
ISSN 1064�2307, Journal of Computer and Systems Sciences International, 2015, Vol. 54, No. 6, pp. 853–865. © Pleiades Publishing, Ltd., 2015.
Original Russian Text © I.P. Buzhinsky, S.V. Kazakov, V.I. Ulyantsev, F.N. Tsarev, A.A. Shalyto, 2015, published in Izvestiya Akademii Nauk. Teoriya i Sistemy Uprav�
leniya, 2015, No. 6, pp. 17–30.

853

INTRODUCTION

In this paper, we consider the problem of generation of control finite�state machines (hereinafter,
machines) based on a set of training examples that describe the behavior of a plant with complex behavior;
i.e., a plant capable of producing output actions based not only on the current input actions but also on
their history. An unmanned airplane model is selected as an example of such a plant.

Machines are widely used in the development of reactive systems [1–3] and can be formally verified by
the Model Checking method, which makes it possible to use them as components of reliable software. In
addition, the machines can serve as models of existing software systems. For example, in [4, 5] methods
for obtaining such machines by program tracing are described.

It is often difficult or even impossible to construct machines manually. For example, for the Artificial
Ant problem an optimal machine was found only with the automated construction of machines [6] using
genetic algorithms [7–10]. When using these algorithms, as well as other methods of search optimization
(for example, evolutionary strategies), it is necessary to define the quality criterion of the optimization
problem solution, i.e., the fitness function (FF). There are two approaches to set up FF of machines. The
first is based on the comparison of the ideal model of the behavior of a plant (for example, a predetermined
route for the airplane model) with the behavior controlled by the machine [11]. The second approach uses
prerecorded examples of the desired behavior of the machine [12] such that the verification of the com�
pliance of the machine with these examples does not require simulation of the plant.

In [11] the genetic algorithm was used to solve the problem of generation of a machine controlling an
airplane model. Fitness functions were calculated based on the behavior of the model in the flight simu�
lator, which resulted in a large computational cost. In [13–15] a fundamentally different FF based on
training examples was used to improve the performance. A core element of the approach proposed in [13]
was the automatic arrangement of output actions on machine transitions. This approach can be applied
not only to control the airplane model but also other plants, including those with a complex or unknown
behavior model. This approach is evolved in this paper. In it, it is proposed to maintain the scheme of the
approach but to change the way machines are represented. It should lead to a higher correspondence of
the behavior of the generated machines to training examples without the overfitting problem (a situation
in which proper machine behavior cannot be generalized to unknown cases during optimization on train�
ing examples) and make machines clearer. The ant colony optimization algorithm previously used in
[14, 15] was applied for the generation of machines.

DISCRETE
SYSTEMS

Modification of the Method of Generation of Control Finite�
State Machines with Continuous Actions

Based on Training Examples
I. P. Buzhinsky, S. V. Kazakov, V. I. Ulyantsev, F. N. Tsarev, and A. A. Shalyto

ITMO University, St. Petersburg, Russia
e�mail: buzhinsky@rain.ifmo.ru

Received February 4, 2014; in final form, January 26, 2015

Abstract—Control finite�state machines can be used in the development of reliable control systems
due to their clarity and because it is possible to formally verify them. The paper deals with resolving the
problem of the generation of machines that control plants with complex behavior based on training
examples. The input and output actions of the machines are given by real numbers. A method for the
generation of machines is proposed. It is a modification of the previously proposed approaches based
on the genetic and ant colony optimization algorithms. Changes include a new way of representing
machines and improving the fitness function. The method makes it possible to generate machines
whose behavior is more consistent with training examples than the behavior of machines generated by
the known approaches.

DOI: 10.1134/S1064230715050044

854

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 54 No. 6 2015

BUZHINSKY et al.

The formal description of the problem is given in Section 1 of this paper. Section 2 presents detailed
proposed improvements of the method of the generation of machines. Their feasibility is demonstrated by
the results of the experiments described in Section 3.

1. PROBLEM STATEMENT

To begin with, let us give an informal definition of the control finite�state machine used in this study,
which will be further refined. The machine is a control system that works in cycles. In this paper, we con�
sider synchronous machines, i.e., machines with cycles at regular intervals (0.1 s). The machine has a
finite set of states S and the initial state . At any time, the machine is in one of these states. In each
cycle, based on the input actions, the machine makes a transition (changes its state) and generates an out�
put action. Transitions are defined by the transition function and the output actions are determined by
the output function .

In this study, the machine’s input actions are defined by the state of the plant and are sets of real num�
bers that describe the plant’s sensor readings. Output actions are also represented as sets of real numbers
and are changes in the plant’s control parameters. In the next section, a mechanism for obtaining input
and generating output actions will be described in detail. The continuity of the input and output actions
(setting them by real numbers) leads to nontrivial implementations of the transition and output functions
compared to the classic machines that use only discrete actions. The proposed implementation of these
features will be described in Section 2.1.

Let a finite set of training examples be given. They describe some of the tasks to be performed by the
plant. For the airplane model we will use certain aerobatic maneuvers as these tasks. Each training exam�
ple describes values of the plant’s input parameters (for an airplane these are flight parameters: speed, alti�
tude, bank angle, etc.) and control parameters at different points in time. The control parameters specify
the position of the controls (for an airplane these are the elevator, ailerons, etc.). In order to record train�
ing examples and the launch of the airplane controlled by the machine the FlightGear flight simulator was
used [16]. The considered problem consists in the generation of a machine with a behavior close to that
described in the training examples.

