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ABSTRACT

The paper presents a genetic programming based approach
for inferring general form Linear Temporal Logic properties
of finite-state machine models. Candidate properties are
evaluated using several fitness functions, therefore multiob-
jective evolutionary algorithms are used. The feasibility of
the approach is demonstrated by two examples.

CCS Concepts

❼Software and its engineering → Search-based soft-
ware engineering;
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1. INTRODUCTION
Finite-state models are often used to represent software

behavior and can be employed for various automated veri-
fication and testing procedures. They also provide a quick
picture of how a piece of software works. However, such
models are rarely kept up to date with a software project,
even if they have been created in the first place. That is
why a large number of model inference techniques have been
proposed [2, 7, 5, 4]. The general approach is to record ex-
ecution traces of a piece of software and try to generalize
them into some model.

Another useful thing to have in a software project is its
formal specification expressed in temporal logics, e.g. Linear
Temporal Logic (LTL). Such specifications are often written
for finite-state machine (FSM) models of software. Having
a model and complimentary temporal properties is essential
for formal verification. Several approaches for mining tem-
poral specifications have been proposed, e.g. Perracotta [10],
which works with execution traces and tries to generalize
them into some temporal logic formulas. A common draw-
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Figure 1: An example of a finite-state machine

back of such techniques is that they only seem to be capable
of inferring very simple formulas.

In this paper we propose to solve the problem of tempo-
ral specification inference in the assumption that the FSM
model is already known. The model can be human-written
or inferred by the aforementioned automated techniques.
The contribution of the paper is an approach based on ge-
netic programming (GP) [6] for evolving temporal logic for-
mulas that: (1) hold for the given FSM, (2) are not too
long or too complex and (3) are “interesting”. An exam-
ple of an uninteresting formula is a tautology. Since these
search objectives are conflicting by nature, multiobjective
optimization is used.

2. PROBLEM STATEMENT
In this section we provide a more formal problem state-

ment. We first briefly review the main concepts used in this
study.

The goal of this research is finding temporal properties of
a given FSM. An FSM is a six-tuple 〈E, Y, Z, y0, φ, δ〉, where
E is a set of input events, Y is a set of states, y0 ∈ Y is the
initial state, Z is a set of output actions, φ : Y × E → Y is
the transitions function and δ : Y × E → Z∗ is the outputs
function. An example of an FSM is given in Fig. 1: each
transition is marked with an event (before the slash) and a
series of output actions (after the slash). The initial state is
marked bold.

The LTL language consists of problem dependent proposi-
tional variables, Boolean logic operators ∨, ∧, ¬, →, and the
following set of temporal operators. Globally – G(f) means
that f has to hold for all states. neXt – X(f) means that
f has to hold in the next state. Future – F (f) means that
f has to hold in some state in the future. Until – U(f, g)
means that f has to hold until g holds. Release – R(f, g)
means that g has to hold until f holds, or g has to fold
forever if f never holds.

In this work we use the following propositional variables:
wasEvent(e), e ∈ E (a transition marked with input event
e ∈ E has been triggered) and wasAction(z), z ∈ Z (a tran-
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sition marked with output action z ∈ Z has been triggered).
To check whether an LTL formula holds for an FSM, model
checkers (e.g. SPIN 1) are used. For example, formula

G (wasEvent(e2) → wasAction(z2)) ,

which means that emitting event e2 in some state always
causes emitting action z2, holds for the FSM from Fig. 1.
On the other hand, formula

G (wasEvent(e1) → wasAction(z2))

does not hold, since there is a transition in the FSM that is
marked with e1 but not with z2.

Let a be the given FSM. The goal is to find a set of LTL
formulas {fa} satisfying the following constraints.

1. All formulas from {fa} must hold for FSM a.

2. Formulas should not be too structurally complex: we
are more interested in shorter formulas than in longer
ones.

3. Formulas should be “interesting”: we are interested in
formulas that hold for the input FSM and do not hold
for all other FSMs.

The third constraint is rather informal. We found that
no single fitness function (FF) is sufficient to express it, so
several functions were used simultaneously.

3. PROPOSED APPROACH
The general idea of the proposed approach is to use GP

to evolve a population of LTL formulas represented in tree
form. We use a standard implementation of GP from the
evolutionary algorithms library ECJ 2 with Koza’s standard
tree mutation and crossover operators; NSGA-II [3] and
SPEA2 [11] are used as multiobjective algorithms. In this
research we focus on formulas of the form G (f), where f is
an LTL formula without a single “G” operator.

