23,

.

Yol

inal

i

n Orig

a

Russ

AUTOMATA THEORY

BINARY PROGRAMS AND THEIR REALIZATION RY ASTNCHRONOUS AUTOMATA

Yu. L. Sagalovich and A. A. Shalyto UDC.621.391.1-503.5

We consider coding of states of asynchronous automata designed to evaluate sys-
tems of Boolean functions by means of binary programs. We show that for a fairly
wide class of systems of Boolean functions race-proof state coding is irredun-
dant. -

1. INTRODUCTION

Recent advances in microelectronics have focused the attention on program realization

of systems of Boolean functions (SBF).
I}

Binary programs (1] for one Boolean function and for a whole SBF can be realized in
the form of discrete automata. This is particularly important, for instance, when the entire
value set of the variables is not known in advance and the values appear successively one
after another.

Realization of a binary program (BP) for SBF by an asynchronous automaton raises the -
question of race-proof coding of the automaton states. This paper presents a preliminary
analysis of this issue. In Sec. 2 we construct the transition graph and the transition
table of an automaton realizing the BP for a given SBF. Section 3 is devoted in its en-
tirety to race-proof coding of automaton states, relying on tghe terminology and the system
of concepts introduced in Sec. 2.

2. THE BINARY PROGRAM GRAPH AND THE REALIZING AUTOMATON
Consider a system of m Boolean functions

‘ Yi=fi(ze, 24y ..., 21=y), j=1, 2,...,m, (1)

such that for any 1 =1, ..., L, there is at least one function in the system which is
essentially dependent on Xyj-q-

Definition. Following [1], we define the binary program for the system (1) as a pro-
gram which sequentially computes the coefficients £i0006, Tig sems Oj-1s Xjs ooy Xgoy) of _

: . Og. @ gj- . . .
the conjunctions x, %x, 1...xi}11, i=1, 2, ..., ¢ in the expansion
T, a Oi_y:
h= Ty T s I 75000, Oty o oy iy iy oo o0 Thg)i
over all
combinations o
]=1,2,...,m.

of the system (1) on an arbitrary successively generated combination ¢ = (Gns Bys soas Og-1)
of the variable values.*

The binary program for the system (1) is representable as a graph with one initial
node and at most 2M final nodes. This graph is constructed in the following way [1,-2].

Take a dichotomous tree, i.e., a tree with precisely two outgoing edges from each node
(except the final nodes) and one incoming edge into each node (except the initial node).
One of the outgoing edges of each node is labeled O and the other 1. The tree nodes are
assigned to 2 + 1 levels indexed 0, 1, ..., 2. Each node belongs precisely to one level.
Each node of level i is reached by a unique path of i — 1 edges from the initial tree node.

The i-th level nodes thus may be indexed by binary numbers 0901...04-;, where gy = 0; .1

*In general, a binary program is a program which consists of conditional jumps.

Translated from Problemy Peredachi Informatsii, Vol. 23, No. 1, pp. 89-96, January- !

March, 1987. Original article submitted February 27, 1985; revision submitted June 12,
1985.

74 0032-9460/87/2301-0074$12.50 © 1987 Plenum Publishing Corporation

I S T IR T emd T 5 RS VS TORDGs VA 4 NI T ey

j=0,1, ..., i = 1; each of these numbers precisely describes the path from the initial
node to the given node. Each node of level i is at the same time the initial node of a
subtree with & + 1 — i levels. Subtrees with initial nodes located on the same level are
nonintersecting. To the node 090)...05., we allocate the system of expansion coefficients
of the SBF (1) in the variables Xos X35 ..., Xj-, corresponding to the same conjunction

xoc°x101...x?§;1. A tree with allocated systems of coefficients is called filled. By
assumption tﬁe system (1) is essentially dependent on the variables x,, X315 «.¢s X917, and
so different systems of coefficients are allocated to different first-level nodes. Having
considered the nodes of level (i — 1), let us pass to the i-th level nodes (i = 2, ...,