1.1. Plant Control

We will call an ordered set of real numbers corresponding to the input parameters of the plant
the tuple of input actions. Let us assume that the plant has control parameters corresponding to the
controls. These controls are of two types, i.e., discrete controls with a finite set of states and continuous
controls, the position of which can be specified by the number from a specific segment of the real axis.
A starter is an example of discrete control (it has two positions: on and off). The rudder is an example of
continuous control (the numbers between –1 and 1 correspond to its positions from the extreme left to
the extreme right). For simplicity, we assume that all the controls are continuous, but the described
method can be generalized to the case of both types of controls. The tuple of control parameters, the set of
c real numbers, is the snapshot of the values of all control parameters at a certain moment in time. Let us

assume that the jth () element of the tuple of control parameters is always limited by the closed
interval , corresponding to the possible values of the control parameter j.

As mentioned above, the machine operates in cycles. At the beginning of each cycle, it takes a tuple of
input actions of the plant. Each machine transition is labeled by a protected condition, a Boolean formula
of predicates that are also Boolean values. A transition is carried out for which the calculation of the cor�
responding formula using the current predicate values gives the correct answer (there should be only one
such transition). In general, the predicate’s values depend on all the tuples of the input actions which have
been transferred to the machine by the current clock cycle. The statements “the altitude is decreasing”
and “the pitch angle is positive” are examples of predicates.

Next, let us introduce the concept of components of output actions. These are real values computed sim�
ilarly to predicates, i.e., based on all input actions transmitted to the machine. Input actions, their powers,
and their rates of change, calculated as the difference between the last two values of the corresponding
input action, can be components of output actions. The bank angle, pitch angle deviation of 5°, and the
vertical velocity square are examples of components. The name of these values is associated with the fact
that in the present work they directly determine output actions, whereas in [13–15] the latter depended
on the values of the predicates.

The control process diagram is shown in Fig. 1. The machine is shown schematically in the left panel
of the figure (in the form of a transition graph). The transition graph vertices correspond to machine states

0s S∈

δ

λ

p ∈�
c ∈�

1,j c=

[],j jm M

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 54 No. 6 2015

MODIFICATION OF THE METHOD OF GENERATION 855

and the figures inside the vertices represent their numbers. The arcs of the graph set the machine transi�
tions. The initial state is denoted by the arc included in it that does not begin in any of the states.

1.2. Training Examples

Let us formalize the concept of training examples. A training example consists of two sequences of
tuples of input actions and control parameters, each of which is indexed by time points. Since the machine
is synchronous, the difference between neighboring time points equals the interval between cycles. The

length of these sequences for the ith training example is (, where N is the number of training
examples). Let us call these numbers the lengths of the training examples. The sequence of tuples of input

actions consists of numbers , where is the tuple number in the sequence, and is the
number of the input action in the tuple. It corresponds to a sequence of tuples of the control parameters that

consists of the numbers , where is the number of the control parameter. A section of the train�
ing example for the case is given in Table 1.

2. THE PROPOSED METHOD

This section describes the proposed approach as a modification of the method proposed in [13] and
accelerated in [14, 15]. The general scheme of the method from [13] is preserved: the search for machines
is carried out using the search optimization algorithm, whose individuals are frames of machines, i.e.,
machines with unknown output functions. The method of representation of machines and two FF modi�
fications are new. One of the modifications is designed to increase the clarity of machines, and the second
makes it possible to improve the quality of aerobatic maneuvers that require that the airplane maintained
a certain constant value (for example, of the bank angle). The ant colony optimization algorithm [17] pro�

0 1s =

iL 1,i N=

iI , ,i t jI 1, it L= 1,j p=

iO

, ,i t jO 1,j c=

4, 3, 235ip c L= = =

1 2

3

Components Predicates
The calculation of values of

Tuples

Tuples of
output
actions

of input
actionspredicates and components

of output actions

of output
actions

Fig. 1. The interaction of the machine and the airplane model.

Table 1. Fragment of a training example

Values Description t = 1 … t = 10 … t = 20 … t = 235

Ii, t,1 Pitch angle, deg 3.078 … 3.544 … 4.112 … 2.412

Ii, t,2 Bank angle, deg –0.076 … 0.351 … 3.413 … 1.759

Ii, t,3 Heading angle, deg 198.03 … 198.11 … 198.41 … 205.64

Ii, t,4 Speed, knots 251.42 … 252.29 … 253.20 … 289.40

Oi, t,1 Position of ailerons (a number from –1 to 1) 0.000 … 0.032 … 0.073 … –0.003

Oi, t,2 Position of the rudder (a number from –1 to 1) 0.000 … 0.016 … 0.037 … –0.001

Oi, t,3 Position of the elevator (a number from –1 to 1) –0.035 … –0.039 … –0.037 … –0.011

856

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 54 No. 6 2015

BUZHINSKY et al.

posed in [18] was used as the search optimization algorithm. It showed a slightly better performance
[14, 15] for the problem under consideration than in [13] and requires no crossover operator. In this algo�
rithm, the search space is represented as a directed graph, whose vertices are machines (in this study, their
frames) and whose arcs are their mutations (minor changes). Next, let us consider the details of the imple�
mentation of the proposed method of machine generation.