Below we describe the objective FFs we propose for LTL
formula inference. The first objective function F1 measures
the degree to which the input FSM satisfies a candidate LTL
formula. Function F2 is used for minimizing formula com-
plexity, functions F3–F4 are used for enforcing interesting
formulas.

3.1 Formula Must Hold for Input FSM
This is the main search objective – we are only interested

in formulas that hold for the input FSM a. To determine
whether an LTL formula holds for the input FSM, the FSM
verifier (model checker) developed in [8] is used.

Normally, a verifier returns true if a model satisfies a tem-
poral formula and false, otherwise. Obviously, an FF with
only two possible values would provide no gradient to the
search. A distinctive feature of the aforementioned FSM
verifier is that it returns the number of FSM transitions
that certainly do not belong to the counterexample. Such
transitions are called verified. Using this feature, the first
objective function F1 is defined as the ratio of the number
of verified transitions to the total number of reachable tran-
sitions:

F1(f) = r(a, f) =
nverified(a, f)

ntransitions(a)
,

1http://spinroot.com/
2http://cs.gmu.edu/eclab/projects/ecj

where a is the FSM, f is the LTL formula, nverified(a, f) is
the number of verified transitions in a with respect to f , and
ntransitions(a) is the total number of reachable transitions in
a. The values of r(a, f) lie in the interval [0, 1] and r(a, f) =
1 iff formula f holds for FSM a. Note that though non-
perfect formulas are allowed during search, a formula has to
hold for the FSM in order to be included in the final set of
solutions.

3.2 Minimal Formula Weight
We are interested in formulas that are not too structurally

complex. To measure the structural complexity of a for-
mula, the notion of formula weight is used. Suppose O =
{∨,∧,¬,→, X, F, U,R} is the set of operators and S is the
set of propositional variables: S =

⋃

e∈E
wasEvent(e) ∪

⋃

z∈Z
wasAction(z). We assign each operator o ∈ O and

propositional variable s ∈ S their weight, wo and ws, re-
spectively. Formula weight W is defined in the following
way:

W (s) = ws, s ∈ S;

W (o(arg1, . . . , argn)) = wo +

n
∑

i=1

W (argi), n = {1, 2}.

Tthe second objective function F2 is defined as: F2(f) =
1

W (f)
. If operator and propositional variable weights are

greater than or equal to one, then the values of F2 lie in
the interval [0, 1] and increase with the decrease of formula
weight.

3.3 Formula Should not Hold for Randomly
Generate FSMs

Let Af be the set of all FSMs that satisfy formula f . The
power of this set |Af | can be viewed as a notion of formula
specificity – we are interested in formulas that hold for the
particular given FSM. Roughly speaking, the smaller |Af |,
the more information f bears. However, fully computing Af

is infeasible, so an approximation is used. For calculating the
third objective function F3, we first generateNsample random
FSMs a1, . . . , aNsample

with the same number of states, sets
of input events, input variables, and output actions as the
input FSM a. For each of the generated FSMs ai we run the
FSM verifier and get the corresponding value r(ai, f). Then
the third objective function is defined as:

F3(f) =
1

1 +
∑Nsample

i=1 r(ai, f)2
.

The smaller the number of random FSMs that satisfy the
candidate formula, the greater the value of F3.

3.4 Formula Should not Hold for Mutants of
the Input FSM

This objective function serves as another approximation of
|Af |. A mutant of an FSM is another FSM that slightly dif-
fers from the original one. A set of mutantsm1, . . . ,mNsample

of the input FSM is generated using the following two mu-
tation operators.

Change transition end state. For a randomly selected
transition, the state y it leads to is changed to another state
selected uniformly at random from Y \ {y}.

Add or delete transitions. The set of transitions in
each state is modified with a certrain probability. In case of
adding a transition, the new transition is added that leads to
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Figure 2: Elevator doors control FSM

a state selected uniformly at random from Y and is marked
with a random event and output actions sequence. In case
of deleting a transition, a randomly selected transition is
deleted.

Each time the mutation operator to apply is selected uni-
formly at random. Objective function F4 is calculated as:

F4(f) =
1

1 +
∑Nsample

i=1 r(mi, f)2
.

