

ISSN 0361-7688, Programming and Computer Software, 2009, Vol. 35, No. 1, pp. 43–55. © Pleiades Publishing, Ltd., 2009.
Original Russian Text © E.V. Kuzmin, V.A. Sokolov, D.Ju. Chalyy, 2009, published in Programmirovanie, 2009, Vol. 35, No. 1.

43

1. INTRODUCTION

As noted by many researchers (see, for example, [5,
6]), software is currently the most vulnerable and error-
prone part of large software–hardware complexes. It is
noted in [5] that the lack of confidence in the software
is explained by the following reasons: history of soft-
ware failures in the past (for example, [7, 8]), difficul-
ties in software understanding and inspection, com-
plexity of testing, and the lack of agreement between
the customer and contractor about desired software
functions. Therefore, the development of reliable meth-
ods for designing, inspecting, testing and verifying pro-
gram systems is an important task.

The majority of approaches to the software develop-
ment (comparative analysis is presented in [9], and dis-
cussion of methods used in logical control problems
can be found in [2]) agree that the initial stage of a pro-
gram system design should include requirements spec-
ification [6], i.e., specification of requirements that the
constructed system must satisfy (in what follows, we
call it simply specification). The specification is the
main source of information about the functions that the
system

must implement.

 However, the specification
should not impose any restrictions on the

way

 the sys-
tem is constructed. Based on this document, the pro-
gram system is designed, a program code is created,
and the system is tested and verified. The majority of
researchers agree that an efficient analysis, design, and
verification of program systems are possible only with
the use of rigorous mathematical methods on all stages
of its development.

It is in this direction that the technology of the
automaton programming is being developed [2–4].
In the framework of this technology, new formal mod-

els of automaton programs are being proposed [10].
This technology suggests a method for designing pro-
grams as systems of interacting finite Moore–Mealy
automata. The design of each automaton consists in the
creation of a link scheme describing its interface and a
transition graph determining its behavior by a verbal
description of the desired automaton. However, the use
of informal descriptions for constructing a system of
interacting automata is a shortcoming of this technol-
ogy, which may result in errors in the automaton pro-
gram. Indeed (see, for example, [6, 11]), the most criti-
cal errors in program systems result from omissions
made at the stage of specification of requirements to the
system, and correction of them at later stages of pro-
gram design is much more difficult than timely elimina-
tion of these errors [12]. An informal verbal problem
statement greatly hampers correct determination of
essential requirements raised by the customer. Accord-
ing to [13], when reading an informal verbal specifica-
tion, the designer may face with an ambiguous interpre-
tation, absence of a number of requirements (incom-
plete specification), inconsistent requirements, or
unclear description. All this makes the analysis of the
posed problem and the automaton program design dif-
ficult. Moreover, it may happen that that the customer
will find and impose new requirements to the program,
increasing, thus, the number of iterations “problem
refinement–automaton program design.” The situation
becomes more difficult if the automaton program is
designed for a system with “complex behavior” [14].
The latter is a system whose behavior depends not only
on the current state but also on the previous history of
system operation. Thus, there is a need for a method
that would allow us to carry out a formal analysis of the
posed problem, gradually refining its statement and

Application of the Trace Assertion Method to the Specification,
Design, and Verification of Automaton Programs

E. V. Kuzmin, V. A. Sokolov, and D. Ju. Chalyy

Yaroslavl State University, ul. Sovetskaya 14, Yaroslavl, 150000 Russia
e-mail: kuzmin@uniyar.ac.ru, sokolov@uniyar.ac.ru; chaly@uniyar.ac.ru

Received April 20, 2008

Abstract

—The paper considers the application of the trace assertion method [1] for specification and verifica-
tion of automaton programs [2–4]. The trace assertion method allows the programmer to define an externally
visible behavior of an automaton program in a rigorous way, without considering details of its implementation.
The method is employed at the requirements specification stage of the system development. The paper intro-
duces techniques for defining semantics of some elements of an automaton program, especially those involved
in interactions with the control system. A formal approach to defining states of automaton programs is
described. Results of studies related to the verification of specification requirements for automaton programs
are also presented.

DOI:

10.1134/S036176880901006X

44

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 35

No. 1

2009

KUZMIN et al.

improving understanding of what the program is sup-
posed to do. This method should be rather abstract in
order to avoid focusing on internal, not externally visi-
ble, aspects of the implementation. For such a method,
we suggest using the trace assertion method (TAM
method) [1].

The paper is organized as follows. In Section 2, the
approach to specification of automaton programs—the
trace assertion method—is described. Basic concepts
of the technology of the automaton programming rely-
ing on a hierarchical model of automaton programs
[10] are described in Section 3. The use of specifica-
tions for designing automaton programs is discussed in
Section 4. Verification of automaton programs on the
basis of the constructed specification is discussed in
Section 5. Conclusions of this work and discussion of
directions of future studies are presented in the last sec-
tion.

2. TRACE ASSERTION METHOD

The trace assertion method was first discussed in
[1]. It is designed for specification of program modules
in accordance with the information hiding principle
[15]. Thus, a specification in terms of the TAM method
is a “black box” description; i.e., only external observ-
able typical features of the module are visible, whereas
internal details of the implementation are hidden. Cur-
rently, there exist several modifications of this method
[16–18] and program tools supporting them [19, 20].
The method can be used in practice for specification of
actual control systems [13, 21–23] and, thus, presents
not only theoretical, but also practical, interest.

For each module, a finite number of actions, which
can change its behavior, are specified. These actions
form an interface of the module with the environment
and may represent different types of the interaction. In
response to actions, the module can return reactions to
the environment. The trace assertion method is a
method for describing externally visible modes (or
states) of a module by means of finite sequences of
events the elements of which are pairs “action–output.”

