LIBRARIES
AUG X 2 1888 !
RECEIVE

EIVED E

—_—
ALLERTON PRESSINC.

e e el . e



STRUCTURAL APPROACH TO SOFT“ARE IMPLEMENTATION
OF BOOLEAN FUNCTIONS

B. P. Kuznetsov and A. A. Shalyto

Avtomatika i Vychislitel'naya Tekhnika,
Vol. 19, No. 5, pp. 84-88, 1985

unC 62-507

The authors examine structured binary programs that implement Boolean formulas.
Estimates are obtained for the complexity of such programs, and an analytic
method of constructing them is proposed.

To ensure program quality (e.g., tractability, modifiability), extensive use of cur-
rently made of the structured approach to computer programming [1l, 2]; this apprmach was
considered in part in [3] in relation to programmable logic devices (PLD).

In this paper, with allowance for the specific features of binary programs (BP) that
implement Boolean formulas, we will consider a structural approach to programming that is
oriented toward obtaining estimates for the complexity of BP and of the corresponding flow
charts. .

When formula constructs (e.g., the FODUS language [4]) are employed, translation is
performed in sequential and independent fashion. Therefore the complexity of a translated
program is equal to the combined complexity of the programs translated for each formula
separately [5]. 1In this connection, we will consider the problem of constructing a struc-
tured program for one formula.

To set up a flowchart for a BP that implements a Boolean formula specified irn AlD-0F-
NOT logic, we employ the formula method [(6]. The resultant flowchart corresponds to a
ear binary graph (LBG) [7]; however, this graph is not structured.

(RO}

= )

Q
o

m

In.order to structure an LBG, we construct an execution tree for it (11, in w
paths represent all possible implementational sequences of the LBG. By combining
responding statement vertices, we obtain a structured binary graph (SBG).

el

o e
[}

(PRl
[}
(@]
O ct

The execution tree is constructed with allowance for duplication of LBG vertices uporn
traversing all paths in it. The fewer paths the LBG contains, therefore, the smaller the
number of vertices that must be duplicated, and hence the fewer the number of conditional
and statement vertices that the SBG will contain.

Paper [7] proposed a method of calculating the number of paths in a LBG through con-
version of the Boolean formula (or its inversion) realized by this graph into an orthogonal
disjunctive normal form (ODNF). In addition, this paper offered a technique for choosing
the order of writing a specified formula, so as to minimize the number of paths in the
LBG. For threshold formulas, this technique yields the minimum number of paths; for non-
threshold formulas it yields a fairly simple method of calculating their number.

The number of paths Sr in an LBG containing h conditional vertices satisfies the in-
equality [8]

_ h+ 1< Se<Fhas, ' (1)
where Fh+2 1s the (h + 2)-th Fibonacci number. Here the maximum number of "one" paths S,.”
is equal to Fh+l’ while the maximum number of "zero" paths Sro is Fh, where Eh+l and Fh are

the (h + 1)-th and h-th Fibonacci numbers, respectively.

The number of paths Sf in an.LBG corresponding to a Boolean formula in AND-OR-NOT 1log-

© 1985 by Allerton Press, Inc.
80 y 5"



