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Abstract—Algorithmization and programming principles for logic control and “reactive” sys-
tems are formulated, regarding algorithms and programs as finite automata. The application
of finite automata to programming for other problems is also reviewed.

1. INTRODUCTION

Finite automata, which in the past were mainly used in hardware, are presently finding extensive
application in programming. In this paper, we outline the basic algorithmization and programming
principles for logic control and “reactive” systems, regarding programs as finite automata. Besides
the traditional fields of application, such as compiler design, finite automata are presently used in
programming programmable logic (PL) controllers, describing the behavior of certain objects in
object-oriented programming, as well as in programming protocols, games, and PL circuitry.

We would like to dispel the misbelief that “automata are becoming obsolete” and show they are
just beginning to find extensive application in programming.

2. ALGORITHMIZATION AND PROGRAMMING FOR LOGIC CONTROL SYSTEMS

The International Standard IEC 1131-3 [1] establishes programming languages for PL controllers
and PC-controllers—industrial (control) computers (usually IBM PC compatibles) with SoftPLC
and SoftLogic application software. There also exist programming languages for microcontrollers
and industrial (control) computers [2]. According to [8], thus far no algorithmization language for
logic control problems (based on true and false logic) has been developed that might be helpful in

—understanding what has been done, what is being done, and what must done in a programming
project in different fields of knowledge,

—formally and isomorphically converting an algorithm into programs in different programming
languages with a minimal number of internal (control) variables, because these variables hinder
clear understanding of programs,

—easily and correctly modifying algorithms and programs,and
—correctly certifying programs.
Since such a language is not available, thus far there is no algorithmization and programming

technology that might enhance the quality of software for logic control systems.
Review [8] surveys the well-known algorithmization and programming technologies for logic con-

trol and reactive systems, i.e., the technologies underlying the new switch-technology meeting the
above requirements, which can also be called the state-technology or, more exactly, the automaton-
technology. We describe its basic principles.

1. “Internal state” (simply, state in what follows) is the basic concept in this technology.
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State is regarded as a kind of abstraction introduced in algorithmization via one-one correspon-
dence of a state with one of the physical states of the controlled object, because “operation of a
production system is usually manifested as variations in its states” [9]. Each state in the algo-
rithm maintains the object in the respective state and a transition to a new state in the algorithm
corresponds to a transition of the object to the respective state, thereby implementing the logic
control.

For example, a valve may exist in one of the four states (closed, opening, open, and closing),
each of which is maintained by the corresponding state in the control algorithm. For a memory-
valve, the control algorithm may also have a common state for maintaining its closed and open
states [8]. The control algorithm may also contain, if necessary, other states related to valve defects
and operator faults.

The relationship of the states with internal (control) variables is manifested at the state coding
stage, which is absent in traditional programming. The number of control variables depends on the
coding scheme.

The approach used in automaton theory is essentially different from the approach usually used
in programming, in which internal (usually, binary) variables are introduced, if necessary, in the
course of programming and then each set of code values is declared a state of the program [10].
Since the “state” concept is usually not used in application programming, the number of states in a
program containing, for example, n binary interval variables in most cases is obscure. However, the
number of states may vary from n to 2n. It is also not clear where do these variables come from,
how many variables are there, and the purpose for which they are applied. In cyclic implementation
(due to output-input feedback), a program may also operate sequentially even in the absence of
control variables [8].

2. Along with the state concept, the concept of “input” naturally requires the concept of an
“outputless automaton” (outputless automaton = states + inputs). If the concept of an “output”
is defined, by which we mean “action” and “activity,” this formula reads automaton = states +
inputs + outputs. The corresponding programming field can be called the “automaton program-
ming,” and program designing can be called the “automaton program designing.” As in [11, 12],
action is single-time, instantaneous, and continuous, whereas an activity may last long and in-
terrupted by some input. An input in general may change the state and initiate output with or
without change of state.

3. The main model underlying the automaton technology is a “finite deterministic automaton”
(in the sequel, simply automaton), which, according to the classification of [13], is an automaton
with internal states, but not an automaton with behavior functions [8].

4. Automata without output converters (Moore machines), Mealy machines, and combined ma-
chines (C-machines or Moore–Mealy machines) [14, 15] are used as structural models in [8].

The main structural model is defined by Moore machines, in which state codes and output
values are distinct and the values of output variables in each state do not depend on inputs. This
simplifies the introduction of changes in their description. In [8], “controllability” is defined to be
the properties of algorithms and programs that aid in their correction.

Initially, the number of states of a Moore machine can be chosen equal to the number of states
of the controlled object (including its faulty states, if necessary). Subsequently, additional states
related, for example, to operator’s faults may be included [8]. Then the number of automaton
states can be minimized by combining equivalent states or using some other structural model and
this, unless absolutely unavoidable, is rather undesirable.

In a Moore machine, the values of output variables are retained in the memory realizing these
states as long as the machine exists in the corresponding state. In a Mealy machine, these values
are also formed in the corresponding transition and, consequently, an additional memory different
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LOGIC CONTROL AND “REACTIVE” SYSTEMS 3

from the state-realizing memory is required for long storage of these values. In this respect, Moore
and Mealy machines are not equivalent.

5. Automata of the first and second kind are also used [8, 16]. Preference is given to the latter,
in which a new state and output values are formed without delay in a “cycle” (in one program
cycle).

6. The automaton states are encrypted by different coding schemes [8], for example, forced, free,
binary, binary logarithmic, and multivalued codes. Multivalued state coding is preferable, because
it can be used for the states of automata (due to the presence of only one active state in them) and
the traditional viewpoint that automata are particular Petri networks can be discarded, because a
single variable cannot be used for state coding for the reason that several states are concurrently
active in a Petri network. While only one multivalued variable is sufficient to distinguish the states
of an automaton regardless of the number of states, the number of binary variables required to
distinguish the positions equals number of states in a Petri network in which not more than one
label can exist in each position (analog of the Standard NFC-03-190 Grafset). As shown in [8], a
Grafset diagram with parallel “segments” can be replaced by a system of interconnected transition
graphs. In the first case, while the number of binary variables is equal to the number of positions,
the number of multivalued variables for the second case is equal to the number of transition graphs,
irrespective of the number of vertices in them.

7. The nonprocedural visual formalism of automaton theory, such as transition graphs (state
charts or state transition charts) is used in programming the algorithmic model of finite-memory
automata.

In the names of these terms, as in automaton technology, preference is given to the concept of
“state,” rather than to the concept of “event” commonly used in modern programming. In our
approach, the concept of an event is only secondary and, along with the input variable, is regarded
as a modification of the input that may change the state.

The procedural visual formalism (graph-schemes of algorithms and programs) elaborated in
theoretical programming does not use the “state” concept in explicit form and this complicates
the understandability of this concept [17]. This concept is also not used in the language of regular
expressions of event algebra [18].

It is easy to recognize transition graphs as they are planner and have no height (like algorithm
schemes, SDL- [8], and Grafset diagrams). They are far more compact compared to equivalent
schemes consisting of functional blocks (traditional logic elements) and easily comprehensible, be-
cause interaction between transition graphs is implemented with data and the interaction between
schemes is implemented by control.

8. An advantage of transition graphs, which must be “maximally” planar, is that every arc shows
not all inputs (as minterms), but only those that ensure transitions along this arc. The inputs on
every arc can be combined into Boolean formulas of arbitrary depth. Therefore, the description of
the algorithm is highly compact.

The use of Boolean formulas in a model, as in hardware realization (structural synthesis of series
circuits), widens the classical abstract finite automaton model, in which arcs are labeled only with
the input alphabet characters, and aids in “parallel” processing of inputs. Compared to input-
sequential program realization, such a description of algorithms in general decreases the number of
states in automata generating these algorithms [8].

