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BOUNDS ON THE REALIZATION COMPLEXITY OF

AUTOMATA

BOOLEAN FORMULAS BY TREE CIRCUITS OF
TUNABLE MODULES

V. L. Artyukhov, G. A. Kopeikin,

UDC 62-507
and A. A. Shalyto

Upper and lower bounds are established on the circuit realization complexity of Boolean for-
mulas in the basis of universal tunable modules.

Extensive literature is now available on design and application of tunable logic modules (TLM) [1-4].
There are, however, virtually no published results on the complexity of circuit realizations in the TLM basis,

The present article partly fills this gap for the case when the functioning algorithm of the device is rep-
resented by an h-letter Boolean formula defined in a basis with associative two-place operations and realized by
a tree circuit consisting of universal TLMs in the same class of formulas with k or fewer letters [4].

1. STATEMENT OF THE PROBLEM

Consider an h-letter Boolean formula f(z,, Zigss

-» Zp) defined in a basis with associative two-place opera-
tions (e'g" {&1 V9 _}y {&v V7 ) @})-

|
!
!

<]

Also given is a collection of modules M realizing all the subformulas ¢ in this basis of length not exceed- &

ing k letters. A universal TLM in this class of formulas with k or fewer letters may be used to represent these
modules. In what follows, we refer to it as the k-universal module.

From the set of circuit realizations of the formula f(

Zis Zgs-.., Zp) in the basis M, we isolate the subset of
tree circuits. :

Definition. A tree circuit is a single-output loopless structure in which every input variable and the out-
put of every element are connected directly with at most one input of a single element in the structure.

Among the tree realizations, there is at least one with a minimal number of modules.

Let us estimate the number of modules L(h; k) fromthe set M required to construct a given realization. -

We denote the inputs of the tree structure by x;j, where i =

1,...,h. Then the original formula f(zy, Zgyeeer
zp) is transformed into a repetition-free formula of the form f(x

1> Xgyeees Xp).

On the other hand, we know [4] that a module is universal in some class of k- letter formulas only if its
generating function is a combination of k-letter repetition-free formulas in the same basis.

Our problem thus reduces to decomposition of a repetition-free formula into repetition-free subformula

2. THE FINDINGS

Proceeding to discuss the findings, we should note that the TLM inputs may act both as information input®
and as tuning inputs. The TLM is linked with information sources and preceding modules in the logic structuré

by means of the information inputs. A TLM logic structures may be represented omitting the tuning inputs
each module is marked with the formula that is realized.

In what follows, we will only focus on information inputs, which we call module inputs. The module inp
to which input variables are applied are called activated; the remaining inputs are called free.

Proposition 1. The number of modules in a tree structure is given by

Leningrad. Translated from Avtomatika i Telemekhanika, No. 11, pp. 124-130, November, 1981. Orig
article submitted September 12, 1980.
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where kav is the average number of activated inputs in one module.

Proposition 2.
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Propositions 1-3 are proved in the Appendix.
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