AUTOMATION and REMOTE CONTROL

A translation of Avtomatika i Telemekhanika

September 20, 1988

Volume 49, Number 4, Part 2

April, 1988

CONTENTS

Engl./Russ.

ADAPTIVE SYSTEMS
Adaptive Control of a Static Essentially Nonstationary System
- V. Ya. Khatkovnik and V. E. Kheisin

Adaptive Stabilization of Continuous Linear Processes - V. A. Yakobuvich

465 85

474 97

Evolving Systems
R & D Planning and the Generalized Assignment Problem - V. A. Zimokha and
M. I. Rubinshtein

484 108

Developing Systems
Modified Branch-and-Bound Method for Solving a Series of Problems
- V. V. Skaletskii

493 120

Modeling of Behavior and Intelligence
Structural Approach to the Analysis of Fuzzy Systems. I. Equivalent
Structure Transformations of Fuzzy Systems - A. I. Piskunov

500 128

Automata
Generating Boolean Functions Via Arithmetic Polynomials - V. L. Artyukhov,
V. N. Kondrat'ev, and A. A. Shalyto

508 138

Automation of Control Systems
Asymptotic Analysis of Throughput in Multiprocessor Systems with Common
Buses - Ya. A. Kogan and A. I. Lyakhov

516 148

Reliability
Determining the Limits of Efficiency and Operability in Complex Systems
- Yu. L. Musromtsev

Empirical Bayesian Estimators of Failfree Probability with Accumulation of
Information - V. P. Savchuk

529 164

539 176

The Russian press date (podpisano k pechati) of this issue was 3/5/1988.
Publication therefore did not occur prior to this date, but must be assumed
to have taken place reasonably soon thereafter.
GENERATING BOOLEAN FUNCTIONS VIA ARITHMETIC POLYNOMIALS

V. L. Artyukhov, V. N. Kondrat'ev,
and A. A. Shalyto

We will expand the concept of an arithmetic polynomial by introducing the absolute value operation. We propose methods for constructing a polynomial for Boolean functions. The conditions of polynomial linearity are defined.

1. Introduction

The possibility of using nontraditional methods to generate Boolean functions when microprocessors and microcomputers are used in logic control systems. These methods are based on the extensive capabilities of the indicated hardware to do arithmetic computing by means of arithmetic polynomials (AP).

The latter group of methods was examined in [1, 2]. This work will further the issues in generating Boolean functions (BF) and systems of Boolean functions (BF) and arithmetic polynomials.

2. Expanding the Concept of an "Arithmetic Polynomial"

It is a well-known fact that a Boolean equation based on AND, OR, and NOT operations can be generated via an AP by replacing the logical operations with arithmetic operations according to the rules:

\[x_1 \& x_2 = x_1 x_2; \quad x_1 \lor x_2 = x_1 + x_2 - x_1 x_2; \quad \bar{x} = 1 - x. \]

Notice too, that if the Boolean functions \(f_1 \) and \(f_2 \) are orthogonal (\(f_1 \cdot f_2 = 0 \)),

\[f_1 \lor f_2 = f_1 + f_2 = f_1 \oplus f_2. \]

We will prove a theorem that frequently makes it possible to simplify an AP obtained by means of the indicated rules.

Theorem 1. Let \(x_1, x_2 \in \{0,1\} \), and let \(N \) and \(k \) be random integers. Then

\[x_i = (x_i)^N, \]

\[x_i + (2^N - 2)x_i x_i = (x_i + x_2)^N, \]

\[(x_i - x_1)^N = |x_i - x_1| \]

\[(x_i - x_1)^{N+1} = x_i - x_2, \]

are valid.

Proof. The first relation is obvious. We will prove the others. To do this, we use the binomial theorem:

\[(x_i + x_2)^N = x_i^N + N x_i^{N-1} x_2 + \ldots + x_2^N. \]

Starting from the fact that when raising the sum of the variables \(x_1 \) and \(x_2 \) to \(N \), the sum of the coefficients on the binomial is equal to \(2^N \) and that Eq. (2) is valid, can rewrite Eq. (6) as:

\[(x_i + x_2)^N = x_i + (2^N - 2)x_i x_2. \]

When raising the difference between the variables \(x_1 \) and \(x_2 \) to the \(N \)th power the sum of the coefficients on the binomial is zero, and therefore

Leningrad. Translated from Avtomatika i Telemekhanika, No. 4, pp. 138-147, April Original article submitted December 24, 1986.