We can assert that every state in a transition graph “identifies” from the set of all inputs only
the subset that ensures transitions from this state, i.e., decomposes the input set.

Therefore, transition graphs can be applied in solving logic control problems containing a large
number of inputs, thereby simplifying comprehensive testing along all routes.
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9. Every transition graph must be semantically and syntactically correct. The first property
determines whether the correct model has been designed, whereas the second property determines
whether the model has been designed properly [19]. In verifying the syntactical correctness, a
transition graph is tested for attainability, completeness, consistency, realizability, and absence of
generating circuits. In testing attainability, the presence of at least one path from every vertex to
any other vertex is verified. Completeness [8] is verified for every vertex and is useful in discarding
loop labels, in particular, for Moore automata. If every vertex is consistent [8], priorities can be used
instead of orthogonalization to reduce the program realization complexity. Realizability is ensured
by different identically labeled vertices. Generating circuits [8] are eliminated via orthogonalization
of labels of arcs forming the corresponding circuits.

10. Further refinement of the abstract finite-automaton model and output “parallelism,” as in
hardware implementation, are attained by indicating on vertices and/or arcs the values of output
variables (activities) formed at these graph components. Display of the values of all output variables
at each component (depending on the automaton structural model) aids in understanding the
algorithm described by a transition graph due to the increased number of vertices. The transition
graph thus constructed defines a structural finite automaton without any omissions of the values
of output variables. For the transition graph of a Moore automaton, the values of output variables
that do not change in successive transitions and shown at vertices at which transitions occur must
be commented out to reduce the program size.

The finite-automaton model can be improved further by (at the cost of understandability) by
indicating both the values of output variables and Boolean formulas (automaton formulas for em-
bedded automata) at graph components [8].

11. Input and output “parallelism” aids in realizing parallel processes even by a single automaton,
which, by definition, is a sequential state machine (only one vertex of the corresponding transition
graph is active at an instant).

12. Unlike a memoryless automaton, the behavior of a finite-memory automaton depends on its
prehistory: every transition to a state depends on the preceding state, whereas outputs of a Moore
machine depend only on the state in which the machine exists.

In the automaton technology, these properties of finite-memory automata must be preserved
and the transition graphs must not contain any flags and omissions to eliminate the dependence on
state and output prehistory, respectively [8, 17]. The transition graph must have as many vertices
as states of the automaton. Prehistory independence (future depends on the present and does not
depend on the past) aids in understanding the automaton behavior [20] and introducing changes
in the transition graph and its realization program.

A similar situation is also observed in Markov processes, which can be investigated by a simple
tool, which may become unwieldy if the process is prehistory-dependent.

13. In formal and isomorphic transformation of a transition graph without flags and omissions
to a program, the graph is the specification test for the program. Here there is a possibility for
certification, beginning from the convolute of every transition graph with its isomorphic program
fragment. Testing and verification based on “finite-state machines” or “state machines” are in-
vestigated in [21–28]. An approach based on an extended finite-automaton model and used in
“VisualState” software to verification of built-in programs is described in Computer Journal, no. 5,
2000. This approach is used to verify the attainability of implicitly defined states of a system.

14. One internal variable of significance digits equal to the number of states is sufficient for
coding the states of a finite-state automata with multivalued codes.

Since (in principle) any logic control algorithm can be realized by one transition graph, the
graph can be realized by a program containing only one internal (control) variable, regardless of
the number of vertices in the graph.
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In every transition, the previous value of the multivalued variable is automatically discarded
and this variable is unrivaled.

Such a coding scheme can be applied only if the number of states of the automaton are known
at the beginning of the algorithmization process.

15. Almost all programming languages, even the exotic functional block language, can handle
multivalued variables [8, 29].

A transition graph with multivalued coding for vertices corresponding to the automaton model
is formally and isomorphically realized by one or two switch constructs of C [8] or their analogs
in other programming languages. This explains the name of the technology. Moreover, the word
“switch” is associated with the switching circuit theory—the base of logic control theory.

Transition graphs can be realized via two approaches, which can be called the “state–event” and
“event–state” approaches. In the first approach, a transition graph is realized by one or two “state”
switch constructs, whereas in the second approach, each “event” is associated with a function
described by a “state” switch defining the transitions initiated by this “event” [30]. If events are
represented by the values of a multivalued variable (function forming these values), then the state
switch embedding event switches is the primary construct in the first approach, whereas the event
switch embedding state switches is the primary construct in the second approach [8]. In the first
approach, programs are designed via logic control principles (state-state transition under the action
of an event) to make programs user-friendly. In advanced disciplines (for example, physics), the
concept of “state space” is fundamental [31], whereas the concept of “event flow” is secondary. For
example, (liquid, solid, gas) states of water are decisive, whereas state-state transition conditions
and water interactions are secondary.

16. The value of a multivalued variable is characterized by the “position” of the program realizing
the transition graph in the state space. Therefore, the concept of “observability” (for one internal
variable) can be introduced in programming, regarding the program as a “white box” with one
internal parameter.

A formal and isomorphic program designed from the transition graph of a Moore machine
without flags and omissions can be verified by testing the realization of all transitions by observing
the values of only one internal variable and testing the values all output variables in each state.

Transition graphs of other types of automata can always be transformed into transition graphs
of an equivalent Moore machine. For a Mealy machine, each vertex of its transition graph without
flags and omissions is associated with a vertex of the transition graph of an equivalent Moore
machine. The number of vertices is equal to the number of incoming arcs at the vertex and labeled
by different values of output variables [8].

The functionalities of a transition graph can be studied with an attainable label graph, i.e., a
reachable state graph, in which each vertex may be uniquely associated with an activity. Therefore,
the transition graph of a Moore machine (an automaton without any output converter) without flags
and omissions can be used as the reachable state graph, whereas transition graphs and attainable
state graphs of other types of automata differ. For example, the transition graph of an equivalent
Moore machine can be used as the transition graph without flags and omissions for a Mealy machine.

17. From the foregoing, it follows that our approach is helpful in solving the problem, called de-
coding [32] or recognition [33] or identification [34] of automata, because an automaton is recognized
(decoded, identified) as soon as its transition graph is constructed.

An automaton is not recognizable if it is an “absolutely black box” for which no information
on its internal states is available [32]. For finite-memory automata, “input–output” tests used in
designing logic control systems are helpless in recognition and guaranteeing a predefined behavior
of a system [35].

AUTOMATION AND REMOTE CONTROL Vol. 62 No. 1 2001



6 SHALYTO

A finite deterministic automaton can be recognized by its “input–output” pattern if the maximal
number of states is known in minimal (number of states) form and its transition graph is strongly
connected [33].

An automaton with known estimate of the number of states is called a “relatively black box”
[32].

18. Thus, it is not possible to recognize automata via testing algorithms and programs by their
input–output patterns if the “state” concept is not defined.

There is no problem of recognition in the automaton technology, because the state concept is
defined and transition graphs are strongly connected.

In the switch-technology, “black boxes” are discarded, but ”white boxes” are used. An automa-
ton defined in any form different from a transition graph without flags and omissions is called the
“relatively black box” and an automaton defined by a transition graph without flags and omissions
is called the “absolutely white box.”

A “relatively black box” can be recognized via mathematical transformations [8].
19. In the switch-technology, a system of interconnected transition graphs is used as the algo-

rithm model [36] to support the possibility of composition and decomposition of algorithms and
ensure practical application in designing complex logic control systems.