2 = 1). If the systems of coefficients in two nodes

0,01 ...0i-20i—y and 0401 ...0i=0i=y (2)

are the same (this means that the system of coefficients in the node 0¢03...04-, is inde-
pendent of xj-,), then the node 0001+..0j-, and the two nodes (2) are combined into one i-th -
level node. The incoming edge of the node 00091...05., now enters the new node. After com-
bining nodes of the form (2), the i-th level may still contain nodes with identical systems
of coefficients. Combine all these nodes, so that their incoming edges now enter the com-
bined node. At the same time, also combine the filled subtrees attached to these nodes,
since filled subtrees with the same number of levels and the same systems of coefficients

in the initial nodes are totally identical.

Each path from the initial to a final node represents a combination of variable values
on which the SBF (1) takes the system of values assigned to the given final node. There-
fore systems of coefficients should be saved only for the final nodes and can be deleted
from all the other nodes.

Label all the i-th level nodes by the same symbol x,. This concludes the construction
of the graph. Given our indexing of the variables X,, the graph is unique and its con-
figuration may be varied only depending on the indexing of the variables. The system (1)
is uniquely reconstructed from the last-level systems of coefficients and the graph.t

As an example, Fig. 1 shows the BP graph for the SBF

y|=fﬂ)(3—3nf:vr|1:1'u)\/I\;I:(Ixexs)' (3)
Y2:=Zo(T,V 2,%;) \V 2.2, %22,/ T, 2.E,.

If the nodes of the BP graph are indexed arbitrarily, and the system of functions is re-
constructed from this graph in the same sequence in which the coefficients of expansion
in the variables Xj» i =0, 1, ..., 2 =1 are determined, then the BP may be realized in
the form of a discrete automaton. The automaton states are indexes of graph nodes; the |
input state are the indexes of the variables Xop X315 ... Xg-,;_and their values. The transi-
tion of the automaton from state a of level i to state b (always on a level with a higher
index) for a given value 04 of the variable Xj is interpreted as finding a system of co-
efficients corresponding to the node a. The outptit of the automaton may be a state index,
and its output in the terminal state is a combination of function values. If the output
is the index of one of the final nodes, then this means that the functions of the system
(1) have been evaluated on the corresponding combination of variable values. One of the
useful automaton realizations of binary programs is the Wilks microprogrammed automaton

which allows parallel output of computation results.

When binary programs are realized by synchronous automata, the time to evaluate the
~system (1) may become excessively long under certain conditions. Therefore, the asynchronous
mode is apparently the only way for increasing the access speed.

3. RACE-PROOF CODING OF THE STATES OF AN AUTOMATON
REALIZING A BINARY PROGRAM

Asynchronous operation of a BP-realizing automaton requires race-proof coding of its
states.

tThe method proposed by V. I. Rubinov and A. A. Shalyto may be applied in order to construct
the BP graph of a SBF. This method is a development of Blokh's canonical method [3] and it
is based on a representation of the SBF by a truth table: identical rows of function values
in this table are assigned the same index, while different rows are assigned different-in-
dexes. Then the graph is constructed as in the canonical method [3].

75

0
: gon
(9) (10
yi=i y,=0
¥:=7 y=1
111 0oqr1
TABLE 1
Xo Xy X, | X3
State
0 t 0 1 0 1 0 1
0 1 2 - - - - - -
1 - - 3 4 - - - -
2 - - 5 6 - - -
3 - - s = 7 8 - -
4 - - - - 9 10 = =)
5 - - - - At 12 - =
6 = = = = 13 14 = —
: 7 = - - = = = 15 16
8 _ - - - - - 17 18
9 - e~ = - - - 19 20
10 _ - = - = = 21 22
i - - % = - - 23 24
12 = = = - = = 25 26 o
13 - = = - - B 27 23
14 - - - - - - 29 30
15 - - - - - - - -
30 - - ~ = - - - -

In race-proof coding, 1) all the automaton states should be encoded by different binary
code vectors (we denote them by indexed letters); 2) any two transitions S; > S, and S; » S,
occurring for the same input state should have no common intermediate states which may arise
due to races between automaton memory elements.