2.1. Machine Representation Method

The basic approach [13] to the solution of the considered problem makes it possible to generate
machines whose output actions depend only on predicate values. This imposes some undesirable restric�
tions on the output actions. For example, when using only the predicates the machine cannot produce
arbitrarily small outputs (changes in values of the control parameters) that could be useful to stabilize a
parameter of the plant, for example, the pitch angle of the airplane. This is required in one of the aerobatic
maneuvers discussed in this paper, in the case of the plane turning 180° in the horizontal plane. In addi�
tion, the machines given in [13] carried out several transitions per cycle that made the transition function
difficult to analyze.

In order to eliminate these shortcomings, we propose another way to represent machines that makes it
possible to use both predicates and components of output actions. Let us consider a set of predicates

. In each machine state only their subset is used—the values in this state of the predicate. For
each state and for each set of values of predicates significant in s a transition from this state s and for
these predicate values is defined. The mask of the significance of the predicates and the transition table,
whose elements are the final states of outgoing transitions from s, are stored in the program representation
of such a machine in each of its states s. In [11], this approach was called the method of reduced tables.
It makes it possible to reduce the size of the machine description at high n compared with the simpler
method of full tables [3] (the use of the latter leads to the information about all the 2m transitions being
stored in each state of the machine). Note that the number of states of the machine |S| and the number of
significant predicates are considered fixed during optimization. The number of significant predicates is
the same for all states.

Components of output actions are used to generate output actions of the machine. For each control
parameter j there is a set of constituting output actions . The reason for using several (possibly

overlapping) sets of components is that for each of the control parameters its own components are impor�
tant. For example, for the control of ailerons the bank angle and its rate of change are important, and for
the elevator, the components associated with the pitch angle.

On each cycle the output action of the machine is formed as a linear combination of values of compo�
nents of output actions with coefficients determined only by the machine state. In this sense, the machine
is the Moore automaton [3]. More formally, the value of jth control parameter at each cycle varies by

(2.1)

where is the coefficient corresponding to state s of the machine before the transition and compo�
nent . Linearity (2.1) will make it possible to further automatically determine the coefficients so that
machine FF reaches the maximum at the given frame.

Similarly to the predicates, not all the components of output actions are significant, and for each of the
control parameters in each machine state an additional mask of the significance of the components of the
output actions is stored. Let us assume that numbers corresponding to insignificant components are
known to be zero. The remaining numbers will be determined automatically. The use of masks of signifi�
cance of components of output actions, firstly, simplifies the generation of machines at high ,
since the time of the operation of the algorithm of the arrangement of the output actions, which will be
described in Section 2.3, is proportional to the cube of the number of numbers determined by it. The
appearance of numbers known to be zero reduces this time. Secondly, masks of the significance of the
components of output actions can be used to avoid overfitting, which can occur if the number of optimized
parameters is large.

An example of the proposed representation of the machine state is shown in Fig. 2. In the upper left
corner of the figure there is a mask of the significance of the predicates (there are four of them). Significant
predicates are labeled unity while insignificant are marked zero. To the right there is a table of transitions

1, ..., mx x
s S∈

,1 ,, ...,j j n j
v v

ju

, , ,

1

,
jn

j s i j j i

i

u r
=

Δ =∑ v

, ,s i jr

,j iv

, ,s i jr

1, ..., cn n

, ,s i jr

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 54 No. 6 2015

MODIFICATION OF THE METHOD OF GENERATION 857

from the current state. Below, masks of the significance of components of output actions, numbers ,
and output actions of the form (2.1) given by these numbers are provided for two controls. Despite the
rather complex representation of the machine states, the transition graphs of the latter appear to be rela�
tively simple. An example of such a graph is shown in Fig. 3. In it for the sake of simplicity, the case of a
single control is considered. Masks of significance of both predicates and components of output actions
are placed under the state, and within states there are output actions of the form (2.1) set by them.

When using the ant colony optimization algorithm [18], it is necessary to set the mutation operator for
the machine frame. In this paper we consider the following mutations: the change of the initial state of the
machine to a random one, the change of the final state of a transition to a random one, the exchange of
two unequal elements of a mask of significance of predicates or components of output actions.

2.2. Fitness Functions

Let be a sequence of tuples of control parameters produced by a fixed machine in response to .