Moreover, automata (transition graphs) can generate centralized, decentralized, and hierarchical
structures [8].

20. If a system contains N transition graphs with arbitrary number of states, then only N
internal multivalued variables of the state coding scheme can be used in programs even with regard
for the interaction of graphs.

For this purpose, the program realization must be constrained: only one transition in every
transition graph must be implemented in a program cycle. Thus, the previous state of the automa-
ton is preserved or only one transition to this state is implemented even if several transitions may
occur successively in a program cycle in this automaton.

This constraint ensures the attainability of every value of the internal variable for other N − 1
graphs of the system, Thus, the number of internal variables is not increased for implementing
the interconnection of transition graphs and the interaction of transition graphs is made effective
through multivalued internal variables. The predicates of the verified values of these variables are
used as a modified input.

Both in automaton and object-oriented programming, automata exchange messages. As a re-
sult of the possibility of interaction between automata constituting a program via exchange of the
numbers of their internal states, the automaton programming differs from the object-oriented pro-
gramming, in which objects are regarded as “black boxes” with encapsulated internal contents [37].

21. Transition graphs of a system may interact according to the “inquiry–answer–deletion” or
“inquiry–answer” principle by exchanging the numbers of states.

A particular case of such an interaction is the interconnection between the main and other
transition graphs. If necessary, here there is a possibility for starting parallel processes realized by
these graphs from the main graph and for returning the control to the main graph upon completion
of work. This widens the field of application of finite-state automata, which, by definition, are
sequential state machines. Algorithms implemented as a system of interconnected transition graphs
are superior to the Grafset language developed by Telemechanic (France) division of Scheider
Electric for describing series-parallel processes [9].

22. Besides the exchange of the numbers of states by automata generated by sequential switches
in a program, transition graphs may also interact according to the embedding principle. This
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can be implemented by embedded switches of arbitrary depth or functions constructed from these
switches that realize transition graphs of a specified embedding depth.

23. These graph-graph interaction principles support hierarchical algorithm design.
In automaton technology, “up-down” and “down–up” algorithm designs are possible. In the

“up-down” strategy, it is easy to design correct algorithms. For example, if the algorithm is not
state-parallel in design, every vertex in the initial transition graph can be replaced by a fragment
containing a few vertices, other transition graphs can be nested in this fragment, and other tran-
sition graphs can be accessed from this fragment. Every vertex in the structure thus obtained, in
turn, can be refined. The program realizing this algorithm must be isomorphic to the algorithmic
structure.

24. For an algorithm designed as a system of transition graphs, this system, if possible, must
be decomposed into disconnected subsystems formed by interconnected transition graphs and a
graph of attainable labels (states) describing the functionalities is constructed for each subsystem,
if dimension permits.

Thus, in the automation technology, if the subsystems of transition graphs are of suitable di-
mension, a system of transition graphs and their programs can be tested by their functionalities,
as in verifying protocols [38].

If strongly connected systems of high-dimensional transition graphs are used, it is possible
in automaton technology to design “verifiable” programs via automatic protocolling of program
operation in terms of automata [39].

25. A control automaton is defined as a set of an automaton and functional delay elements.
These elements are regarded as a controlled object (servos and signalizers): along with the values
of ‘object” output variables, the automaton also generates the values of “time” output variables.
Along with the values of “object” input variables, the automaton receives the values of “time”
input variables. Both “time” and “object” variables are shown on transition graphs. Different
approaches to program realization of functional delay elements by functions are examined in [8].

Along with such functions in the components of transition graphs, other types of functions
realizing controllers may also be used [8].

26. Transition graphs can also be used in designing models for logic control objects and describing
and modeling both open and closed “control algorithm–model of controlled object” complexes from
a unified standpoint.

27. In the automaton technology, the control program specifications must consist of a closed
“data source–system of interconnected automata–functional delay elements–servos–data represen-
tation media” connection scheme describing the interfaces of automata and a system of intercon-
nected transition graphs describing the behavior of automata in the scheme. The connection circuit
(some analog of the data flow diagram used in structural system analysis [40]) and transition graphs
must be displayed compactly (whenever possible) to aid in understanding the specifications (the
Gestalt description requirements [41]). In particular, transition graphs must contain only sym-
bols of variables, but not acronyms, and the meaning of every variable must be clear in viewing a
connection scheme, which may also contain comments.

For large-dimensional problems, this circuit can be constructed (for the whole “environment”)
separately for each automaton.

28. The switch-technology permits only one language for algorithm (transition graph) specifica-
tions under different programming languages. This point escaped notice in [1].

Methods of realization of formal and isomorphic transition graphs by programs in different lan-
guages used in control devices, including PL controllers, are described in [8]. Analogs of switch
constructs helpful in designing compact and comprehensible program texts are best suited for PL
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controllers. This construction is modeled by digital multiplexers ensuring the possibility of design-
ing PL controllers for functional circuits formally and isomorphically realizing different transition
graphs [8].

Transition graphs designed as above and used as program design specifications (defining func-
tional capabilities) and as specification tests can also be written in Grafset. Here there is a possi-
bility of visually observing transitions in graphs. But this language has certain disadvantages, for
example, concurrent display of the activities of several vertices in one diagram results in binary cod-
ing, in which the number of binary internal variables (used in coding vertices and in PL controllers
in limited number) is equal to the number of vertices in the diagram. The Grafset language can
only realize transition graphs of Moore machines, increasing the number of vertices in the transition
graphs corresponding to other types of automata. Every transition graph is displayed on several
screens and back-transition graphs are invisible, because lines joining vertices are not displayed or
cannot be displayed and are, therefore, replaced by “links.”

While a PL controller in realizing a set of transition graphs utilizes all binary internal variables
allotted for programs in Grafset, other types of internal variables of the controllers can be used if
the programming language is changed for realizing another set of transition graphs. Thus, even in
programming one PL controller, a need may arise for different programming languages in applying
the same specification language.

29. The automaton approach is helpful to the customer, designer, technologist, user, and con-
troller in understanding what has been done, what is being done, and what must be done in the
program project. It is useful in distributing the work and, most importantly, the responsibility
between different specialists and organizations. Such a division of labor is pivotal particularly in
projects with foreign participation due to language barriers and misunderstanding.

The approach is helpful in handling project details even at the early design stage and in demon-
strating them to the customer in a convenient form.

30. This technology permits communication between designers in terms of technological pro-
cesses (for example, emergency start of the diesel-generator is not functioning) in a formalized and
understandable language (a sort of technical Esperanto in which they can communicate, for exam-
ple, as follows: “change the value from zero to one at the fourth position at the fifth vertex in the
third transition graph”) to avoid misunderstanding due to confusion even within one language and
when participants of different countries are involved in a project and no specialist knowledgeable
in the technological process is required to introduce changes in the program [42].

31. In this approach, the programmer need not know the technological process and the designer
need not know the details of programming. The application programmer need not do the jobs
of the customer, technologist, and designer, but restrict himself to the realization of formalized
specifications. Thus, the fields of knowledge he must possess can be narrowed and ultimately his
job can be automated. The “traces” of work of one designer can be retained so that program
support and modification can be done by some other specialists. It is also effective in controlling
the design and text of programs, not just the results as in most cases. Thus, approval of programs
can be replaced by the approval of equipment, which consists not in testing only [8].

32. In implementing transition graphs, the values of “time” output variables are replaced by
functions realizing functional delay elements and the values of “object” output variables can be
replaced by functions of other types. Therefore, this approach can also be applied in implementing
the control part of logic algorithms, as demonstrated by the program compiled [8] for synchronizing
the generator with the main distribution board bus.