Let

M

 be a program module and

P

M

 = {

p

1

, …,

p

n

} be
a set of actions for this module, which form an interface
with the environment. Let, for each action

p

i

, the mod-
ule can return an output, which is an element of some
set

T

i

, and let

T

M

 = . Then, a trace is a

sequence

p

 = : : : … : , where

 (1

�

m

�

k

) denotes an action on the module,

∈

 denotes the returned output, and “.” denotes
the concatenation operation. If no output is returned in
response to some action, we assume that the output
with the value

nil

 is returned. Actually, a trace is a
sequence belonging to the alphabet

∆

⊆

P

M

 ×

T

M

.
In what follows,

ε

 will denote an empty sequence. The
notation

∆

* and

∆

+

 is used to denote sets of all

Ti1 � i � n∪
pi1

oi1
pi2

oi2
pi3

oi3
pik

oik

pim

oim
Tim

sequences over the alphabet

∆

 with the empty sequence
included and not included, respectively.

Let

ν

:

∆

*

T

M

∪

 {

nil

} denote a projection that
specifies the value of the last output for an arbitrary
trace:

1.

ν

(

ε

) =

nil

;
2.

∀

p

 :

o

∈

∆

ν

(

p

 :

o

) =

o

;
3.

∀

x

,

y

∈

∆

+

ν

(

x

.

y

) =

ν

(

y

).

Let

π

:

∆

*

∪

 {

ε

} denote a projection that,
for an arbitrary trace, determines a sequence of actions
applied to the module:

1.

π

(

ε

) =

ε

;
2.

∀

p

 :

o

∈

∆

π

(

p

 :

o

) =

p

;
3.

∀

x

,

y

∈

∆

*

π

(

x

.

y

) =

π

(

x

)

π

(

y

).
A trace

s

 is called feasible if, for any prefix s' of the
trace s, the module admits satisfiability of the trace s'.
Feasible traces determine possible scenarios of module
usage.

If, for any feasible traces s1 and s2 of some module
M, the condition

s1 = s2 ⇔ π(x) = π(y)

holds, then this module is said to be output-indepen-
dent. Output-independent modules have no “internal”
memory for storing the history of outputs. Such mod-
ules can store only the history of the applied actions.
In this paper, we consider modules of only this kind.

Two feasible traces s1 and s2 are said to be equiva-

lent (which is denoted as s1 s2) if any subsequent,
externally observable behavior of module M after the
firing of either of the two traces is one and the same:
s1 s2 if and only if, for any trace s ∈ ∆*, the traces s1.s
and s2.s are simultaneously feasible or not feasible. By
means of the introduced equivalence relation, the set of
all feasible traces is divided into equivalence classes. In
this paper, we confine ourselves to systems with a finite
set of equivalence classes.

A trace τ is said to be canonical if it represents some
equivalence class. Now, let us turn to defining specifi-
cations in terms of the trace assertion method.

A specification in terms of the trace assertion
method is given by

• a set of actions Σ;
• a set of outputs �;
• a set of pairs “action–output”, ∆ ⊆ Σ × �;
• a set of all canonical traces, Q ∈ ∆*;
• an initial canonical trace q0 ∈ Q;
• a transition function δ: Q × Σ Q; and
• a function v: Q × Σ Q determining the

returned output.
Function δ determines what actions result in transi-

tions between externally visible modes of system oper-
ation, which are specified by canonical traces. Function
v determines outputs transmitted to the environment in

PM*

=E

=E

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 1 2009

APPLICATION OF THE TRACE ASSERTION METHOD TO THE SPECIFICATION 45

response to the actions. The output value depends on
the current mode of system operation and on the action
applied to the system. Upon creation of a specification,
it is assumed that, at any moment, the environment can
apply any action from the set Σ defined in the specifica-
tion.

Consider an example of a specification prepared
with the help of the TAM method for an “alarm clock”
system from [14]. The alarm clock has three buttons H,
M, and A. The buttons H and M increase the values of
hours and minutes, respectively, by one (if the values of
hours or minutes are equal to 23 and 59, respectively,
they are set equal to zero), and the button A is used to
turn the alarm clock on and off. After the first press of
this button, the alarm clock can be set. The second press
activates the clock mode (with the alarm clock being
already set). The third press removes the alarm clock
setting.

First, it is required to determine entities that are
objects of control (they will be referred to as controlled
entities) and those affecting behavior of the logical con-
trol system (observable entities). A system may have
entities that are simultaneously controlled and moni-
tored ones.

In the above example, there are two controlled enti-
ties: a clock and an alarm clock. They are simulta-
neously controlled and observable entities (for exam-
ple, when values of hours and minutes must be set to
zero upon pressing buttons H and M). A formal defini-
tion of the set of possible values of the clock and alarm
clock is given in Tables 1 and 2.

From the problem description, we can also deter-
mine monitored entities, which specify actions applied
to the module by means of buttons H, M, and A. When
pressing buttons H and M, the controlled system is
changed. Therefore, these actions have arguments cor-
responding to the current state, and the new state of the
control system is an output.

Specification of the operation of the module respon-
sible for the logical control of the clock is shown in
Fig. 1. Sets of actions and outputs are defined in the
section “Module interface.” Canonical traces are
defined in the corresponding section; they determine
externally visible alarm clock system modes. The defi-
nition of the set of canonical traces is not an easy task.
It can be solved by analyzing the problem under study
with the help of heuristic methods, for example, by ana-
lyzing informal description of scenarios of operation of
the created system provided by the customer. In our
example, the definition of such a set of canonical traces
followed from the fact that button A modified values of
the output variables in different ways (difference in the
behavior for sets of traces {A} and {ε, A.A}) and from
the necessity to distinguish the case where the alarm
clock is set (trace A.A) from the case where it is not set
(the set of traces {ε, A}). A set of assertions about traces
that describe the transition function δ and function v

specifying the returned outputs can be defined by
means of an interview with the customer.

In practical use of the trace assertion method, the so-
called tabular expressions are often used [24, 25] for
specifying values of the transition function δ and func-
tion v determining the outputs. Tabular expressions
define complex relations and functions in a simple and
clear tabular form.

Consider semantics of tabular expressions specify-
ing functions δ and v. The tabular expressions are read
row by row. Each table of a specification consists of
three columns: Condition, Trace pattern, and Result.
The first column contains a predicate that imposes a
condition on the values of arguments of the input
action. The second column contains a predicate that
imposes a condition on the form of the canonical trace
that is an argument of the specified function. The third
column contains the value of function δ (or v) for the
subset of function arguments satisfying conditions of
the predicate in the first two columns joined by the log-
ical operator “AND.” In practice, if one cannot define
functions in a compact and clear form, the designer of
the specification may propose different form and
semantics for the tabular expressions. Discussions on
this subject can be found in [5, 13, 21, 24, 25].