We assume that (the initial output actions of the machine equal to the initial output actions
recorded in the training example), but the result of the machine cycle with the number t is the production

of actions . In order to measure the proximity of the behavior of the machine in a specific training

, ,s i jr

iO� iI

,1, ,1,i j i jO O=
�

, 1,i t jO
+

�

Predicate significance mask

Significance mask of components

x1

1
x2

0
x3

1
x4

0

v1, 1

0
v1, 2

1
v1, 3

0
v1, 4

1
v1, 5

0

rs, 1, 1

0
rs, 2, 1

1.2
rs, 3, 1

0
rs, 4, 1

0.3
rs, 5, 1

0

Δu1 = 1.2v1, 2 + 0.3v1, 4

Table of transitions from the current state

Significance mask of components

¬x1 & ¬x3

2
x1 & ¬x3

4
¬x1 & x3

1
x1 & x3

1

v2, 1

1
v2, 2

0
v2, 3

0
v2, 4

0
v2, 5

1

rs, 1, 2

3.7
rs, 2, 2

0
rs, 3, 2

0
rs, 4, 2

0
rs, 5, 2

–0.3

Δu2 = 3.7v2, 1 – 0.3v2, 5 – 4.9v2, 6

v2, 6

1

rs, 6, 2

–4.9

Output action for control 2
Output action

of output actions for
control 1

for control 1

of output actions for control 2

Fig. 2. An example of the program representation of the machine state.

x1

1

x2

0

x3

0

v1

1

v2

0

v3

1

Δu = 2v1 + v3

¬x1

x1

x1

0

x2

1

x3

0

v1

1

v2

1

v3

0

Δu = v1 + v2

x2

¬x2

x1

0

x2

0

x3

1

v1

0

v2

1

v3

1

Δu = v2 + 4v3

x3

¬x3

Fig. 3. An example of a machine with three predicates and three components of output actions.

858

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 54 No. 6 2015

BUZHINSKY et al.

example to the behavior recorded in the same training example, we use the following distance�penalty
between the output sequences

(2.2)

The following FF was used in [14, 15] based on this penalty:

Let us introduce the first FF modification. Note that the machines which often change their state
are less clear and more difficult to analyze. Therefore, it is reasonable to minimize values of

, where is the number of machine states when passing the ith training example. We will
take into account these values as penalties when calculating the FF:

(2.3)

where K is a small number (in this paper, K = 0.00015). In earlier works [13–15], the term was not taken
into account. Since in the earlier approach, the machine made several transitions per cycle, the minimi�
zation of would not be sufficient to establish the purpose of individual states of the machine.

Let us consider the second FF modification. Similar to function f we define function fΔ:

where and are difference sequences of the adjacent elements of sequences and correspond�
ing to them. More formally, and for t > 1. The same is true for .

The need to use fΔ arises when training examples describe ramp changes of the control parameters, the
purpose of which is to maintain the parameter of the plant. The authors established experimentally that in
this case the optimization of f leads to excessively smooth output actions. Such output actions respond
too slowly to changes in the maintained parameter, which degrades the quality of the parameter control.
An example of the described case is shown in Fig. 4, which shows the curve that gives the position of the
elevator for one of the training examples and the curve showing the behavior of one of the generated
machines on this training example. The first curve describes values from the sequence at different times,
the second curve shows the values from the sequence . These problems are not observed when optimiz�
ing fΔ.

2.3. Determination of Output Actions

In [13–15] output actions were automatically placed on machine transitions. In this paper, this
approach is also used, but the placement procedure has its own specificity because of the used method of
machine representation. According to (2.1), in order to determine output actions, it is sufficient to set the
numbers . Recall that numbers corresponding to insignificant components of the output actions
are known to be equal to zero. The rest of the numbers can be determined so that on a given machine frame
the FF (f or fΔ) reached the maximum. For this purpose it is necessary to solve a system of linear equations
for each control parameter. The construction of this system is described in the Appendix. At the end of the
Appendix the optimization is also given that makes it possible to combine the calculations of the systems
for different control parameters. The determination of output actions is carried out for each machine

()
2

, , , ,

2 1

1, .
iL

i t j i t j
i i

i j jt j

c
O O

O O
L c M m

= =

⎛ ⎞−
ρ = ⎜ ⎟−⎝ ⎠

∑∑
�

�

()2

1

11 , .
N

i i

i

f O O
N

=

= − ρ∑ ��

()max 0, 1i Sτ − + iτ

()()
2

1

1 max 0, 1 ;
N

i

i

P K S
N

τ

=

= τ − +∑

()2

1

11 , ,
N

i i

i

f O O P
N

τ

=

= − ρ −∑ �

P
τ

P
τ

()2

1

11 , ,
N

i i

i

f O O P
N

Δ τ

=

= − ρ Δ Δ −∑ �

iOΔ �

iOΔ iO� iO

,1, 0i jOΔ =�

, , , , , 1,i t j i t j i t jO O O
−

Δ = −� � �

iOΔ

iO

iO�

, ,s i jr , ,s i jr

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 54 No. 6 2015

MODIFICATION OF THE METHOD OF GENERATION 859

frame generated in the process of the search optimization and is the most computationally intensive step
of the method.

3. EXPERIMENTAL EVALUATION

The experiments included the search for machines with two methods of representation (with the
method used in [13–15] and the one proposed in this paper), and the determination of the quality of
machines generated in the flight simulator FlightGear. We will further call the two mentioned representa�
tion methods previous and proposed methods, respectively. Three sets of training examples that describe
the making of loops, rolls, and a half turn in a horizontal plane at an angle of 60° were preliminary man�
ually recorded in the simulator. Some properties of the sets of training examples are given in Table 2. When
generating machines for making the loop and roll, f was used as the FF, but when dealing with machines
using the previous representation method penalties were not used (K = 0): in the case of the complex
structure of the machine cycle the purpose of the introduction of penalties is not achieved. On the third
set of training examples that describes the specified turn the effectiveness of the two FFs is compared: f
and fΔ. The function fΔ was also tested on the first two training sets, but experiments showed that its use on
them is not justified.