33. The automaton technology was successfully applied by Avrora Inc. (St. Petersburg) in de-
signing control systems for ship equipment and other projects based on diverse computing apparatus
employing different programming languages.
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In using one specification language, PL/M language [42], functional block language [43], assem-
bler language of single crystal KP 1816 BE 51 PC [44], and ALPro instruction language were used
for designing complex control systems of Ship Project 17310 [45, 46].

To simplify programming for Project 17310, B. P. Kuznetsov (Avrora Inc.) jointly with me
designed a “C core–ALPro” [47] translator for formally and isomorphically compiling programs in
C from transition graphs.

34. Design, testing, and maintenance of several logic control systems have corroborated the
effectiveness of switch-technology, at least, for the systems under review. According to Norcontrol
(Norway) [42], this approach produced a high quality logic control system for the Marine diesel
generator DGR-2A 500∗500 of Project 15640. Its application to other control problems is described
in [8].

35. Thus, this technology is very effective for algorithmization and programming [42].
36. This technology can be characterized by seven parameters: state, automaton, prehistory-

independence, multivalued state coding, a system of interconnected transition graphs, formal and
isomorphic programming, and switch constructs. The formal and isomorphic programs constructed
from transition graphs by this technology are demonstrative, comprehensible, structurable, address-
able, embeddable, hierarchical, controllable, and observable.

The relatively small number of internal variables resulting from the application of multivalued
state coding considerably simplifies and speeds up shipping of states in computations, for example,
in designing robust systems in which trigger contents are shipped infinitely many times if the
functional block language is applied.

37. In other problems, the states of the control automaton described by a transition graph must
be distinguished from the memory states. While the number of automaton states is usually not
greater a few tens, the number of memory states is far greater than this amount [18]. Therefore,
they are not identified explicitly. If the states are not partitioned in this manner, as in [37], states
are not used and the program behavior is determined as a set of actions in response to events
without reference to the automaton states with which these events are associated. Furthermore,
the control variables must be distinguished from the internal variables of other attributes.

38. In this technology, control automata can be designed for individual modes (gang valve opener
and closer), combined modes (close–open automaton for a valve gang), and individual objects
(valves) for implementing individual or combined modes.

Automata may interact between themselves by exchanging the number of states, nesting and
addressing, and via auxiliary automata. If a system contains many automata, it is difficult to
demonstrate the correctness of their proper joint operation. Therefore, the automaton technology
can be applied both in object-oriented and procedural designs [8].

39. If the initial algorithm is realized by a single-input single-output graph scheme [48], it can be
applied jointly with the methods of [49] to construct the transition graph of the automaton [8, 50]
realized by a switch construct and DO WHILE operator with a condition defined by the number
of the terminal vertex. This method is more effective than the Ashcroft and Mann method [8].
By way of example, a transition graph realizing a number-sorting algorithm described by a cyclic
graph scheme is given in [51].

40. In nonprocedural specification of automata as transition and output tables, rows and columns
(or vice versa) define states and events. Therefore, processing sequence (state–event or event–
state) for the interpreter in nonprocedural realization of automata is immaterial [8]. In procedural
specification of automata as algorithmic or program schemes [52], realization is procedural, requires
less memory, and depends on the state and event processing sequence.
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The schemes with an event (values of input variables) decoder are called event schemes and the
schemes a state decoder are called automaton schemes. Their design approaches are called the
event and automaton approaches, respectively.

In the automaton approach, there is no need to use these schemes, because programming can
be done via transition graphs (with multivalued vertex coding), which are isomorphic to the state-
decoder schemes (automaton scheme of algorithms), and C switch constructs [8, 17].

Algorithm schemes constructed via event and automaton approaches are designed in [8] for
realizing R- and counter triggers, respectively. They are more “understandable.”

Programs for realizing certain control functions for GUI toolbar elements and constructed via
event and automaton approaches are described in [53, 54]. In the event approach, as in object-
oriented programming in which emphasis is laid on autonomous interacting agents for attaining
the desired result [37], a separate handler is created for each event. As in object-oriented pro-
gramming, interaction between methods is ensured by heuristic flag (control) variables (one in our
case) without any regard for the understandability and correctness of the program sequential logic.
In the automaton approach, event handlers call a function for realizing a formal and isomorphic
transition graph by transferring the number of event as a parameter to the function. Therefore, the
logic, which is originally distributed among handlers, is now crowded in one function to improve
the understandability of the behavior of the program [54, 55].

41. This technology is complete and transparent, because it embraces all stages of algorithmiza-
tion and programming for which methods guaranteeing high-quality for the design of a project as
a whole are available.

42. A detailed description of this approach is given in [8, 17, 56–59]. Similar approaches are
described in [36, 60–62].

This approach augments the International Standard IEC 1131-3 (IEC 61131-3) [1], which does
not establish (unlike [8]) methods of designing programs in PLC languages. This topic is also
not covered in the documents of major automation companies [63], which only give examples [64,
65–74].

This approach was developed in 1991 [43, 75] and applied at Avrora Incorporation for designing
the following equipment.

—Control systems for the diesel generator DGR-2A 500 ∗ 500 fitted in three vessels of Project
15640 based on the equipment of “Selma-2” and ABB Stromberg (Finland). The program was
complied in the functional block language [43].

—Control system for this diesel-generator for the vessels of Project 15967 based on “Selma-2”
equipment of Stromberg (Finland). The program was compiled in the functional block language.

—Control system for this generator for the vessels of Project 15760 on the basis of the equipment
of Norcontrol (Norway). The program was compiled by Norcontrol in PL/M [42].

—Control system for the technical equipment of five vessels of Project 17310 based on Autolog
controllers of FF-Automation OY, Inc. (Finland) [45]. Programs for the general equipment were
compiled in ALPro [46] and for the control system of auxiliary mechanisms with the “C core–
ALPro” translator [47].

—Avrolog control complex for the ship technical equipment were developed on the basis of Au-
tolog controllers of FF-Automation OY. Program was compiled with the “C core–ALPro” translator
[47].

—Automatic control system for the technological processes of central Primary Petroleum Pro-
cessing Station Avrolog-NP1 (Severo-Orekhov oil wells). Program was complied in ALPro.

—Automatic control system for the technological processes of the compression pump station
Avrolog-NP2 (Severo-Pokursk oil wells). Program was written in ALPro.
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—Control system for the turbocompressor Larina at Polimer plant (Novopolotsk). Program was
compiled in the assembler language of the single-crystal microcomputer KP 1816 BE51 [44].

3. APPLICATION OF FINITE AUTOMATA FOR PROGRAMMING
PROGRAMMABLE LOGIC CONTROLLERS

Modicon (USA), a sister division of Schneider Automation [4], in 1993 and Siemens (Germany) in
1996 elaborated transition graphs as a programming language for their PL controllers. According
to Siemens [2], description in this language is helpful not only for PLC programmers, but also
understandable to engineering personnel. They developed this language for design purposes, though
it is not specified in IEC 1131-3 [1].

These approaches are better than the automaton technology in that the translators are written
in the transition graph language and an executable specification language is developed [76]. Their
disadvantages are the translators are not interchangeable, the translators restrict the application of
models and approaches other than those specified in the design, documentation does not describe
the transition graph design specifics that aid in understanding and quality of programs, there is
no mention to the need for designing connection schemes, graphs are difficult to view, because
graphs, transition conditions, and output variables are displayed on different screens (non-Gestalt
description), and transition graphs are used as a programming language without any mention that
transition graphs can also be used as an algorithmization language along with other programming
languages.