Thus, the use of the trace assertion method suggests
specifying desired behavior of the system being cre-
ated. This is implemented by defining reactions to all
possible input actions, which is based on the history of
system operation represented in a compact form
through specification of a set of canonical traces and
transitions between them.

3. TECHNOLOGY OF THE AUTOMATON
PROGRAMMING

The automaton programming technology [2–4, 14]
is a modern Russian development, which is actively
studied and supported by a number of Russian research
groups. In the automaton approach to the program
design, the program contains a system-independent
part, which specifies logic of the automaton program

Table 1. Data types

Name Type Comments

tHour {0 … 23} The number of hours

tMinute {0 … 59} The number of minutes

tClock tHour × tMin Specifies clock

Table 2. Observable and controlled variables

Name Type Initial value Comments

(hw, mw) tClock (0, 0) Current time

(ha, ma) tClock (0, 0) Alarm clock settin

46

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 1 2009

KUZMIN et al.

and is given by a system of interacting finite Moore–
Mealy automata. The automaton programming does
not depend on the platform, operating system, or pro-
gramming language and represents an approach that
uses formal methods for constructing correct programs.

In this paper, we consider a formal hierarchical
model of reactive systems and logical control systems

proposed in [10]. In accordance with this model, an
automaton system is considered as a system of interact-
ing deterministic automata given by

where n and ki (1 � i � n) are positive integers. The
automaton A0 is called main, and the others are called

� A0 A11 … A1k1
… An1 … Ankn

, , , , , , ,(),=

Specification of module Clock

Canonical traces

Outputs

Action Argument Result

H (hw, mw) × (ha, ma) (hw, mw) × (ha, ma)

M (hw, mw) × (ha, ma) (hw, mw) × (ha, ma)

A ∅ ∅

δ(t, A) =

Condition Trace patterns Equivalent trace

|t| = 2 ε
|t| < 2 t.A

=

Condition Trace patterns Result

0 ≤ hw < 23 t ≠ A (hw + 1, mw) × (ha, ma)

hw = 23 t ≠ A (0, mw) × (ha, ma)

0 ≤ ha < 23 t = A (hw, mw) × (ha + 1, ma)

ha = 23 t = A (hw, mw) × (0, ma)

v(t, M((hw, mw) × (ha, ma))) =

v(t, A(k)) = ε

=

Condition Trace patterns Result

0 ≤ mw < 59 t ≠ A (hw, mw + 1) × (ha, ma)

mw = 59 t ≠ A (hw, 0) × (ha, ma)

0 ≤ ma < 59 t = A (hw, mw) × (ha, ma + 1)

ma = 59 t = A (hw, mw) × (ha, 0)

Module interface

A trace is canonical if and only if it is a prefix of the trace t = A.A
t0 = ε

Assertions about traces

δ(t, H((hw, mw) × (ha, ma))) = t
δ(t, M((hw, mw) × (ha, ma))) = t

v(t, H((hw, mw) × (ha, ma))) =

Notation

|s| is length of trace s

Fig. 1. Specification of the alarm clock system.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 1 2009

APPLICATION OF THE TRACE ASSERTION METHOD TO THE SPECIFICATION 47

nested automata. All automata are related through a
hierarchy with respect to nesting. An automaton Aij can
transfer control to an automaton Ai + 1k that occupies a
lower level in the hierarchy. In this case, the automaton
Aij is said to be principal, and the automaton Ai + 1k,
nested. The automaton hierarchy forms a tree; i.e., for
each nested automaton, there exists only one principal
automaton in which it is nested.

The automaton system � is considered to be a reac-
tive control system for a plant. The system � receives
from the plant events that characterize, for example,
change of its states and asks the plant about its current
parameters, which is also considered to be an input
action on �. At the same time, the control system reacts
to the arriving information and, thus, affects the plant.
In addition to the above-described interaction with the
“environment,” the automata interact with one another
inside the system by transferring control from the prin-
cipal automaton to the nested ones when certain events
occur and watching their current states.

For the entire system of the interacting automata �,
Y = {y0, y11, …, } will denote the set of variables
that help us to track down states of the automaton sys-
tem; i.e., the current state of an automaton Aij is stored
in variable yij.

Let us denote by EA = {e1, …, ek} the set of the
events to which the automaton A reacts. Let e be the
variable where the current event for the automaton A is
placed.

Let us introduce the set XA = {x1, …, xn} of queries
of the automaton A to the control system. Each query is
considered as a certain predicate the truth of which
depends on the state of the control system.

Let also ZA = {z1, …, zr} denote the set of output
actions of A. Actions zi are classified into two groups.
The first group includes direct actions on the control
system. The actions from the second group model con-
trol transfers to the nested automata occurring after
some events (generation of events for nested automata).
In this case, the output action zi has the form ,

where A' is a nested automaton and is an event gen-
erated by the automaton A for the nested automaton A'
to which the control is transferred for processing this
event.

Then, the automaton A of the control system � can
be represented as a tuple (Σ, Q, q0, E, X, Z, δ), where

1. Q = {q0, q11, …, qn} is a finite set of states of the
automaton,

2. q0 is an initial state,

3. Σ = {a1, a2, …, ak} is a finite alphabet of labels of
the transition arcs,

4. δ: Q × Σ Q is a function of transitions from
one state to another.

ynkn

A ' e j'()
e j'

Each transition fires by a certain rule. Before
describing the transition rules, we introduce some nota-
tion.

For a transition label a ∈ Σ, E(a) denotes the event
to which A reacts upon firing the transition with the
label a.

Let X(a) denote the set of queries to the control
object the truth of which is required for firing the tran-
sition with the label a.

Let Z* be a set of finite sequences of output actions.
Then, for a ∈ Σ, Z*(a) ∈ Z* denotes the sequence of the
output actions that occur when the transition with the
label a fires.

For an arbitrary state q ∈ Q of an automaton A, we
introduce the notation Z*(q) ∈ Z* for the sequence of
output actions that are to be performed when the autom-
aton A comes to the state q.

