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Figure 1: Best runs for the Dinic algorithm
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Figure 2: Median runs for the Dinic algorithm

considered maximum flow algorithms, which suggests that
the adaptation heuristic seems to be overfitted for OneMax
and is not promising for at least some other problems.

On the problem of maximum flow test generation, the
(1 + (λ, λ)) EA showed itself a rather good default choice
which is almost insensitive to the generation size. However,
there probably exist some ways to tailor this algorithm using
a suitable heuristic to the considered problem, which, in
turn, may serve as a starting point to more general methods
of improving the running time of the (1+(λ, λ)) EA for more
general classes of problems.

The source code for the experiments is published at GitHub1.
This work was financially supported by the Government of
Russian Federation, Grant 074-U01.
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Figure 3: Best runs for the ISP algorithm
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