For each set of training examples a set of predicates for the generation of machines using the previous
representation method and two sets (of predicates and components of output actions) for the generation
of machines with the proposed representation method were manually selected. The selection of these val�
ues is iterative: initially the intuitively selected set is corrected until the behavior of the automatically gen�
erated machines becomes acceptable. However, a good set of predicates for the execution of the turn using

P
τ

0.10

100 20 30 40 50 60
Time, s

0.05

0

–0.05

–0.10

–0.15

–0.20

Elevator position

Values from the sequence Oi

Values from the sequence Oi
~

Fig. 4. An example of sawtooth output actions in the training example and output actions of a machine on the same train�
ing example.

Table 2. Properties of sets of training examples

Set of training examples Airplane model Number of training
examples

Average length of a training
example in the set, s

Loop PA�34 Seneca II 33 35.4

Roll Gloster Meteor 28 27.2

U�turn Gloster Meteor 19 56.3

860

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 54 No. 6 2015

BUZHINSKY et al.

machines with the previous representation method was not selected, which affected the results of the
modeling of the behavior of the machines, which will be given in Section 4.2. Note that the manual selec�
tion of the predicates is a disadvantage of the basic method, which in this paper is maintained.

3.1. Computational Experiments

For each of the four considered combinations of the set of training examples and FF (the combination
of these two parameters will be called a problem instance), for the number of states , and for the
two representation methods of the machines 50 runs of the ant colony optimization algorithm were carried
out [18]. The algorithm proposed in [18] involves the use of a pheromone when the ant selects the follow�
ing arc of its path. However, in this study a simpler strategy was selected that proved to be no less effective,
i.e., equiprobable selection of the next arc.

The number of ants Nants, as well as other nonpheromone algorithm parameters Nmut, nstag, and pnew

(a description of the parameters was given in [18]) were set using the software tool irace [19]. The use of
the special tool to adjust the parameters of the algorithm is preferable than their manual adjustment, since
the latter is influenced by the human factor. Table 3 lists the values of the parameters found by means of
irace. When setting the parameters, the behavior of different sets of values on three of the four considered
problem instances was taken into account. In this case, the instance with fΔ as the FF was excluded, since
it turned out to be the easiest for search optimization, and its use to set the algorithm parameters most
likely would reduce the effectiveness of the derived parameters in complex instances.

The algorithm’s stop criterion was stagnation during 5000 calculations of the FF. Table 4 shows the
median values of the FF obtained using the ant colony optimization algorithm on different instances of
the problem. The given values of the FF cannot be compared between different problem instances, but
they can be compared between different representations of machines. Note that the penalty for changing
machine states in the FF of machines with the proposed representation method reached low values
because of optimization and did not have a significant impact on the FF value, which made such a com�
parison possible. Table 4 shows that the use of the proposed machine representation method increases the
FF value in the loop and roll.

In addition, it is reasonable to take into account the time required to search for machines using one or
another representation method. Table 5 shows the median numbers of FF calculations for different
instances of the problem. On the one hand, in order to generate machines using the previous representa�
tion method more computations of the FF are usually required. On the other hand, the arrangement of
output actions for machines using the proposed method required up to 60% more CPU time. In any case,
the machine generation time did not usually exceed 10 minutes on a personal computer with a quad�core
processor Intel Core i7–2670QM with the parallel computing of the FF of different machines.

3,4,5S =

Table 3. Used parameters of the ant colony optimization algorithm

Machine representation method Nants Nmut nstag pnew

Proposed 5 13 55 0.1428

Previous 2 29 8 0.2471

Table 4. Median FF values obtained at different instances of the problem

|S | Machine representation
method

Loop,
f

Roll,
f

U�turn,
f

U�turn,
fΔ

3 Proposed 0.9856 0.9854 0.9892 0.99748

Previous 0.9812 0.9832 0.9894 0.99731

4 Proposed 0.9866 0.9863 0.9898 0.99749

Previous 0.9836 0.9856 0.9901 0.99734

5 Proposed 0.9873 0.9868 0.9901 0.99751

Previous 0.9842 0.9858 0.9902 0.99734

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 54 No. 6 2015

MODIFICATION OF THE METHOD OF GENERATION 861

3.2. Experiment Using Computer Simulation

The machines generated by the ant colony optimization algorithm were tested in the flight simulator.
The tests of each machine consisted in starting it ten times in conditions similar to the ones during the
recording of training examples. In order to measure the quality of the machines two criteria were used
that showed the mean deviation angles of the pitch and bank when testing from the respective angles
recorded on training examples. More precisely, for the pitch angle the arithmetic mean of

 was used as the criterion of quality, where is the pitch angle at

time t of training example i, and is the pitch angle at time t of the launch of machine j in the flight
simulator. A similar criterion was used for the roll angle.