Finally, let Y(a) be a predicate depending on the
states of the nested automata. Then, the transition with
the label a fires if and only if Y(a) takes the true value.

The rule of the transition from a state q to a state q'
by label a has the following form:

q, a : if e = E(a) and (∀x ∈ X(a) : x = true)

and Y(a) = true then Z*(a); Z*(q); goto q'.

Having received an event, the automaton reacts (or
does not react) to it (with reaction being determined by
its current state), asks the control system about its
parameters (input variables), takes into account states
of the nested automata and, then, performs a sequence
of output actions, including the actions that are required
to perform when it occurs in a new state. Only after this,
it switches to a new state.

An output action of the first kind, which is aimed at
the control system, is considered to be performed
immediately after the application. An output action of
the second kind, which is a control transfer to a nested
automaton in response, is considered to be performed
only after the reaction of the nested automaton to this
event. The latter reaction consists in the following:
either the automaton transfers to the new state (one of
the transitions fires) or the event is ignored by the
nested automaton (none of the transitions can fire).
Until the output action of the second type is performed,
the operation of the principal automaton is postponed.

The transition firing rules for all automata of the
hierarchical model are deterministic. If none of the
transitions can fire in the current state when an event
occurs, then the event is ignored.

4. DESIGN OF AUTOMATON PROGRAMS

In [2, 14], it is proposed to begin the design of an
automaton program with the analysis of an informal
text description of the system and to determine compo-
nents of the control system and states of the system of
the interacting automata. Such an approach has a num-

48

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 1 2009

KUZMIN et al.

ber of disadvantages [13] typical of informal descrip-
tions, which can be avoided if we apply mathematical
specification methods, such as the trace assertion
method.

Ambiguous interpretation of a specification. The
specification structure expressed in terms of the TAM
method eliminates ambiguous interpretation of require-
ments since it is formulated in a formal mathematical
language.

Specification incompleteness. Unlike in the analysis
of the text description of a problem, when using the
trace assertion method, it is possible to prove that all
admissible variants of system operation have been con-
sidered (see also [26]). The specification completeness
is meant in the sense that functions δ and v are defined
in the entire domain, If we represent each row of a tab-
ular specification of, say, function δ as a triple (ci, mi,
ri), then the proof of completeness of the specification
of function δ reduces to proving the assertion that the
condition

holds, where n is the number of rows in the table, �(mi)
is the number of canonical traces satisfying the predi-
cate mi, and �(ci) is a set of input actions satisfying the
predicate ci.

The assertion about completeness of the specifica-
tion of function v is formulated similarly.

Specification inconsistency. When informal descrip-
tions are used, inconsistent requirements can appear,
especially if the description is lengthy or specifies com-
plex logic of the system behavior. If the specification is
expressed in terms of the trace assertion method, it can
be proved that it does not contain inconsistent require-
ments (see also [26]). In other words, it can be proved
that the value of function δ or v for each element
belonging to the domain is defined only once. This
reduces to proving the assertion that, for any i and j (i ≠ j),
the following assertion holds:

where �(mk) is the set of canonical traces satisfying the
predicate mk and �(ck) is the set of input actions satis-
fying the predicate ck.

In fact, this assertion states that two different rows
of a specification cannot define function for one and the
same subset of the domain. The assertion for function v
is formulated similarly.

Specification conciseness. Operation of even quite
complicated systems can be specified in a clear, precise,
and concise manner rather than by using a lengthy
informal description.

Thus, a specification is a correct contract between
the customer and contractor, which makes it possible to

t a,() t � mi() a � ci()∈∧∈{ }
i 1=

n

∪ Q Σ×=

t a,() t � mi()∈ a � ci()∈∧{ }

∩ t ' a ',() t ' � m j()∈ a '∧ � c j()∈{ } ∅,=

unambiguously and consistently formulate the task.
Now, let us consider techniques used for designing an
automaton program from a specification prepared by
means of the trace assertion method.

When creating a system of interacting automata that
presents an automaton program, it is required to specify
values of sets of the tuple (Σ, Q, q0, E, X, Z, δ).
We strongly believe that the determination of the num-
ber of automata, their hierarchy, and the set of input and
output actions is a design task to be solved by the pro-
grammer. Indeed, the purpose of the specification is to
describe characteristics of the set of admissible imple-
mentations, i.e., instances of the automaton programs.
Therefore, in designing an automaton program, the
specification may help the programmer to determine
some components of the automaton that is a part of the
whole program, with these components being visible
for an external observer. Let us consider construction of
separate automaton components.

The finite alphabet of the transition arcs Σ is defined
in terms of elements of the sets E, X, Y, and Z. Elements
of set Y are used to model requests about current states
of nested automata, which is related to the internal hier-
archical structure of the automaton program and cannot
be expressed by means of the specification. Therefore,
we consider techniques that can be helpful for specify-
ing sets E, X, and Z (excluding actions of the second
kind, since they are also classified as internal interac-
tions between the automata).

Transfer of elements directly from the specification.
This technique suggests direct transfer of some ele-
ments of the specification to the definition of the autom-
aton program. For example, actions H, M, and A
described in the specification of the alarm clock system
can be placed to the set of events E to which the autom-
aton program responds as elements e1, e2, and e3.

Defining semantics of elements by means of the
specification. Actions on the control system returned by
the automaton program can be rather complicated;
however, semantics of these actions can uniquely be
defined by means of a specification written in terms of
the trace assertion method. Let us demonstrate this on
the example of the alarm clock system. Analyzing the
definition of the specification function v, one can see all
changes of the control system, which are registered in
column Result (which can be viewed as that with
respect to the arguments of function v). Accordingly,
we may conclude that the actions applied to the control
system include increase of the number of hours or min-
utes by one or setting these values equal to zero (for the
clock and alarm clock). Based on this conclusion, we
may extract these actions from the specification and
formally describe their semantics as, for example,
shown in Table 3.