The smaller the number of mutants that satisfy the candi-
date formula, the greater the value of F4.

The motivation behind this FF is that even small changes
to the model should be sufficient to violate its important
properties. That is why we are interested in steering the
search towards formulas that are violated by such small
changes to the model.

3.5 Formula Should not Hold for FSM Con-
structed from Scenarios

A scenario is a finite path in an FSM that starts from the
initial state. For example, the following is a scenario derived
from the FSM in Fig. 1:

〈e2, (z2)〉, 〈e1, (z0, z1)〉, 〈e0, (z1)〉.

Here we generate a set of scenarios from the input FSM.
Then we use the algorithm from [9] to build an FSM a∗ that
is compliant with all scenarios.

The main idea behind this objective function is that since
scenarios length is limited, not all formulas that hold for a

will hold for the derived FSM a∗. This way we try to focus
the search on more general formulas. Objective function F5

is calculated as F5(f) = 1− r(a∗, f).

3.6 Formula should not Hold for Mutants of
the FSM Constructed from Scenarios

This objective function is analogous to F4 except we gen-
erate mutants of the FSM constructed from scenarios, rather
than mutants of the input FSM.

4. EXPERIMENTS AND RESULTS
In this section we describe the experiments we performed

and the subsequent results.

4.1 Case Study: Elevator Doors Control FSM
For experimentation we chose the elevator doors control

FSM from [8] shown in Fig. 2. The initial state is state
number zero. The FSM has five input events: A (doors
are fully opened or fully closed), B (an obstacle prevents
doors from closing), C (doors are broken), D (“Open doors”
button has been pressed), E (“Close doors” button has been
pressed). There are three output actions: z0 (start opening
doors), z1 (start closing doors), z2 (call the emergency).

The doors are initially closed. When the “Open doors”
button is pressed, the doors start opening. If all goes well,
doors are opened. If doors are broken, the emergency is
called. If the doors are open and the “Close doors” button is
pressed, the doors start closing, unless they are broken (and
the emergency is called). If an obstacle prevents doors from
closing, they start opening again. The FSM complies with
a set of 17 LTL properties, e.g.:

G (wasEvent(D) → wasAction(z0)) .

4.2 Assessing LTL Formula Quality
One important question is how to assess the quality of

inferred LTL formulas, since no obvious formal criterion is
present. We use two empirical metrics described below, both
are meant to approximate how many formulas from the orig-
inal specification were discovered by the proposed approach.
Let {fold} be the original set of LTL formulas and {fnew}
be the set of LTL formulas inferred by the algorithm.

Coverage metric. The algorithm from [1] is used to
learn an FSM a′ from the set of scenarios (see Section 3.5)
and the set of inferred formulas {fnew}. Then, we check how
many of the formulas from the original specification {fold}
does the constructed FSM satisfy:

ccover =

∑

f∈{fold}
r(a′, f)

|{fold}|
.

The larger this value, the more information about the orig-
inal FSM the inferred formulas bear.

Mutants metric. To calculate this metric we first gener-
ate M ′ = 1000 different mutants m1, . . . ,mM′ of the input
FSM a. Then we calculate the ratio of mutants that violate
at least one formula from {fold}:

n
old
unsat =

1

M ′

M′

∑

i=1

(

1− min
f∈{fold}

⌊r(mi, f)⌋

)

.

Next, we use the same mutants to calculate nnew
unsat – the

ratio of mutants that violate at least one formula from the
inferred set {fnew}. Finally, the metric is calculated as the
ratio:

cmut =
nnew
unsat

nold
unsat

.

4.3 Experimental Setup and Results
In experiments we tested different combinations of the de-

scribed FFs. The first two FFs are essential and were used
in all runs, other functions were tested in all possible com-
binations.

The algorithm was run for 50 generations with a popu-
lation size of 500. Both SPEA2 and NSGA-II were run 20
times with each configuration. The size of the elite archive
of SPEA2 was fixed at 100. The result of each run is the set
of LTL formulas in the Pareto front constructed from Pareto
fronts of all generations.