If the transitions S; > S, and S; » S, have no common intermediate states, we say that -
the transitions are separated. The transitions S, » S, and S; » S, are separated if and
only if the state vectors S,, S,, S3, S, contains at least one component with S, and S,
equal to 1 and S; and S, equal to 0, or vice versa.

The BP graphs have highly specific properties, which largely determine the choice of
the race-proof coding method.

Let us consider a system of functions (1) in which all the systems of expansion co-
efficients are different. This means that we do not have to combine any nodes and edges
in the graph, and therefore the BP graph of this system of functions is a -complete tree
with 2' nodes on each level i (here m > 2). '

If the graph nodes are indexed on each level from left to right, starting with level
0, then the nodes of level i carry indexes from 21 — 1 to 2i*! - 2,

76

1

Let the states of the automaton realizing the BP with this graph be arranged in the
transition table in the order in which the corresponding graph nodes are indexed. (For
convenience, the table gives the index i instead of Sj.)

Assume that the 2% table columns are arranged in the order of increasing indexes of
the variables xj and, for definiteness, in each pair of columns corresponding to the same
variable the column xj = 0 precedes the column xj = 1.

Then the transition table has the standard form. It comprises & + 1 horizontal bands,
and the i-th band contains 21 rows (i =0, 1, ..., 2). At the intersection of columns xj =
0 and xj = 1 with the i-th band are entered the indexes of the final states of the transi-
tions. In the other cells of the table, the transitions are undefined. The final states
of the transitions in the i-th band are the initial states of the transitions in the
(i + 1)-th band. Along the diagonal of the table, from left to right and from top to
bottom, we have "boxes" of common elements. The width of each "box" is two columns and
its height is 21 rows. In the last band ¢ the transitions are undefined. Therefore this
band may be omitted. The table in this band may be defined, say, by assuming that the
states pass into themselves.

Table 1 is a transition table for an automaton with 31 states which realizes the BP
of a system of functions of four variables.

A path is a sequence of states which pass into one another as the input states change.
For instance, the sequences 0, 1, 3, 8, 17 or 0, 2, 6, 14, 30 are paths.

For convenience, instead of the term "separation of transitions'" we will use the term
"separation of rows," implying that the final states of the transitions lie in two different
rows.

The following proposition holds.

Proposition. All 2%*! —] states of the automaton realizing the BP of a system of
functions whose expansion coefficients in the variables Xos> X35 -.., Xg-, are all different
may be coded by irredundant race-proof code, i.e., a code of length k = 2 + 1.

The proof is constructive, i.e., we actually perform race-proof encoding of states.
We do not require separation of rows in the zeroth band of the table.

Separation of the first-band rows requires one bit. Therefore, we enter the symbol
g, in the first bit of all the state vectors of all the paths starting in state 1 and the
symbol o, in the first bit of all the state vectors of all the paths starting in state 2.

In order to separate the four rows of the second band, we need one additional bit of
the code vector, since two pairs of initial states of this band are already separated as
the final states of the transitions with different initial states in the preceding band.

In the second bit of the vectors of states 3 and 5 we enter the symbol G,, and in the second
bit of the states 4 and 6 the symbol 0;. The same symbols are entered in the second bit

of the vectors of those states which belong to paths with the corresponding initial state.
The same:procedure is applied to each band. Each successive band (with a "box") requires
one new variable for separation of previously unseparated rows. There are & — 1 such bands.
Therefore, in order to separate all the transitions occurring for identical input states

we need 2 — 1 bits. Successive separation of transitions implies partial discrimination

of states: all the states which belong to the path starting in some state of band i are
distinguished from all the states which belong to paths starting in another initial state
of band i in the table are coded by different code vectors of legnth i. However, by con-
struction, together with each initial state of band i, the same combination of the first

i bits is found in 22+1'1 — 2 additional states. This means that each combination of i
symbols occurs precisely 28+1-1 —) times, and therefore the remaining % + 1 — i bits are
sufficient for distinguishing between the states with these identical combinations.