At present, the transition-graph approach, called the State Logic, is also used by General Elec-
tric Fanuc Automation for programming its old controller models [77]. ECLPS (English Control
Language Program Software) has been developed for describing transition graphs. GE Fanuc
Automation believes that this approach can be used without programming experience and is an
alternative to ladder schemes.

The disadvantages of this approach are the following: transition graphs are represented as labeled
with English words, the special programming language uses English language and is not based on
mathematical notation to avoid omission, it requires a special processor (State Logic Processor),
and transition graphs are not recommended as a specification language for programming in ladder-
scheme language of older PL controller models.

State diagrams are used as a programming language for industrial controllers produced by
Matsushita Automation Controls [78] and the “state list” language is used as the programming
language for the controllers manufactured by Festo Cybernetic [79].

4. APPLICATION OF FINITE AUTOMATA IN PROGRAMMING

Until recently, transition graphs were used only in theoretical programming problems [80] and
in practice they were mainly used only in designing compilers [81, 82], though transition graphs
have been used since long in hardware realization [16]. Transition graphs are used in programming,
because “any program can be regarded as if it has been realized by hardware equipment” [83].

Until the last decade, the main tool for designing programs for functional (applied) problems
was the approach based on transition graphs and visual formalism (algorithmic schemes).

Limitations (in the opinion of Booch [84]) of this approach in designing complex programs
stimulated the development and wide use of the object-oriented approach. But this new approach
in incipient stages was supported only by programming languages [85] and there was no program
design method within the framework of this paradigm.

The method developed by Booch in 1991 is based on several visual formalisms (diagrams) for
displaying different properties of selected classes and objects [84]. He also applied transition dia-
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grams for describing the behavior of objects and illustrated the application of these diagrams with
examples [84]. Unlike in our approach, the diagrams in the Booch method are only word-labeled
“charts” [12], but not mathematical models. Moreover, Booch failed to notice (unlike in [8, 17])
that these charts under a certain approach to designing algorithmic schemes might be isomorphic
to transition graphs and, consequently, the comparison in this case is incorrect. This fact also
escaped mention in [50, 86].

A situation similar to that of Booch is observed in [87], in which the “world” is modeled in
state. This “world” mainly consists of microwave ovens, valves, and pumps that are logic controlled
objects.

Booch pays great attention to state and transition diagrams without modifying the definition
of a state in terms of internal variables in [11], which is based on the works of Harel [88, 89], who,
in the opinion of Booch, elaborated a “simple but very expressive approach far more effective than
the traditional finite-state automata.” But this comparison is rather inappropriate, because Harel’s
approach, like our approach, is based on finite-state automata.

Harel developed his approach for control systems, called reactive systems [90], which are slightly
wider than logic control systems and their behavior is best characterized by their response to events
taking place beyond context [91]. Such systems respond to a flow of events by changing the states
and actions in state-state transitions or actions and activities in states [92–100]. He also developed
a visual formalism (modified state and transition diagram), called the “state-chart” [88, 92], which
is mathematically equivalent to the Moore–Mealy automaton diagram [90], but describes these
automata more compactly in certain cases. State charts can also be called the Harel diagrams and
their main features are the following.

Along with states, hyperstates (superstates [12]) consisting of several states that respond iden-
tically to an event [101] can also be used. Instead of displaying transitions to a state contained
in a hyperstate, only one transition from the hyperstate to a state (generalized transition [101]) is
displayed.

Hyperstates may theoretically have any embedding depth. Transitions from a hyperstate involve
all embedding levels in a hyperstate.

A hyperstate may consist of OR-states (sequential states) or AND-states (parallel states) [91].
In the first case, an automaton on passing to a hyperstate can exist only in one state (or another),
whereas in the second case, a hyperstate must contain parallel states in orthogonal domains [91].

Diagram vertices corresponding to states are hyperstates and are labeled with activities (do),
single actions implemented on entering a vertex (entry), and single actions on exiting a vertex
(exit).

The last two cases can be called the generalized actions, because single actions implemented
upon entry replace identical actions that are labeled in all incoming arcs of the corresponding
transitions in a Mealy or combined automaton, and single actions implemented upon exit replace
identical actions that are labeled in all outgoing arcs of corresponding transitions in a Mealy or
combined automaton.

An arc may be labeled with a transition-initiating event and the transition-“preserving” logical
condition. An arc may also be labeled with single actions implemented in a transition or events
formed in a transition.

Diagrams may also display pseudostates, for example conditional (C), terminal (T), and histor-
ical (H) states, which are not real states.

If a hyperstate contains a historical pseudostate, then in transition to this hyperstate, control
is transferred to the state in which the system last existed in this hyperstate [101]. The use of
generalized transitions and historical pseudostates is helpful in effectively specifying interruption
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due to transition of the system from a state belonging to a hyperstate to another state in which
interruption is processed and operation of the system is continued (after processing of interruption)
from the state in which interruption occurred [101].

Certain ideas of Harel, for example, generalized transitions, can also be applied in the switch-
technology.

Though the Harel approach is somewhat similar to our approach, they are quite distinct. First,
both states and hyperstates can be used in the Harel approach, whereas only states are used in
the switch-technology. Second, in the presence of a hyperstate, at least, with OR-states, it is
believed that the Harel diagram describes the behavior of only one automaton, whereas a system of
interconnected transition graphs describing the operation of a system of interconnected automata
can be used in the switch-technology.

Moreover, it is not clear how the Harel notation can be used to display a diagram for a large
number of hyperstates with a large embedding depth. For this reason, the Harel diagram (state
diagram) in object-oriented modeling is believed to describe the lifecyle of an individual object
and the behavior of a community of jointly operating objects is modeled by some other diagram
(interaction diagram) [91] and this complicates the formal approach to realization.

The described technology uses the concept of an “automaton” and dynamic charts of one type
(a system of interconnected transition graphs) even in the presence of a large number of automata
with a large embedding depth, i.e., charts can be formally and isomorphically realized in any
programming language.

Moreover, the formal relationship between static and dynamic charts in the object-oriented
approach is obscure [90, 91]. But the concept is distinctly expressed in terms of automata if the
object diagram is replaced by an automaton interaction scheme and a connection scheme containing
a system of interconnected automata and a system of interconnected transition graphs is used.

For this reason and its complexity and specifics of notation, Harel diagrams are thus far not
used in programming for programmable controllers.

The switch-technology can be used as a software designing tool, at least, for SoftLogic [72]. This
approach does not say anything about whether the software works; it only explains why a program
works [20]. It, in particular, answers where do internal (control) variables come from?, how many
variables must be used?, and what for is a variable used?.

Automaton approach is used in the specifications of computer network protocols [38, 102–105]
and in the specification and description language (SDL) [106–108] developed by the International
Commission for Telephony and Telegraph for designing software for telecommunication systems.
But the SDL-diagrams, being a modified algorithm scheme in which states can be explicitly intro-
duced, are unwieldy and applicable only to Mealy automata. Moreover, SDL-diagrams disregard
omissions and flags. Other disadvantages of SDL-diagrams (their height narrows the vision range
of specifications and prevents effective use of paper or screen area) are listed in [109].

Therefore, the authors of [109–112] in developing a programming technology for built-in real
time algorithmic systems to overcome the disadvantages of the Harel model (absence of generation
of finite codes) have combined the merits of SDL and Harel diagrams retaining alternative notation
for each of them in designing an object behavior model. This is also true of the design of object-
oriented software for real time systems [113]: the behavior model uses a state diagram with modified
Harel notation and the SDL-diagram is used for improvement [114]. Therefore, the models of [109,
114], have specific and restricted application to logic control of technological processes. Leading
companies do not use SDL diagrams in designing such logic controls.