The selection of machines for testing in simulation was carried out as follows. For each pair of sample
problems and the number of states the best (according to the maximum reached value of the FF) machines
for each of the 50 runs of the ant colony optimization algorithm were considered. These machines were
then tested in the flight simulator. Tables 6 and 7 contain the medians of the quality criteria for the
described groups of 50 machines.

The differences of the values of the quality criteria for the same aerobatic maneuvers and number of
states but for different machine representation methods were verified using the Mann–Whitney U test

test run
, , (1, , 1, , 1,10)i t j t ii N t L jα − α = = =

test
,i tα

run
,j tα

Table 5. Median numbers of FF calculations at different problem instances

|S | Machine representation
method

Loop,
f

Roll,
f

U�turn,
f

U�turn,
fΔ

3 Proposed 8556 8472 8339 7556

Previous 9979 10071 10195 11400

4 Proposed 9234 8934 9119 9261

Previous 12565 14883 15256 15456

5 Proposed 9008 10048 8982 10068

Previous 17850 18431 17436 15441

Table 6. The median deviation of the bank angle (deg) for machines generated for different problem instances

|S | Machine representation
method

Loop,
f

Roll,
f

U�turn,
f

U�turn,
fΔ

3 Proposed 1.71 16.52 4.80 2.07

Previous 6.37 18.56 50.29 21.60

4 Proposed 2.41 15.35 4.10 1.99

Previous 6.32 21.86 57.04 22.88

5 Proposed 3.21 14.74 4.07 1.99

Previous 9.54 22.99 45.83 24.32

Table 7. The median deviation of the pitch angle (deg) for machines generated for different problem instances

|S | Machine representation
method

Loop,
f

Roll,
f

U�turn,
f

U�turn,
fΔ

3 Proposed 17.21 3.20 1.95 0.50

Previous 20.54 4.44 7.58 3.85

4 Proposed 23.04 2.51 1.42 0.48

Previous 22.11 4.08 6.79 4.61

5 Proposed 25.27 2.43 1.36 0.47

Previous 24.44 4.68 7.83 5.31

862

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 54 No. 6 2015

BUZHINSKY et al.

(for each of the two quality criteria, a total of 12 statistical tests were conducted, in each of which two
groups of 50 values were compared). The differences for all pairs of samples but two (the values for the
pitch angle when conducting a loop with four machines and five states) proved to be statistically significant
(p < 0.001, the p�values were adjusted by the Holm method). The following conclusions can be made based
on the tables:

(1) The values of quality criteria are generally better (less) for machines with the proposed representa�
tion method.

(2) The use of fΔ improves the quality of the turn for the machines regardless of their representation
method.

Note that differences between the values of the quality criteria actually correspond to qualitative dif�
ferences in the behavior of machines in the simulation. Machines with the proposed representation
method better align the position of the airplane at the end of a loop and roll, as well as make the roll with�
out jerks that are sometimes characteristic of machines with the previous representation method. Consid�
ering the turn, the median values of the quality criteria for this aerobatic maneuver using machines with
the previous representation method are sufficiently large. The reason is that none of these machines is able
to cope with the turn from the beginning to the end. At the same time, most of the considered machines
with the proposed representation method performed the turn and differed only in the quality of maintain�
ing the angle. As it turned out, constant output actions on machine transitions from the previous repre�
sentation method were not sufficient to maintain the bank angle near the desired values. For the proposed
machine representation method, the values of the quality criteria values are much smaller, and the dis�
cussed machines are able to perform a U�turn, while machines constructed using fΔ better maintained the
bank angle at 60°.

Fig. 5. Execution of the U�turn under the control of the generated machine (screenshots).

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

(а) (b)

(c) (d)

(e) (f)

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 54 No. 6 2015

MODIFICATION OF THE METHOD OF GENERATION 863

Thus, the conducted experimental study demonstrates the successful implementation of the represen�
tation method of machines on different sets of training examples and fitness functions fΔ on one of the sets
of training examples, as well as the relatively high performance of the method.

Screenshots with the fighter Gloster Meteor performing a roll under the control of one of the machines
generated using the approach proposed in the paper are shown in Figs. 5a–5f. The images show the 2nd,
5th, 9th, 14th, 19th, and 23rd seconds of the aerobatic maneuver. The machine with the current state high�
lighted in bold circle is superimposed on the right part of each screenshot. In addition, the video record�
ings of various aerobatic maneuvers with machines with the proposed representation method are available
at the following links:

(1) Loop: http://www.youtube.com/watch?v=vnJ_�gMLjx8.

(2) Roll: http://www.youtube.com/watch?v=2GxzcPx0XNw.

(3) Turn: http://www.youtube.com/watch?v=n9q5FmCYs6M.

The different states of the machines correspond to different segments of aerobatic maneuvers.
For example, the machine shown in the video of the roll successively changes states 4 (the beginning of
the turn), 1 (the first half of the turn), 2 (the second half of the turn), and 3 (alignment of the airplane)
during the execution of the maneuver.

CONCLUSIONS

In this paper, we propose a modification of the method for the generation of control finite�state
machines with continuous actions. By the example of the problem of controlling an airplane model the
benefits of the proposed approaches compared to the methods described in [13–15] are demonstrated.
A new approach to the representation of machines improved the quality of the implementation of the aer�
obatic maneuvers discussed in the paper. In addition, the implementation of machines in the form of
Moore automata makes them easier to interpret and analyze. The proposed approach made it also possible
to construct a machine that performs a U�turn in a horizontal plane, which was not possible with the pre�
viously developed methods.