Elements placed to the considered sets and their
semantics can be defined in different ways, and the effi-
ciency of this procedure from the point of view of sim-
plicity of the automaton program design depends on the

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 1 2009

APPLICATION OF THE TRACE ASSERTION METHOD TO THE SPECIFICATION 49

programmer. For the alarm clock system, semantics of
output actions can be defined in a way different from
that shown in Table 3. Indeed, one can see that the num-
ber of hours is increased by one modulo 24, and the
number of minutes is increased by one modulo 60. For
example, we can define action that increases the
value of hours with the semantics 〈ha〉 〈(ha + 1)
mod 24〉. Such a definition of the action semantics can
be justified from the specification standpoint. Indeed,
whatever the history of actions τ on the system, the
value of hours is either increased by one modulo 24 (the
history of actions is equivalent to canonical trace A) or
is not changed (the history of actions is equivalent to
any other canonical trace). The proof is not difficult and
follows directly from the specification.

The facts that the specification allows us to define
semantics of output actions of an automaton program
and that the specification completeness can be proved
imply that it is possible to determine all necessary
actions on the control system that may be required in
the automaton program. The responsibility for the
selection of a particular set of actions and their seman-
tics rests completely with the programmer.

The selection of the set of output actions may affect
the selection of the set of queries to the control system
(set X) and semantics of these queries. For example, if
we rely on the definition of the set of output actions
shown in Table 3, then, when creating an automaton
program, we will need queries to the control system
that will allow us to determine which output action and
when can be applied. As can be seen from the specifi-
cation, each suggested action occurs only under certain
conditions (column Condition in the definition of func-
tion v) of the control object. Hence, it is reasonable to
specify the set of queries based on these conditions.
The set of queries for the alarm clock system and their
semantics are shown in Table 4.

As noted earlier, the set of conditions being selected
depends on the selected set of output actions. Indeed, if
we selected actions that increase the numbers of hours
and minutes by one modulo 24 and 60, respectively, for
the output actions, the set of queries to the control
object would be empty since the semantics of these
actions already assumes necessary checks.

Thus, the specification prepared by the trace asser-
tion method allows us to formally define set Σ, in par-
ticular, elements of the set of input actions E; the set of
queries to the control object X; and the set of output
actions Z.

The next important step in the design of an automa-
ton program is determination of states of the control
automaton system. Let us show how the specification
can help here. The specification is a more abstract
description of the problem than its implementation in
the form of an automaton program. Therefore, the set of
states of an automaton program constructed by a spec-
ification cannot uniquely be defined. For example, if we
have a system processing user’s requests a and b, then,

z1'

from the specification standpoint, in order to present an
externally visible behavior of the system without focus-
ing on its internal structure, it is sufficient to describe it
as a transition system shown in Fig. 2a. At the same
time, a clearer implementation is depicted in Fig. 2b.
Here, the states where queries a and b are processed are
explicitly indicated. The desire to develop a more
understandable program can lead us to its specification
as the transition system shown in Fig. 2c, where the
state in which the system operation begins is explicitly
indicated.

In the design of an automaton program by an infor-
mal specification, the identification of system states is a
creative process, the correctness of implementation of
which is ensured exclusively by the programmer. The
originality of the trace assertion method consists in the
fact that we can determine externally visible modes by
applying sequences of actions to the module and
observing outputs, i.e., traces, with a human factor
being excluded.

Table 3. Semantics of the automaton program outputs (set Z
of actions of the first kind)

Output Semantics

z1 〈hw〉 〈hw + 1〉
z2 〈hw〉 〈0〉
z3 〈mw〉 〈mw + 1〉
z4 〈mw〉 〈0〉
z5 〈ha〉 〈ha + 1〉
z6 〈ha〉 〈0〉
z7 〈ma〉 〈ma + 1〉
z8 〈ma〉 〈0〉

Table 4. Semantics of queries to the control object for
the automaton program (set X)

Query Semantics

x1 hw = 23

x2 mw = 23

x3 ha = 23

x4 ma = 23

(a) (b) (c)

a

b

a

a

b

b
a b

b

a
a b

Fig. 2. Transition systems for the module processing que-
ries a and b.

50

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 1 2009

KUZMIN et al.

To construct the set of states of an automaton pro-
gram, for a given specification (Σ, �, ∆, Q, q0, δ, v), we
consider a deterministic finite automaton �T = (Q', ∆',
δ', , F') [27] defined as follows:

• the set of states of automaton Q' coincides with the
set of canonical traces of specification Q;

• the set of input symbols of automaton ∆' coincides
with the set ∆ of pairs “action–output” of the specifica-
tion;

• the transition function for the automaton δ': Q' ×
∆' Q' is defined as

δ'(q, a) = q' ⇔ δ(q, a) = q';

• the initial automaton state is = q0;

• the set of accept states F' coincides with the set of
all states Q'.

This automaton explicitly defines the set of exter-
nally visible modes that are states of the control system
and transitions between these modes. Such an automa-
ton for the specification of the alarm clock system is
shown in Fig. 3. Based on this automaton, the program-
mer can make design decisions, such as definition of
auxiliary automata and hierarchy of interactions
between them.

For the alarm clock control system, it is possible to
create the automaton program as a system of interacting
automata � = {A0, A11, A12, A13, A14}. Here, A0 is the
principal automaton; automata A11 and A12 are used for
modifying the values of hours and minutes, respec-
tively, in the clock; and automata A13 and A14 control
modification of values of hours and minutes in the
alarm clock. The scheme of links between the principal
automaton, auxiliary automata, and control object is
shown in Fig. 4. The principal automaton is depicted in
Fig. 6. As can be seen, automaton A0 reminds very
much the automaton in Fig. 3; i.e., it presents externally
visible modes of the system operation. The other
automata illustrate the clock and alarm clock setting
process in a clearer way. The scheme of links for the
auxiliary automaton A11 is depicted in Fig. 5, and the

q0'

q0'

automaton itself is presented in Fig. 7. The schemes of
links and transition systems for other auxiliary autom-
ata are constructed similarly to those for automaton A11.

Thus, the proposed scheme of construction of
automaton programs for logical control systems
includes the following steps:

1. After discussions with the customer, based on
informal descriptions, a specification of the developed
system in terms of the trace assertion method is created.
If necessary, the specification is checked, extended, and
revised. The specification is a contract between the
designer and customer.

2. The specification is used for designing and con-
structing the automaton program: elements of the sets
of input and output actions and queries to the control
system and their semantics are defined and states of the
automaton program are determined. After this, on the
basis of design decisions made by the programmer, a
detailed automaton program is constructed.