Far more diverse is the behavior model elaborated in Unified Modeling Language (UML) [12,
91, 92, 115, 116]. It, in the opinion of its authors, is a collection of the best engineering approaches
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used in object-oriented modeling for general purpose complex models. This language is based on
the approaches of [11, 84, 117, 118].

In this language, the behavior of objects is described by a state machine, which, depending on
the priority of states or activities, is defined by a state diagram or activity diagram. This is not
correct, because transition parallelism is admissible in an activity diagram. Moreover, the state
diagram is not a classical diagram and is regarded, though somewhat distinct [92], as an equivalent
Harel diagram [90].

Since UML contains activity diagrams (an unexpected property [12]) that are not finite automata
of automaton theory, there is some uncertainty in the choice of notation for describing the behavior
of objects. Though these diagrams strongly resemble Grafset diagrams, which have been in use for
the last twenty years in programming for automation of systems, they are worse since they do not
contain “pointers” for transition conditions, but contain conditional vertices typical of algorithm
schemes. While the vertices in a Grafset diagram are called stages, analogous vertices in an activity
diagram are erroneously called states.

Moreover, as shown in [15] but not in [12, 92], every activity diagram (like every Grafset diagram)
can be replaced by a system of interconnected transition graphs, which for a Grafset diagram can
be realized by fewer number of internal variables.

The uncertainty in the choice of notation for describing the behavior of objects in UML steeply
increases due to the fact that activity diagrams are regarded as constructs similar to SDL-diagrams.
This corroborates the weak principles of formation of the “collection” under consideration.

I-Logix, one of the designers of UML, used only the Harel diagram for creating object-oriented
built-in real-time systems [99], but, did not investigate the problem of verification of the behavior
of these diagrams.

Harel diagrams are used in [119] for visualization of program components described by finite
automata and intended for different platforms. In [181], only these diagrams are used for describing
the behavior of objects.

The Harel notation is generalized in [120]. While transitions in Harel diagrams admit only
conditional vertices inherent in stateless flow diagrams, these vertices may form more complex con-
figurations [120]. A new term “stateflow” was thus coined to explain the close relationship between
state and flow diagrams. Since these diagrams can be implemented as executable specifications in
MATLAB [121], they can also be implemented in C and C++.

Since the Harel notation is highly specific, for low-level logic control systems (especially for PL
controllers), far more convenient in algorithmization is a system of interconnected transition graphs
containing a minimal number of components and notation (“never complicate unless unavoidable”
(Okkam)) and based on classical automaton models helpful in formal and isomorphic programming
even manually.

For this class of systems, the proposed technology is helpful in constructing a system of Boolean
formulas for mathematical models used in designing programs with binary state coding. Such a
possibility is nonexistent in other approaches.

In this technology, software and documentation for systems are designed and implemented.
Documentation is a vital problem; well-designed documents contain texts and description of

programs and user instructions [122], whereas badly-designed documents omit program texts [123].
Finite automata, which are considered in [182] as modifications of processes, are presently used

in controlling automatic switches of marine electrical equipment [124], designing nonprocedural
programming languages for automatic control systems of technological processes [125], searching
subrows [126], describing the behavior of objects [15, 127] in program realization of complex sys-
tems [87, 128–147], including “multifilar” controllers [30], and in other problems involving parallel
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processes (five philosophers and forks [148], balls in window [149], synchronization of a chain of
arrows [150]).

Transition graphs are the main tool for describing control processes in designing data processing
programs by the methods of structural system analysis and design [40]. These graphs are also
used for IDEF documentation (ICAM, DEFinition) and object transformation in technological
processes [74].

The role and state-of-the-art of finite automata, transition graphs, and switch-constructs in
programming are described in [151].

Moreover, transition graphs are used for describing the behavior of Turing machines used in the
formal definition of algorithm [101, 152]. Therefore, this machine can be realized by switch con-
structs containing actions imitating the movement of “read–write” head. Therefore, the described
approach can also used for a wide class of problems concerning the use of extended finite automaton
model [38, 102]. This approach is used in object-oriented programming to define an object as an
element that can be acted upon by changing its state.

At present, the automaton approach is in the incipient stage of application in program realization
of algorithms. The “extinction” of automaton theory asserted in [153] is, in my opinion, strongly
exaggerated. The reviewer of [8] defines a finite automaton as a tool for fighting against the
monopoly of giant software designers [123] and even a hymn on the use of automata in programming
is given in [50, 86].

In this connection, let us recall that K. Thomson, the designer of Unix [154], in reply to a
question noted that a finite-state language generation machine was created, because a real selector
telephone talk was a group of interacting finite-state machines. This language is used by Bell Labs
for the main purpose—creation of such machines. Moreover, it is also used in driver design.

5. ALGORITHMIZATION AND PROGRAMMING OF “REACTIVE” SYSTEMS

The technology described in Section 2 is designed for creating algorithms and programs for logic
control systems, in which input variables are fed only upon inquiry [155, 156] and cyclically [91].
Furthermore, programs produced are executed as compliers: switch constructs or their analogs are
constructed from transition graphs and implemented directly and are, therefore, “active.”

Grabovskii (Kaskog, Inc., St. Petersburg) applied the automaton approach [8] for program
implementation of the logic part of control systems of Siemens controllers employing an advanced
interruption mechanism. Tabulated transition graphs are used for automatically generating an
array (resembling switch constructs), which is “passive” and processed by an interpreter with
regard for inquiries when the microcontroller is implementing a transition to a graphs.

Teren’tev (Avrora, Inc.) used this approach to realize protocols in distributed control systems
based on microcontrollers. The programs were complied formally and isomorphically from transi-
tion graphs.

Tunkel’ (Avrora, Inc.) and I applied switch-technology in developing a generator control system
based on an industrial computer and QNX platform, in which the control program is implemented
as one process and the object-modeling program as another process. The switch-technology was
slightly modified for reactive systems [39], because event-based control systems differ from sys-
tems based only on “cyclic controllers” [91]. Such systems are generally designed with industrial
computers with real-time operating systems.

The modified switch-technology has the following features.
The basic concept is automaton, but not class, object, algorithm, or agent, as in other ap-

proaches. Programming can be called the automaton-oriented programming.
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Automata are regarded not as isolated machines, but as components of an interconnected au-
tomaton system, whose behavior is formalized by a system of interconnected transition graphs.

The main model is a model of combined automaton, whose behavior is described by a transition
graph containing only “simple” states (no hyperstates).

Notation for transition graphs (for embedded automata) is wider (than the notation of [8]).
The object domain is defined by technical specifications, which for automation of technological

processes are usually defined by the customer in verbal form as a set of scenarios. In UML [91], a
structural scheme is designed to determine control organization, equipment, and object interface.

Technical specifications are analyzed to determine the main functions, called automata (pump
control automaton, temperature controller).

The states of each automaton are initially determined from the states of the object or part of
object. If the number of states is large, they are determined through a control algorithm constructed
with different notation (as an algorithm scheme [51]). Automata may also contain states to define
operator faulty actions. Every automaton, if necessary, can be decomposed. Interactive analysis
can be repeated and generates a list of automata and a list of states for each automata.

Unlike in traditional programming, the design includes a substage for coding the states of an
automaton by a multivalued code, for example, decimal number of states.

Automata interact by exchanging the numbers of states, embedding depths, and calls. States
may be embedded and addressed concurrently. An automata interaction scheme is constructed
to determine interaction types. It formalizes the a system of interacting automata. This scheme
replaces the object chart and partially the interaction chart (cooperation chart) used in object-
oriented modeling [91].

Inputs are subdivided into transient events and input variables are fed in response to inquiries.
Inputs are realized as input variables and events are used to reduce the system response time.
Every input can be represented as an event or input variable.