The results can be applied to the development of control systems for unmanned aerial vehicles (UAVs).
For example, Transas [20] has developed UAVs and control systems for them. UAV models are tested
in the FlightGear simulator. In addition, one of the possible ways of developing this study is the application
of the approach to the control of mobile robots, for which there are also simulators. This direction is
attractive due to the ease of use of control finite�state machine systems on real models.

APPENDIX

R e d u c t i o n o f t h e p r o b l e m o f t h e a r r a n g e m e n t o f o u t p u t a c t i o n s t o t h e
s o l u t i o n o f t h e s e t o f s y s t e m s o f l i n e a r a l g e b r a i c e q u a t i o n s. Let us construct
a system of equations whose solution is required to determine the output machine’s actions that maximize
the FF on a given frame. Let us consider the case of the use of f (the case with fΔ is similar). Recall that the
optimized values are , for which the component of output actions (the ith component for the
jth control parameter) is significant in state s (the other numbers are known to be equal to zero). Let us

reindex the optimized values and denote them as (, , where , and is the
number of significant components for the control parameter j). When the index of the control parameter
is fixed, we will omit it and denote the optimized values as . State and some component of output

actions will correspond to each number . We denoted the value of calculated by

() by .

Now let us explain the possibility of solving the optimization problem for each control parameter indi�
vidually. For a fixed frame the penalty is independent of the output actions. Thus, the maximization
problem (2.3) is reduced to the following one:

, ,s i jr ∈� ,j iv

,l̂ jr 1,j c= 1,l M= jM k S= jk

1̂ ˆ, ..., Mr r l̂s

ˆlv ˆ, 1,lr l M= ˆlv , ,i t jI

1,j p= , ,ˆi t lv

P
τ

()
,

2

ˆ , 1, , 1,
1

11 , max .
l j

N

i i
r l M j c

i

O O
N = =

=

− ρ →∑ �

864

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 54 No. 6 2015

BUZHINSKY et al.

By expanding (2.2) and making elementary transformations, we obtain

This shows that it is possible to minimize the amount for each of the control parameters separately.
For a fixed control parameter the problem takes the following form:

(A.1)

Let us express through . For this purpose, we introduce an additional notation: ,
if is the current state of the machine when it passes the ith training examples before cycle t, otherwise

. By rewriting (2.1) in the new notation, we obtain

Using equality , the formula can be closed:

Using the notation

it is rewritten as follows:

. (A.2)

Now let us substitute (A.2) in (A.1) and equate partial derivatives to zero:

This expression can be written in a more convenient form:

(A.3)

It follows from the above that the optimum output actions for a given output control parameter can
be found by solving the set of equations (A.3), which are a system of linear algebraic equations M. In order

to find its matrix, time is required, and to solve it by the Gauss method, is
needed. The system must be solved for each control parameter. However, the computation can be reduced
in the following way.

If the sets of components of output actions for some of the control parameters coincide and the same
masks of the significance of the components of the output actions are used for these parameters, the left�
hand sides of systems (A.3) for these control parameters are also the same. It makes it possible not to recal�
culate them. In the present study, we decided to apply this optimization to ailerons and rudder, since it
proved to be reasonable for them to use the same sets of components of the output actions: both controls
are mainly used to control the bank angle and the corresponding components depend on this angle.
For the remaining control, the elevator, the use of the same components is bad, because it controls the

,

2

, , , ,

ˆ , 1, , 1,
1 2 1

1 min .
i

l j

N L
i t j i t j

r l M j ci j ji t j

c
O O

L M m = =

= = =

⎛ ⎞−
→⎜ ⎟

−⎝ ⎠
∑ ∑∑

�

j

0j j=

()0 0 0
1

2
, , , ,

ˆ ˆ,...,
1 2

1 min .
i

M

N L

j i t j i t j
r rii t

g O O
L

= =

= − →∑ ∑ �

0, ,i t jO� 1̂ ˆ, ..., Mr r , , , ,ˆi t l i t lβ = v

l̂s

, , 0i t lβ =

, , , 1, , 1,

1

ˆ.
M

i t j i t j i t l l

l

O O r
− −

=

= + β∑� �

,1, ,1,i j i jO O=
�

1

, , ,1, , ',

1 ' 1

ˆ.
M t

i t j i j i t l l

l t

O O r
−

= =

= + β∑∑�

1

, , , ,

' 1

t

i t l i t l

t

−

′

=

α = β∑

, , ,1, , ,

1

ˆ
M

i t j i j i t l l

l

O O r
=

= + α∑�

0jg

1 2

0

0 0 0

0

, , ,1, , , , , 0

1

1 ˆ2 0, 1, .
ˆ

iN L M
j

i t l i j i t l l i t j
l ii = t = l

g
O r O l M

r L
=

⎛ ⎞∂
⎜ ⎟= α + α − = =
⎜ ⎟∂ ⎝ ⎠

∑ ∑ ∑

()
0 0 0 0, , , , , , , , ,1, 0

1 1 2 1 1

1 1ˆ , 1, .
i iM N L N L

i t l i t l l i t l i t j i j
i il i t i t

r O O l M
L L

= = = = =

⎛ ⎞
⎜ ⎟α α = α − =
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑

0j

2
1((...))NM L L+ +�

3()M�

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 54 No. 6 2015

MODIFICATION OF THE METHOD OF GENERATION 865

pitch angle. The use of the combined set of components of output actions based on both the bank angle
and the pitch angle for all three controls would lead to the fact that the components based on one angle
would be used for all controls, which is undesirable. This would occur because of the importance of the
combination of masks of significance, which are also necessary for optimization.