The last remark allows us to complete the coding procedure. The remaining symbols'
up to £ + 1 are entered so as to satisfy a single requirement, namely ensuring that all
the code combinations are distinct. This is feasible given the quantitative relationships
discussed above. The additional symbols can be entered in the order of decreasing band
index in the transition table, since in the process of separation of transitions bands with
higher index are coded by longer code combinations.

77

Having encoded all the states 1, 2, ..., 281 — by different code vectors, we are
left with two unused combinations of length % + 1. One of them should be used to encode
the state 0. This completes the coding. As a result, all the transitions originating for
the same input state are separated and all the states are distinct. This completes the
proof of the proposition.

As an example, let us encode the transition table in Table 1. After separation of
transitions, the states have the following coding (the corresponding parts of the code vec-
tors are underscored):

0.0 U000; 8. 00111 16. 000 01 24 100 Of
1.0 1000 9. 0101 17001 10 25. 101 10

~ 211000 10. 01144 18. 001 01 26. 101 Ot
3.00 100 11 10011 19. 010 10 27. 110 10
401 100 12 10111 20. 010 01 28. 110 Of
5.10 100 13. 11011 21. 011 10 29. 111 10
6. 11 100 14 1141 22,001 01 30. 111 0t
700 011 13. 00010 23. 100 10

Figure 2 is the graph corresponding to Table 1, with the state coding shown.

Examining the underscored parts of the code vectors, we conclude that the states 75
15, 16, say, have the same combination 000 of the first three symbols. Two symbols are
sufficient to distinguish between these three states, and the same is true for the states
8, 17, 18. The states 3, 7, 8, 15-18 have the same combination 00 of the first two symbols.
Three symbols are sufficient to distinguish between these seven states. However, the states
7, 16, 15, just like 8, 17, 18, have been previously distinguished using three symbols.
For the seventh state 3 we may take any previously unused combination of three symbols,
100, say.

The same technique is applied to all the paths with initials state 4. Then we see
from Table 1 that all the states 1, 3, 4, 7-10, 15-22 have the same symbol in the first
place. But all phe states 3, 7, 8, 15-18 have been separated from the states 4, 9, 10,
19-22 by the second symbol already in the stage of separation of transitions, and also within
each of these groups of states by the preceding construction.

Thus, 14 states have already been distinguished by 14 different combinations’ of four
symbols. Two combinations remain, one of which, 1000, is assigned to the first symbol 0
of state 1. The same technique is applied to all the paths with intiial state 2. After
that, all the states which belong to paths starting in state 1 and in state 2 are dis-
tinguished form one another and from states which belong to paths with different initial
states. Thus, thirty states have been distinguished using thirty different combinations

of five symbols, i.e., the smallest possible number of symbols.

|
Note that transitions inevitably produce intermediate states which are precisely equal

to other states of the automgton. For instance, the transition from state 3 to state 7
may produce all the remaining six states with two zeros in the first two bits — the states
o, 8, 15, 16, 17, 18. However, by construction, none of these states appears in any of
the transitions with a different initial or a different final state for the same input
state.

Note that both Table 1 and the given code are suitable for any system of Boolean func- i
tions of four variables with different expansion coefficients in these variables. The dif- -
ference between systems of functions is reflected only in the combinations of constants
corresponding to states 15 to 30.

Also note that if the BP graph does not have the regular structure described above % I’
and some of its nodes and edges are combined, the transition table is again made up of "boxes'
with indeterminacy outside the boxes. Therefore separation of transitions for identical
input states is also sufficient to eliminate critical racés. The process of race-proof
coding, however, is no longer as transparent and algorithmic as for the -case of a complete
graph considered above.