3. On the basis of this specification, the constructed
automaton program is tested and verified to show that it
is correct from the specification standpoint.

The proposed scheme agrees with the ideas put for-
ward by Mills in [28]. In the framework of his
approach, the system is refined stepwise: first, the sys-
tem is described as a “black box”; then, a more detailed
description appears, system states are determined, and
transitions between the states are defined; and, finally,
the system is described explicitly. Mills notes that, in
the case of application of heuristic methods to defining
states of complex control systems (which is currently a
common practice [2, 14]), it is difficult to understand
whether the number of states found is sufficient or we
missed something. The creation of a specification is
considered to be a useful analytical step to understand-
ing system functioning.

5. VERIFICATION OF AUTOMATON PROGRAMS

A “black box” specification formulates conditions
that the constructed automaton program must satisfy;

Q' = {ti| prefix of length i for the sequence A.A}A

A

A
t2

t0

t1

h ∈ H, m ∈ M

h ∈ H, m ∈ M

h ∈ H, m ∈ M

∆' = H ∪ M ∪ {A}, where
H = {H(w × a) : (w' × a') | w, a, w', a' ∈ tClock}
M = {M(w × a) : (w' × a') | w, a, w', a' ∈ tClock}
q'0 = t0

Fig. 3. The automaton presenting the clock specification.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 1 2009

APPLICATION OF THE TRACE ASSERTION METHOD TO THE SPECIFICATION 51

Panel with
buttons

pressing H

pressing M

pressing A

increase the value of hours in the clock

increase the value of minutes in the clock

increase the value of hours in the alarm clock

increase the value of minutes in the a larm clock

A0

e1

e2

e3

A1(e11)

A2(e21)

A3(e31)

A4(e41)

Clock control
(hours) – A1

Clock control
(minutes) – A2

Alarm clock control
(hours) – A3

Alarm clock control
(minutes) – A4

Fig. 4. The scheme of links for the clock control automaton.

increase the value
Clock automaton

A0

Control object

increase the value
of hours

Is the current value
of hours equal to 23?

A1

e11

x1

z1

z2

setting value of

of hours by 1

hours equal to zero

Control
object

Fig. 5. The scheme of links for the automaton increasing the number of hours in the clock.

3. Alarm clock

1. Alarm clock
is turned on

2. Setting alarm
clock

is turned off

e3 e3

e3

e2
A2(e21)

e1
A1(e11)

e1
A1(e11)

e1
A3(e31)

e2
A4(e41)

e2
A2(e21)

Fig. 6. Transition system for the clock control automaton.

52

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 1 2009

KUZMIN et al.

therefore, the process of proving correctness of this
program can be formulated as the following task. Sup-
pose that we have a specification written by means of
the TAM method and an automaton program con-
structed by this specification. It is required to prove that
the constructed automaton program satisfies the speci-
fication requirements.

Currently known methods for analyzing correctness
of complex systems include simulation, testing, prov-
ing, and model checking. Consider application of these
methods to checking correctness of automaton pro-
grams from the point of view of a specification con-
structed by means of the trace assertion method.

The simulation can be applied as early as at the stage
of the specification design. If the system is analyzed
with the help of simulation, some scenario of the devel-
opment of events is specified, and it is required to learn
how the system behaves under this course of events.
If this scenario can be specified as a trace τ, the latter
can be executed by means of the specification. Indeed,
as has already been shown, a specification in terms of
the trace assertion method defines, in fact, a finite
automaton, and the trace analysis suggests modeling
the process of recognition of τ by this finite automaton.
Another interesting way to use simulation is the trace
rewriting method suggested in [29] and further devel-
oped in [30]; it transforms an arbitrary trace to its
canonical equivalent. Thus, the applicability of the sim-
ulation is improved by inspecting the system being cre-
ated by the customer. This allows us to evaluate correct-
ness of externally visible behavior of the system as
early as at the stage of constructing its specification.
In design of an automaton program, such a “prototype”
may help a lot to the programmer, allowing him to bet-
ter understand the operation of the created logical con-
trol system.

Another popular method for checking program cor-
rectness is testing. Generally, testing suggests con-
structing a predicate on the set of all possible traces,
which takes true value in the case of correct execution
and false value otherwise. The testing methods can be
classified into three categories: black box testing, when
tests are generated without knowledge of the internal
structure of the system under testing; clear box testing,
when the internal structure of the tested system is com-

pletely known; and grey box testing, when some infor-
mation about the internal structure is known. Since the
trace assertion method imposes requirements on the
system from the standpoint of the information hiding
principle, it is reasonable to use the black box testing
methods. The use of formal specifications given in the
tabular notation for generation of test sequences is dis-
cussed in some works (see, for example, [31, 32]). The
approach discussed in [31] is based on the verification
of system operation under conditions close to the
boundaries of intervals that constitute the domain of the
function determining dependence between inputs and
outputs. Such conditions are to be found for each exter-
nally visible mode of system operation and each state of
the control system. If such a mode is given by a canon-
ical trace τ, the boundaries of intervals for this mode
must be specified based on those rows from the defini-
tion of function v of the specification in which the pred-
icate in the column Trace pattern is true for τ. The
boundaries of the intervals have to be determined by
means of the predicates in the column Condition from
these rows. For example, for the alarm clock system
and the mode specified by trace τ = A (the alarm clock
setting mode), for the test sequence specifying correct
behavior, we can take the trace

τ.H[(hw, mw) × (22, ma)] : [(hw, mw) × (23, ma)],

.H[(hw, mw) × (23, ma)] : [(hw, mw) × (0, ma)].

If the earlier defined semantics of input and output
actions for automaton programs is used (Section 4 and
Table 3), this trace can be transformed to the sequence
〈e3, e1 : z1, e1 : z2〉 with the initial state of the control sys-
tem given by (hw, mw) × (22, ma) and the alarm clock
turned on.