ACKNOWLEDGMENTS

This work was financially supported by the Government Assignment No. 2.1239.2014/K, by the Gov�
ernment of Russian Federation, Grant 074�U01, and also by the Russian Foundation for Basic Research,
project no. 14�07�31244 mol_a.

REFERENCES

1. D. Harel and A. Pnueli, “On the development of reactive systems,” in Logic and Models of Concurrent Systems,
Ed. by K. Apt, NATO Advanced Study Institute on Logic and Models for Verification and Specification of Con�
current Systems Series (Springer�Verlag, 1985), pp. 477–498.

2. D. Harel and M. Politi, Modeling Reactive Systems with Statechart. The Statemate Approach (McGraw�Hill, New
York, 1998).

3. N. I. Polikarpova and A. A. Shalyto, Automata�Based Programming (Piter, St.�Petersburg, 2011) [in Russian].
http://is.ifmo.ru/books/_book.pdf

4. N. Walkinshaw, K. Bogdanov, M. Holcombe, et al., “Reverse engineering state machines by interactive grammar
inference,” in Proceedings of the 14th Working Conference on Reverse Engineering, WCRE’07 (IEEE Computer
Society Press, Vancouver, 2007), pp. 209–218.

5. N. Walkinshaw, R. Taylor, and J. Derrick, “Inferring extended finite state machine models from software execu�
tions,” in Proceedings of the 20th Working Conference on Reverse Engineering WCRE’13 (IEEE Computer Soci�
ety Press, Koblenz, 2013), pp. 301–310.

6. F. N. Tsarev and A. A. Shalyto, “Application of genetic programming for automata generation in the ‘artificial
ant’ problem,” in Proceedings of the 4th International Scientific�Practical Conference on Integrated Models and
Soft Computing in Artificial Intelligence (Fizmatlit, Moscow, 2007), Vol. 2, pp. 590–597. http://is.ifmo.ru/gen�
alg/_ant_ga.pdf

7. J. R. Koza, Genetic Programming: on the Programming of Computers by Means of Natural Selection (MIT Press,
Cambridge, 1992).

8. V. M. Kureichik, “Genetic algorithms: state of the art, problems, and perspectives,” J. Comput. Syst. Sci. Int.
38, 137 (1999).

9. V. M. Kureichik and S. I. Rodzin, “Evolutionary algorithms: genetic programming,” J. Comput. Syst. Sci. Int.
41, 123 (2002).

10. L. A. Gladkov, V. V. Kureichik, and V. M. Kureichik, Genetic Algorithms (Fizmatlit, Moscow, 2006) [in Russian].
11. N. I. Polikarpova, V. N. Tochilin, and A. A. Shalyto, “Method of reduced tables for generation of automata with

a large number of input variables based on genetic programming,” J. Comput. Syst. Sci. Int. 49, 265 (2010).
12. F. N. Tsarev, “Induction of finite state machines using genetic programming with fitness based on testing,”

Inform.�Upravl. Sist., No. 5, 31–36 (2010).
13. A. V. Aleksandrov, S. V. Kazakov, A. A. Sergushichev, et al., “The use of evolutionary programming based on

training examples for the generation of finite state machines for controlling objects with complex behavior,”
J. Comput. Syst. Sci. Int. 52, 410 (2013).

14. I. Buzhinsky, V. Ulyantsev, and A. Shalyto, “Test�based induction of finite�state machines with continuous out�
put actions,” in Proceedings of the 7th IFAC Conference on Manufacturing Modelling, Management, and Control
MIM’13 (IFAC, St.�Petersburg, 2013), pp. 1049–1054.

15. I. P. Buzhinsky, V. I. Ulyantsev, D. S. Chivilikhin, and A. A. Shalyto, “Inducing finite state machines from train�
ing samples using ant colony optimization,” J. Comput. Syst. Sci. Int. 53, 256 (2014).

16. FlightGear. http://www.flightgear.org/. Cited September 29, 2014.
17. M. Dorigo and T. Stützle, Ant Colony Optimization (MIT Press, US, 2004).
18. D. Chivilikhin and V. Ulyantsev, “Learning finite�state machines with ant colony optimization,” Lect. Notes

Comp. Sci. 7461, 268–275 (2012).
19. M. López�Ibáñez, J. Dubois�Lacoste, T. Stützle, et al., “The irace package, iterated race for automatic algo�

rithm configuration,” Tech. Report TR/IRIDIA/2011�004 (IRIDIA, Univ. libre de Bruxelles, Belgium, 2011).
20. Transas. http://www.transas.ru/. Cited September 29, 2014.

Translated by O. Pismenov