Interruptions are processed by the operating system and transferred to the program as events
and are processed as events by the corresponding handlers.

Certain input variables may be formed via comparison of input analog signals.
The numbers of states of other automata with which automata interact by exchanging the

numbers of states are also regarded as inputs. Every input is an action, but not an activity.
Groups of inputs and outputs are related to automaton. The relation of every automaton with
its “environment” is formalized by a connection scheme describing the automaton interface. This
scheme shows data sources and receivers, names of all actions and their notation, the automaton
containing this scheme, and the automata in the scheme.

The names of automata, events, input variables, automaton state variables, and outputs begin
with the letter A, e, x, y, and z, respectively. The number of corresponding automaton or action
comes after the leading letter.

A system of interconnected automata forms a system-independent part (for example, indepen-
dent of the operating system) of the program realizing the control system operation algorithm.
Input variables, event handlers, outputs, auxiliary modules, user interfaces are realized by the
system-dependent part of the program.

Event handlers contain calls to transition graph (automaton) functions with subsequent transfer
to the corresponding events. Input and output functions are called by automaton functions. The
functions forming auxiliary modules are called by input and output functions. Thus, automata
exist at the “center” of the program.

If the system-dependent part of the program is designed as an automata (as an automaton for
operator action file), then it can also be incorporated into the automaton interaction scheme.
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If the platform is not changed, then auxiliary modules can be repeatedly used as samples [91].
Automata can be started both from the program system-dependent (event handlers) and system-

independent parts. Embedded automata are sequentially started by transferring the “current”
event according to routes in the automaton interaction scheme defining the states of automata at
the startup of the main automaton. The automata startup and termination sequences are stored
in depth search algorithm [157]. Automata are initiated by outputs with subsequent transfer
of respective “internal” events. Automata can be started once with transfer of some event or
repeatedly (in a cycle) with transfer of the same event.

The system is implemented such that automata-realizing functions cannot restarted until the
completion of their work. Every automaton upon startup executes only one transition. After
processing a routine event, every automaton preserves its state and remains idle until the next
event appears.

Arcs and loops of transition graphs are labeled by arbitrary logic formulas, which may contain
input variables and predicates verifying the numbers of states of other automata and the numbers
of events. Along with transition conditions, arcs and loops may also contain a list of sequential
outputs. Vertices are always stable and contain loops. If outputs are executed in a loop, then the
loop is omitted. Otherwise, one or several loops are displayed, each of which is labeled, at least,
by outputs. A vertex may contain a list of sequentially started embedded automata and a list
of sequentially executed outputs. Vertices can be combined into groups to generalize “identical”
incoming arcs at each transition graph. Incoming arcs of a vertex can also be combined into a line.

Every transition graph is tested for attainability, consistency, completeness, and absence of
generating circuits.

This stage ends with the construction of a transition graph for every automaton in a system of
interconnected automata.

A program for implementing transition graphs, input variables, event handlers, and outputs as
functions is generated at the realization stage. It may contain submodules (for example, timer
control module).

One internal variable is used to store the numbers of states (to distinguish states) of an automa-
ton. A second auxiliary variable is used to distinguish the variations of a state.

A universal algorithm realizes the hierarchy of transition graphs with arbitrary embedding level.
Every transition graph is formally and isomorphically implemented by a separate (program)

function generated from a template containing two switch constructs and one IF operator. The first
switch initiates embedded automata and arc and loop actions. The IF operator verifies whether
a state has been changed, and if changed, the second switch activates embedded automata and
executes the actions at the new vertex.

After transition graphs have been generated, the subprogram text is corrected to suppress re-
peated inquiries of input variables labeling outgoing arcs of a state. Thus, “risk” is reduced [8].

Every input variable and every output are also realized by a function. Therefore, the switch-
technology can be applied to problems other than logic control problems as well.

The names of functions and variables used in realizing automata are the same as those used
in connection schemes of automata and transition graphs. For example, the variable holding the
number of the current event is denoted by e.

All functions realizing input variables are stored in increasing order of serial numbers in one file
and output-realizing functions in another file.

Functions realizing automata, input variables, and outputs contain calls to protocolling func-
tions. This stage ends with the construction of a program structure scheme showing the interaction

AUTOMATION AND REMOTE CONTROL Vol. 62 No. 1 2001



18 SHALYTO

between program parts. It may also contain an automaton interaction scheme, which is not sepa-
rately generated.

The values of state variables of all automata are displayed on one screen during adjustments.
Automatic protocolling is implemented in the certification stage via inputs and outputs of au-

tomata functions that call protocolling functions. The protocol contains data on events, automata
startup sequence, startup status of automata, transitions to new states, termination of automata
operation, values of input variables and their outputs, and implementation time of each output.
Along with a “complete” protocol, a “brief” protocol containing only events and their outputs is
also generated.

Automata startup and stop messages in the complete protocol act as logical brackets for different
embedding levels.

In the documentation stage, the results of software design and development are generated and
stored in a log file. It contains the system structure scheme, program scheme, copies of user inter-
face screens, a list of events, input variables, outputs, an automata interaction chart, description
of notation used in transition graphs, templates for transition graphs of combined automata of
arbitrary embedding level, verbal description (a fragment of technical specifications) for every au-
tomation as comments, automata connection scheme, a transition graph, the text of the function
realizing the automaton, description of algorithms as a transition graph, texts of auxiliary modules
and functions implementing input variables, event handlers, and outputs, program certification
protocols in the form of examples, [158], programmer’s instructions, and user’s manual.

This technology can also be used in designing a model for the controlled object, for which a
similar set of documents must be drafted.

If programs are modified later, the whole set of documents must be corrected [159] by listing all
program modules and their cyclic checksums. Documentation controller must know the checksum
of the initial file and all modified documents must be archived.

The advantages of the modified technology are the following.
Unlike in object modeling [91, 113], main modules are designed via automaton technology and

only one type of a dynamic model—a system of interconnected transition graphs—is used.
This technology is effective in describing and implementing large-dimensional problems. Since

transition graphs are used as a logarithm specification language, the program behavior is compre-
hensible and corrections are easily introduced both in specifications and in their implementations.

Joint use of connection scheme of an automaton with its transition graph aids in understanding
the graph and joint study of this graph with its isomorphic subprogram aids in understanding the
subprogram.

Documents of the software project admits corrections at any time.
The program is subdivided into system-dependent and system-independent parts without the

use of any object-oriented approach.
In designing the system-independent part, the details of input and output implementations

are hidden. They are displayed only in implementing the system-dependent part. The system-
independent part of the program is designed and implemented separately.

Implementation of input variables and outputs as functions admits protocolling, easy transfor-
mation of one type of data sources and receivers to another type, and current program setup [158]
at any time after the startup of the system-dependent part. Ordered storage of functions imple-
menting input variables and outputs simplifies their correction.

Since only one internal variable is used for coding the automaton states, the automaton behavior
can be observed by “tracking” the changes in the values of this variable. For a system of N
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automata, the values of N multivalued variables are “tracked” by displaying the values of each
variable on an “adjustment” screen determined by the automata interaction scheme.

Every transition graph is formally and isomorphically implemented by a template and, if neces-
sary, the graph can be uniquely restored by this submodule.

The system-independent of the program is regular, readable, and correctable. It depends only
on the compiler or interpreter of the program language of the platform. Only the system-dependent
part needs modification in case of hardware replacement or operating system.

Since protocol is automatically introduced in terms of specifications, the compatibility of the
program with the behavior of interconnected transition graphs for the events of input variables can
be verified. This is implemented via comparison of the complete protocol with specifications. The
program as a whole is verified with complete protocols. Brief protocols are used in verification tests
and are also used as fragments for testing the system. Verification is usually associated only with
the “algorithm–program” concept.