Although testing is a widely used method for study-
ing correctness of program systems, many researchers
agree that the use of only one method is not sufficient
to guarantee that the system is reliable. Moreover, there
is an opinion that only with the help of mathematical
proofs, i.e., the proving method [33], it is possible to
formally prove correctness of system operation. How-
ever, even such a formal proof does not guarantee cor-
rectness of system functioning if the informal program
specification was incorrect or some component of the
program did not possess the property that was assumed

1. The value of 2. The value of
hours is less
than 23

hours is equal
to 23

e11
z2

e11 ∧ x1
z1

e11 ∧¬ x1
z1

Fig. 7. The automaton controlling setting of hours in the clock.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 1 2009

APPLICATION OF THE TRACE ASSERTION METHOD TO THE SPECIFICATION 53

to be a premise of the proof. As for automaton pro-
grams, it is noted in [10] that the automaton structure of
programs facilitates using the proving in spite of the
fact that it is labor-consuming, possesses low level of
automation, and is strongly tied to the semantics of the
programming language. Rigorous mathematical defini-
tion of the semantics of elements of the automaton pro-
gram performed with the use of a specification in terms
of the trace assertion method significantly facilitates
formal proof of the program correctness.

One more approach to the correctness analysis is the
model checking method [34], the idea of which is as
follows. The program system is specified as a finite
transition system called Kripke structure. Further, in
the framework of the Kripke structure with the use of a
temporal logic language, properties of the program
model are formulated and, then, checked. In formal
terms, this can be defined as follows.

Given a finite transition system (Kripke structure),
an initial state s0 of this system, and a temporal logic
formula ϕ, it is required to determine whether the state
s0 satisfies formula ϕ.

Methods of verification of automaton programs with
the use of the model checking method are considered in
detail in [10]. The disadvantage of the considered
approach is that the formulas being checked are sug-
gested based on the informal system specification.
Hence, if the formula is composed with an error, it may
happen that we check something different from what
was originally planned.

Based on a specification performed with the help of
the trace assertion method, the following categories of
formulas can be constructed. (We do not write down
particular temporal formulas, since this was considered
in detail in [10].)

Conditions for externally visible modes. An autom-
aton program should model transitions from one exter-
nally visible mode to another. On a set of states of an
automaton program

where n and ki are positive integers (1 � i � n), we
define a set of predicates S1, …, Sm; here, m is the num-
ber of canonical traces in the specification

Sj : Q0 × Q11 × … × × …

× Qn1 × … × �,

and each predicate Si takes the true value if the system
of automata � is in a state corresponding to the exter-
nally visible mode given by the i-th canonical trace of
the specification. Then, based on the definition of func-
tion δ in the specification, one can define temporal logic
formulas that check transition from one externally vis-

� A0 A11 … A1k1
… An1 … Ankn

, , , , , , ,(),=

Q1k1

Qnkn

ible mode to another and the fact that the system does
not occur in two states simultaneously.

Since the set of predicates for the alarm clock sys-
tem can be defined as Si(q) = [q = qi], where q is a state
from the set of states of the automaton A0. Accordingly,
transition between two modes can be specified as the
following condition: if the automaton occurs in a state
that corresponds to the externally visible mode S1, then,
after pressing button A (and, thus, receiving event e3),
the automaton will pass to a state corresponding to the
externally visible mode S2.

The fact that an automaton does not present in two
externally visible modes simultaneously is stated as fol-
lows: an automaton will never present in the states
where Si and Sj, i ≠ j, are simultaneously fulfilled.

Reactivity condition. A constructed specification
assumes that the module must process any action under
any conditions; i.e., the control system constructed
does not occur in a state where it does not respond to
any external actions. As applied to the above example
of the alarm clock system, this means that it is always
possible to press any button, and the system will always
respond to it.

Condition of producing certain outputs. This type of
conditions helps us to define formulas that specify
necessity of producing certain outputs in response to
input actions if the system is in some externally visible
mode.

An example of such a condition is as follows: let the
alarm clock system occur in a state corresponding to an
externally visible mode S1, and let an action e1 be
applied to its input; then, the outputs are either z1 or z2.

It should be noted that the temporal formulas used
for the verification of an automaton program are
formed by means of the specification rather than are
suggested for verification spontaneously with the only
interest to check some properties.

Thus, based on the specification, we can check cor-
rectness of automaton programs using methods of all
kinds.

6. CONCLUSIONS
We have shown that the creation of a specification is

an important stage of the process of software develop-
ment for logical control systems. Indeed, the specifica-
tion design makes it possible to deeper analyze the
posed problem without going into detail of the imple-
mentation and relying only on operation scenarios
given as traces and to make sure that all important
requirements are determined and do not contradict one
another.

The specification obtained is not only a basis for
defining semantics of such important components of an
automaton program as input and output actions or que-
ries to the control object. It also provides formal means
for determining the set of states of the automaton pro-
gram. Note that the programmer is not restricted in

54

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 1 2009

KUZMIN et al.

making design decisions on specifying the hierarchy of
the interacting automata.

We have also discussed verification of the automa-
ton program obtained by means of various methods
such as simulation, testing, proving, and the model
checking method. In this case, the specification plays
the role of a “prototype” used for determining system
properties necessary for the verification.

REFERENCES
1. Bartussek, W. and Parnas, D.L., Using Assertions about

Traces to Write Abstract Specifications for Software
Modules, Lecture Notes in Computer Science (Proc. of
the 2nd Conf. on European Cooperation in Informatics),
Springer, 1978, no. 65, pp. 211–236.

2. Shalyto, A.A., SWITCH-tekhnologiya. Algoritmizatsiya
i programmirovanie zadach logicheskogo upravleniya
(SWITCH-Technology: Algorithmization and Program-
ming of Logic Control Problems), St. Petersburg:
Nauka, 1998.

3. Shalyto, A.A., Software Automaton Design: Algorith-
mization and Programming of Problems of Logical Con-
trol, Izv. Ross. Akad. Nauk, Teor. Sist. Upr., 2000, no. 6,
pp. 63–81. [J. Comput. Systems Sci. Int. (Engl. Transl.),
2000, vol. 39, no. 6, pp. 899–916].

4. Shalyto, A.A. and Tukkel, N.I., SWITCH-Technology:
An Automated Approach to Developing Software for
Reactive Systems, Programmirovanie, 2001, no. 5,
pp. 45–62. [Programming Comput. Software (Engl.
Transl.), 2001, vol. 27, no. 5, pp. 260–276].