78

00010 00110 01010 a1no 10010 10110

QO_UUI— @_101— gioon 10001 - 10107
Fig. 2
TABLE 2)
x x, Xy Xy
State
0 1 0 1 0 1 0 i
0 1 2 - - - - - -
1 - - 3 4 - - - -
2 - - 4 5 - - - -
3 - - - = 9 10 - -
4 - - - - i 6 - -
- - - = 1 8 - -
g - - - - - - 10 12
7 = - - - - - 11 12
8 - = - - - - 12 1
9 - - - - - - = =
10 - - - - - - - -
11 - - - - - - - -
12 - - = = - - - -

For the automaton realizing the BP graph of the system (3) shown in Fig. 1 with the
transition table in Table 2, the race-proof code is obtained by dropping the extra columns
of “the Hadamard matrix of order 12 (see [4, p. 145]). The columns may be dropped by using
the descent algorithm proposed by Yankovskava [5].

The resulting race-proof code is irredundant and has the form

0. 0000 3. 0011 6. 1011 9. 1111 12. 0111.
1. 0010 4. 1010 7. 1101 10. 0001
2. 1100 5. 0101 8. 0110 11. 1110

If the automaton logic is now known beforehand, a universal code should be used. Yet
the universal code may prove to be redundant. As a universal code with race-proof proper-
ties, regardless of the form of the particular 1l2-state automaton, we may use the code con-
structed from the Hadamard matrix of order 12 by dropping one bit without applying the
descent method (which requires knowledge of the automaton logic). It is shown in [4] that
for this code the minimum number of columns of the form 0011 and 1100 in any ordered 4-tuple
of vectors S,, S,, S;, S, is not less than 1, since the code is equidistant with distance
d = 6. Note that the universal code length is a rough upper bound on code length.

Several techniques are available for combining race-proof coding with noise-tolerant
coding. The first and simplest approach repeats each code combination.2t + 1 times. This
ensures tolerance to any t or fewer errors under conditions with races of memory elements.
The second approach applies the universal race-proof and noise-tolerant code [4] with sub-
sequent elimination of the extra columns. Both approaches involve using enumerative
methods, which are described in [4, 6]. The impact of the specific features of the graph
of the binary program automaton is apparently most pronounced in race-proof coding.

»

4. CONCLUSION

We have proposed minimum race-proof coding of the automaton realizing the binary program
for a system of Boolean functions with a specific property: its graph is a complete tree.

79

The length of the race-proof code in the case of a complete tree is a trivial upper
bound on the length of the race-proof code of the states of an arbitrary acyclic graph re-
alizing the binary program for a system of Boolean functions in which the number of variables
is equal to the number of levels.

We would like to propose the conjecture that, for any automaton graph (for any system
of functions realized by this automaton), the race-proof code length is equal to the minimum

length of the code which only performs state discrimination.b

LITERATURE CITED

1. 0. P. Kuznetsov, "On program realization of logical functions and automata. I,"
Avtomat. Telemekh., No. 7, 163-174 (1977).
2. V. A. Kuz'min, "Realization of Boolean functions by automata, normal algorithms, and

Turing machines,'" in: Problems of Cybernetics [in Russian], No. 13, Fizmatgiz, Moscow
(1965), pp. 75-96. _ 4

3. A. Sh. Blokh, Graph-Schemata and Their Application [in Russian], Visheishaya Shkola,
Minsk (1975). ’

4. Yu. L. Sagalovich, State Coding and Reliability of Automata [in Russian], Svyaz',
Moscow (1975).

5. A. E. Yankovskaya, 'Descent algorithms for the solution of some problems of the design
of discrete devices and their applications,' in: Theory of Discrete Control Devices
[in Russian], Nauka, Moscow (1982), pp. 206-214.

6. A. D. Zakrevskii and A. E. Yankovskaya, "Noise-tolerant coding of internal states of
‘asymchronous automata," Information Papers [in Russian], No. 3(50), Nauchnyi Sovet po
Kompleksnoi Problems "Kibernetika," AN SSSR, Moscow (1971), pp. 53-58. '

80