The brief protocol is used in determining output errors and the complete protocol is used in de-
termining faulty automata. Therefore, they can be called “verification” and “diagnostic” protocols,
respectively.

Since complete protocols are automatically generated in terms of automata, the system of in-
terconnected transitions used in automaton specifications is not a “chart,” but a mathematical
model.

Though verification with these protocols is rather unwieldy, this method is more practical than
other approaches to designing high-quality programs [160, 161].

A protocol or part of it generated by certain events corresponds to the scenario. Thus, the
scenario [64] is designed automatically during program analysis, but not manually during program
synthesis, as in other approaches [91, 113]. Manual construction of scenarios and formal synthe-
sis of system-independent program from these scenarios for complex logic problems is virtually
impossible.

The proposed approach does not exclude the possibility of interactive adjustments and certifi-
cation.

The behaviour of the interconnected automata system is a modified form of the collective be-
havior of automata [162] and can be used in designing “multiagent systems containing reactive
agents” [163].

The diesel generator control system designed by the modified technology has corroborated
Brooks’s opinion [158] that more time is required to design an algorithm for generating charts
but not models than to write the system-independent part of the program isomorphic to the algo-
rithm and Voas’s opinion [164] that the CASE-tools, though they are fast, may generate incorrect
codes from incorrect charts.

The full text of the submodule constructed by the modified technology and its complete protocol
for verifying all transitions of the automaton realizing the toolbar control algorithm is given in [54].

6. FINITE AUTOMATA FOR PROGRAMMING PROGRAMMABLE LOGIC CIRCUITS

An approach similar to algorithm programming is widely applied in adjusting programmable
logic circuits [165], also called programming [166]. Hardware description languages (HDL), in
particular, are capable of converting program texts into functional schemes and vice versa. The
description written in an HDL is compiled into a scheme [167]. The languages VHDL [168] and
AHDL [169] are well-known languages of the HDL class.

In AHDL, conditional logic is implemented by “if then” and “case” constructs, of which the
latter is an analog of the C switch construct. In [169], it is recommended that the “case” construct

AUTOMATION AND REMOTE CONTROL Vol. 62 No. 1 2001



20 SHALYTO

must be preferred to the “if then” construct, whenever possible. This recommendation is used in
implementing sequential logic described in terms of states with a state machine. An automaton
with multivalued state coding (this term is not used in [168]) is defined as a state chart. State
machines with synchronous outputs corresponding to Moore machines and state machines with
asynchronous outputs corresponding to Mealy machines are illustrated with examples in [169).

Modification of the automaton approach for programming PL circuits consists of visualization
state charts via “State CAD” packages [170].

Thus, the algorithm and software design technologies described in Sections 2 and 5 supplement
the well-known approach to programming PL circuits and thus aid in hardware [171] and program
implementation of logic control algorithms as in hardware and software co-design technology, in
which finite automata are used as a high-level abstraction language [172].

7. APPLICATION OF THE STATE CONCEPT IN PROGRAMMING:
TURING LAUREATES

I became aware of [173] and [174] after the publication of my book [8]. The technology based
on finite automaton paradigm—one of the programming paradigms discussed by Floig [173]—has
certain features described by Turning laureates, Turing himself [183], and von Neumann [184].

In 1966, Perlis [173] suggested that the description of language, medium, and computation
rules must include states that are monitored in the course of implementation in order to facilitate
nondestructive diagnosis of programs. By monitoring, he meant distributed control, which today
is known as object-oriented programming.

In the same year, Dexter [174] introduced state variables via integer variables for describing the
states of a system at any instant. He investigated the states that must be introduced, the number
of values of a state variable, and what do these values denote. He determined a set of suitable
states and then only constructed a program. He also compared a process with a state variable and
connected processes through these variables. In his opinion, state charts might serve as a powerful
program verification tool. All these support his idea that every program must be compiled correctly
right from the beginning, but not debugged until it runs correctly.

In 1977, Becus [173] noted that the semantics were closely interwoven with state-state transi-
tions in programming languages for Neumann computers and their disadvantage was computations
changed the state. Consequently, every detail of every property must be nested in a state and its
transition rule. He also noted that computer systems must be historically sensitive, but a system
cannot be historically sensitive (admit the influence of one program on the behavior of the succeed-
ing program) unless it has a state which the first program could change and the second program
could accept it. Therefore, a historically sensitive model of a computing system must possess a
state-changing semantics. He believed that a state might be considered as a whole and it must be
changed only after “large” computations.

8. CONCLUSIONS

The automaton approach based on behaviorism, cognitive [57], and Gestalt psychologies [41]
may enhance the design and quality of logic control programs for technological objects via auto-
programming, in which algorithmization and programming are implemented by man, because the
notation system is a natural extension of the way of thinking, but not an alien formalism [173]).
Transition graphs as an algorithmization language, like any language in which the solutions of a
problem are written, may directly affect the progress of man’s thoughts, compelling him to view
the problem from a particular angle [37] defining the “thinking discipline” [20]. Transition graphs
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are believed to be best for describing real processes [77], supplementing the objective process by a
natural method of cognition of reality [175].

While procedural, object, and event programming techniques are based on choice, action, ob-
jects, and event, respectively [175], the automaton programming is based on automata, including
inputs and outputs [8].

According to Schneider Electric (Kiev), Only 4% of Ukrainian users of its PL controllers use
the Grafset language (IEC 1131-3) due to thinking inertia of programmers, who in most cases
automatically transfer the style of PC programming languages to PL controller programming [9].

This situation, in my opinion, is a result of not only personal preferences, but also methodological
specifics of this language and its implementation. For example, the Grafset diagram constructed for
a logic control problem in [176] is a “chart,” but not a model. This excludes the possibility of formal
and isomorphic transformation of the chart into a program and use of the chart as a certifying test.
Surprisingly, this chart is not used in [176] for writing programs in Grafset, but its “patterns”
are used in heuristically constructing ladder schemes and programs in instruction language. Since
transition graphs in logic control systems usually have multiple returns [8], their Grafset diagrams
are nondemonstrative. The large number of binary variables used in PL controllers for vertex
coding restrict the admissible number of vertices in transition graphs.

In the automaton technology, programming for PL controllers is best written in a structured
text language [1], especially for PL controllers, containing a switch-like construct of C.

At present, the switch-technology is effectively used in designing control systems for three types
of computing devices enumerated at the beginning of the review.

For logic control problems, the switch-technology is useful in constructing “quality” [177] pro-
grams, thereby corroborating the belief “what is not specified formally, cannot be verified and what
is not verifiable cannot be faultless” [38].

Complexity is the reason for the difficulty in enumerating and understanding all possible states
of a program—the root of its unreliability. Complexity is also the source of nonvisualizable states
in which system protection is violated [158].

The switch-technology is based on predefined states and their visualizations. Therefore, it may
be hoped, while exhibiting minimalism, at least for logic control and reactive systems [178], to be
an approximation to a “silver pen” [158] for writing quality programs. In [178], Brooks speaks
favorably about the Harel approach.

This technology can be regarded as a way of overcoming the “linear thinking crisis” [179] and
another way is the use of hypertext.

The switch-technology is essential for meeting the IEC 880 software recommendations for the
computers used in reliability systems of atomic power stations [180]. This Standard also specifies
the design, correction, and control of software for control systems of atomic power plants. The use
of the automaton paradigm in this technology as a central concept is consistent with control theory
and this distinguishes it from the other programming paradigms.
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