5. Parnas, D.L. and Vilkomir, S.A., Precise Documentation
of Critical Software, The 10th IEEE High Assurance
Systems Engineering Symposium, IEEE, 2007, pp. 237–
244.

6. Faulk, S.R., Software Requirements: A Tutorial, Tech.
Report NRL-7775, Naval Research Lab., Washington.

7. Nuseibeh, B., Ariane 5: Who Dunnit?, IEEE Software,
1997, vol. 14, no. 3, pp. 15–16.

8. Leveson, N., Role of Software in Spacecraft Accidents,
J. Spacecraft Rockets, Am. Inst. of Aeronautics and
Astronautics, vol. 41, no. 4, pp. 564–575.

9. Davis, A., A Taxonomy for the Early Stages of the Soft-
ware Development Life Cycle, J. Systems Software,
1988, vol. 8, no. 4, pp. 297–311.

10. Kuzmin, E.V. and Sokolov, V.A., Modeling, Specifica-
tion, and Verification of Automaton Programs, Program-
mirovanie, 2008, no. 1, pp. 38–60. [Programming Com-
put. Software (Engl. Transl.), 2008, vol. 34, no. 1,
pp. 27–43].

11. Lutz, R.R., Targeting Safety-related Errors during Soft-
ware Analysis, Proc. of the 1st ACM SIGSOFT Symp. on
the Foundations of Software Engineering, 1993.

12. Boehm, B.W., Software Engineering Economics, Pren-
tice Hall, N.J., 1981.

13. Baber, R.L., Parnas, D.L., Vilkomir, S.A., Harrison, P.,
and O’Connor, T., Disciplined Methods of Software
Specification: A Case Study, Int. Conf. on Information

Technology: Coding and Computing'2005, 2005, vol. 2,
pp. 428–437.

14. Polikarpova, N.I. and Shalyto, A.A., Avtomatnoe pro-
grammirovanie (Automaton Programming), St. Peters-
burg: SPbGU ITMO, 2007.

15. Parnas, D.L., On the Criteria to be Used in Decomposing
Systems into Modules, Commun. ACM, 1972, vol. 15,
no. 12, pp. 1053–1058.

16. Hoffman, D.M., The Trace Specification of Communica-
tion Protocols, IEEE Trans. Comput., 1985, vol. C-34,
no. 12, pp. 1102–1113.

17. Iglewski, M., Kubica, M., and Madey, J., Trace Specifi-
cations of Non-Deterministic Multi-Object Modules,
Lecture Notes in Computer Science (Proc. of ASIAN'95),
Springer, 1995, no. 1023, pp. 381–395.

18. Janicki, R. and Sekerinski, E., Foundations of the Trace
Assertion Method of Module Interface Specification,
IEEE Trans. Software Eng., 2001, vol. 27, no. 7,
pp. 577–598.

19. Iglewski, M., Kubica, M., and Madey, J., Editor for the
Trace Assertion Method, Proc. of the 10th Int. Conf. of
CAD/CAM, Robotics and Factories of the Future:
CARs&FOF'94, Ottawa, Canada, 1994, pp. 876–881.

20. Peters, D.K., Lawford, M., and Widemann, B.T., An IDE
for Software Development Using Tabular Expressions,
Proc. of CASCON 2007, Ontario, Canada, 2007,
pp. 248–251.

21. Van Schouwen, A.J., The A-7 Requirements Model: Re-
examination of Real-time Systems and an Application to
Monitoring Systems, Tech. Report 90-276, Queen’s C&
IS, TRIO, Kingston, Ontario, Canada, 1990.

22. Bojanowski, J., Iglewski, M., Madey, J., and Obaid, A.,
Functional Approach to Protocol Specification, in Proto-
col Specification, Testing and Verification XIV, Chapman
& Hall, 1995, pp. 195–402.

23. Wassyng, A. and Lawford, M., Lessons Learned from a
Successful Implementation of Formal Methods in an
Industrial Project, Lecture Notes in Computer Science
(Proc. of FME 2003: Int. Symp. of Formal Methods
Europe), Springer, no. 2805, pp. 133–153.

24. Parnas, D.L., Tabular Representation of Relations, CRL
Report 260, Telecom, Research Institute, McMaster Uni-
versity, Ontario, Canada, 1992.

25. Janicki, R. and Khédri, R., On a Formal Semantics of
Tabular Expressions, Sci. Comput. Programming, 2001,
vol. 39, nos. 2–3, pp. 189–213.

26. Parnas, D.L., Some Theorems We Should Prove, Lecture
Notes in Computer Science (Int. Workshop on Higher
Order Theorem Proving and Its Applications), Springer,
1993, no. 780, pp. 154–162.

27. Hopcroft, J.E., Motwani R., and Ullman J.D., Introduc-
tion to Automata Theory, Languages, and Computation,
Addison-Wesley, 2001.

28. Mills, H.D., Stepwise Refinement and Verification in
Box-Structured Systems, IEEE Comput., 1988, vol. 21,
no. 6, pp. 23–36.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 1 2009

APPLICATION OF THE TRACE ASSERTION METHOD TO THE SPECIFICATION 55

29. Wang, Y. and Parnas, D.L., Simulating the Behavior of
Software Modules by Trace Rewriting, IEEE Trans.
Software Engineering, 1994, vol. 20, no. 10, pp. 750–
759.

30. Brzozowski, J. and Jürgensen, H., Theory of Determin-
istic Trace-Assertion Specifications, Tech. Report CS-
2004-30, School of Computer Science, Univ. of Water-
loo, Ontario, Canada, 2004.

31. Clermont, M. and Parnas, D.L., Using Information about
Functions in Selecting Test Cases, ACM SIGSOFT Soft-
ware Engineering Notes, 2005, vol. 30, no. 4, pp. 1–7.

32. Liu, S., Generating Test Cases from Software Documen-
tation, MS Thesis, School of Graduate Studies, McMas-
ter University, 2001.

33. Gries, D., The Science of Programming, New York:
Springer, 1981. Translated under the title Nauka pro-
grammirovaniya, Moscow: Mir, 1984.

34. Clarke, E.M., Grumberg, O., and Peled, D., Model
Checking, MIT Press, 1999. Translated under the title
Verifikatsiya modelei program: Model Checking, Mos-
cow: MTsNMO, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