Experimental results are presented in Table 1. In the last
three columns the value before the slash is for SPEA2 and
the value after the slash is for NSGA-II. Below are a few
examples of generated formulas:

G (F (wasAction(z1)) → ¬wasAction(z2))

G (wasAction(z0) → F (wasAction(z1) ∨X (wasAction(z2))))
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Table 1: Experimental configurations, median val-
ues of ccover and cmut metrics, and run times for
SPEA2/NSGA-II
➏ F3 F4 F5 F6 100 · ccover,% 100 · cmut,% Time, s.
1 - - - - 44.1 / 44.1 53.4 / 38.5 60 / 14
2 - - - + 64.7 / 58.8 49.6 / 36.6 170 / 78
3 - - + - 73.5 / 70.6 65.3 / 58.0 133 / 84
4 - - + + 88.2 / 88.2 77.5 / 83.6 521 / 2493
5 - + - - 58.8 / 58.8 55.3 / 49.2 152 / 159
6 - + - + 73.5 / 79.4 71.0 / 74.0 889 / 2898
7 - + + - 88.2 / 79.4 78.6 / 79.4 579 / 2197
8 - + + + 88.2 / 88.2 83.2 / 86.4 1894 / 4618
9 + - - - 53.0 / 61.8 42.4 / 42.0 64 / 17
10 + - - + 67.6 / 64.7 44.7 / 46.6 158 / 108
11 + - + - 88.2 / 82.4 71.4 / 69.5 141 / 211
12 + - + + 88.2 / 88.2 77.5 / 80.9 632 / 2025
13 + + - - 67.6 / 58.8 66.4 / 56.9 236 / 195
14 + + - + 64.7 / 79.4 71.0 / 69.1 796 / 2259
15 + + + - 88.2 / 88.2 87.8 / 85.5 876 / 1775
16 + + + + 88.2 / 82.4 84.0 / 83.6 1618 / 4724

Experimental data in Table 1 suggests that SPEA2 and
NSGA-II yield similar performance, however in most cases
SPEA2 is much faster than NSGA-II. For this reason we
used SPEA2 in all remaining experiments.

Median values of metrics indicate that the best configu-
ration for SPEA2 is ➏ 15 and for NSGA-II the best is ➏ 8
(best values are highlighted). We used the Wilcoxon signed-
rank test to verify that. According to the test with respect
to ccover metric, configuration ➏ 15 is statistically better (p-
value of accepting alternative hypothesis is less than 0.05)
than all except 4, 7, 8, and 12. According to the cmut metric,
➏ 15 is in a tie with 7, 8, and 16, and better than all others.

To further investigate the behavior of the proposed ap-
proach we performed additional experiments with configura-
tion ➏ 15 and SPEA2 algorithm. We varied the population
size from 100 to 1000 (archive size was kept at 20% of popu-
lation size), which resulted in 100 · clearn of 23%, 86%, 86%,
86% and 100 · cmut of 13%, 79%, 96%, 96% for population
sizes 100, 250, 500, and 1000, respectively. Furthermore,
changing the number of generations from 25 to 200 does not
significantly influence the quality of generated formulas.

Finally, we used our approach to infer LTL properties of
an FSM for controlling an ATMmachine which has 12 states,
14 events, 13 output actions and has a human-written set of
30 LTL formulas. Our algorithm was able to reach a value
of 100 · cmut = 65%. Calculating the coverage metric in
this case is infeasible due to the large dimensionality of the
problem.

5. CONCLUSIONS AND FUTURE WORK
The most closely related research is Perracotta [10], a dy-

namic technique for inferring simple temporal properties.
Temporal property inference is based on a hierarchy of pre-
defined property templates, which are simple regular expres-
sions. The program is instrumented and run through a set
of tests, resulting in a set of execution traces. The algorithm
infers the strictest possible template two events satisfy. Au-
thors also deal with the issue of imperfect traces, allowing
them to apply their technique for large programs, such as
the Windows kernel. The main differences of our work from
Perracotta are that we, first, work with models rather than
execution traces, and, second, aim to infer general form tem-
poral formulas.

We have proposed an approach for inferring general form
LTL properties of FSM models using GP and multiobjective
evolutionary algorithms. Experiments showed that, accord-
ing to two introduced performance metrics, the approach
was able to infer up to 100% of human-written LTL for-
mulas of the studied FSMs. Future work includes applying
the proposed approach to find temporal properties of FSM
models inferred by existing model inference techniques.

This work was financially supported by the Government
of Russian Federation, Grant 074-U01.
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