
Inferring Automata-Based Programs from Specification
With Mutation-Based Ant Colony Optimization

Daniil Chivilikhin
ITMO University

Computer Technologies Laboratory
Saint Petersburg, Russia
chivdan@rain.ifmo.ru

Vladimir Ulyantsev
ITMO University

Computer Technologies Laboratory
Saint Petersburg, Russia

ulyantsev@rain.ifmo.ru

ABSTRACT
In this paper we address the problem of constructing correct-
by-design programs with the use of the automata-based pro-
gramming paradigm. A recent algorithm for learning finite-
state machines (FSMs) MuACOsm is applied to the prob-
lem of inferring extended finite-state machine (EFSM) mod-
els from behavior examples (test scenarios) and temporal
properties, and is shown to outperform the genetic algo-
rithm (GA) used earlier.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming

Keywords
Design/Synthesis, Software Engineering, Empirical study

1. INTRODUCTION
Designing a complex software system is hard especially in

such areas as aviation, space industry, and banking, where
high software reliability is required. Verification must be
used to check such software, since testing can only reveal
existing errors but cannot guarantee their absence. One
verification method is model checking [3], where temporal
properties are checked for a model of software. This brings
simplicity but creates a gap between software and its model.

Automata-based programming [6] allows to overcome this
limitation. Programs designed using this paradigm can be
automatically transformed to Kripke models used in model
checking [7]. Automata-based programming proposes to im-
plement software systems as sets of interacting automated-
controlled objects. An automated-controlled object consists
of an extended finite-state machine (EFSM) controller and
a controlled object, which is characterized by a set of com-
mands implemented by its methods. It can have a num-
ber of associated event suppliers which provide input for
it. Upon receiving an event from some event supplier, the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-2881-4/14/07.
http://dx.doi.org/10.1145/2598394.2598446.

EFSM makes a transition, sending a sequence of output ac-
tions (commands) to the controlled object, which processes
these commands and calls its corresponding methods.

A key advantage of automata-based programming is that
it allows to infer correct-by-design control programs from be-
havior examples using search-based optimization (e.g. evo-
lutionary algorithms [1]) and model checking. The main is-
sue here is to design an efficient optimization algorithm well
fit for EFSM inference. In this work we apply the recent
FSM induction algorithm MuACOsm [2], which has been
shown to outperform GA on simple problems, to the more
practical problem of learning EFSMs from specification con-
sisting of both test scenarios and temporal properties.

2. PROBLEM STATEMENT
In this paper we define an EFSM as a septuple 〈S, s0, Z,Σ,

∆, δ, λ〉, where S is a set of states, s0 ∈ S is the initial state,
Z is a set of Boolean input variables, Σ is a set of input
events, ∆ is a set of output actions, δ : S × Σ × 2Z → S
is the transitions function and λ : S × Σ × 2Z → ∆∗ is the
actions function.

Various examples of program behavior may be used, how-
ever here we consider test scenarios only. A test scenario
γi is a sequence of scenario elements 〈e, ϕ,O〉, where e ∈
Σ, ϕ ∈ 2Z is a Boolean formula over the input variables,
and O ∈ ∆∗. An EFSM complies with a scenario element
〈e, ϕ,O〉 in state s if it contains a transition labeled with
event e, sequence of output actions O, and a guard condi-
tion equal to ϕ as a Boolean formula. An EFSM complies
with a test scenario if it complies with all scenario elements
in the corresponding states when the scenario is processed
sequentially.

Following [7] we use LTL for temporal properties represen-
tation. The LTL language consists of propositional variables
Prop, logical operators“and”, “or”, “not”, and a set of tempo-
ral operators, such as G (Globally in the future), X (neXt),
F (in the Future), U (Until) and R (Release). Here, propo-
sitional variables are wasEvent(·) and wasAction(·) terms for
each event and output action, correspondingly.

The problem of specification-based EFSM inference is to
find an EFSM with a maximum of Nstates states compli-
ant with a set of test scenarios Γ = {γi} and a set of LTL
formulae.

3. EFSM INFERENCE METHODS
In this work we apply the recent MuACOsm algorithm [2]

to the stated problem and compare it with the previously
used GA [7]. EFSM skeletons [7] are used instead of EFSMs

67

for solution representation, smart transition labeling [7] is
applied prior to each fitness evaluation to transform a skele-
ton into an EFSM.

We use a fitness function proposed in [7]. Its first compo-
nent fsc evaluates compliance of the EFSM with scenarios.
Each scenario is processed separately. Scenario elements are
passed to the EFSM and the resulting output sequence Âi is
recorded and compared with the reference output sequence
Ai. The overall expression for fsc has the form:

fsc =
1

|Γ|

|Γ|∑
i=1

1−
ED

(
Âi, Ai

)
max

(
len(Âi), len (Ai)

)
 ,

where |Γ| is the number of test scenarios, len(s) is the length
of sequence s and ED (s1, s2) is the edit distance [4] between
sequences s1 and s2.

The second component fLTL evaluates the compliance of
the EFSM with LTL properties. The verifier developed by
the authors of [7] allows to mark EFSM transitions that
are certainly not included in the counterexample – checked
transitions. The expression for fLTL is:

fLTL =
1

m

m∑
i=1

tichecked

treachable
,

where m is the number of LTL formulae, tichecked is the num-
ber of checked transitions for the i-th formula, and treachable

is the total number of transitions reachable from the initial
state.

The final expression for the fitness function takes into ac-
count the number of transitions in the EFSM and has the
form:

f = fsc + fLTL +
M − ntran

100 ·M ,

where ntran is the total number of EFSM transitions and M
is a number sufficiently larger than ntran.

4. EXPERIMENTS
To compare algorithms fairly we first used the irace [5]

package to tune parameters of GA and MuACOsm. A set of
100 random problem instances has been generated for tun-
ing. The process was allotted 12 hours for each algorithm,
the resulting parameter values were used in all following ex-
periments.

Experiments were conducted on inferring EFSM controllers
for an elevator doors model [7] (9 scenarios, 11 LTL for-
mulae, FSMs with 6 states) and an alarm clock model (38
scenarios, 9 LTL formulae, FSMs with 4 states)1.

For each algorithm two experiments were performed on
inferring EFSMs from scenarios only and also from scenarios
together with LTL formulae. Each experiment was repeated
1000 times, each run continued until reaching an optimal
solution (f = 2.0075 for the elevator doors and f = 2.0086
for the alarm clock). Mean and standard errors of used
fitness evaluation numbers are presented in Table 1, best
values for each case are highlighted in bold. These results
indicate that MuACOsm finds the optimal solution 5–15
times faster than GA. The statistical significance of these
results was validated using the Wilcoxon statistical test [8],

1All source code, scripts and other data used in the exper-
iments is included in supplementary material and is also
available at https://code.google.com/p/muaco/

Table 1: Mean numbers of fitness evaluations used
until reaching optimal solution

Elevator Alarm clock
Scenarios, GA 877 (330) 45714 (44160)
Scenarios,
MuACO

131 (38) 3011 (2719)

Scenarios+LTL,
GA

63199 (65321) 95516 (99036)

Scenarios+LTL,
MuACO

10997 (10260) 5797 (5075)

which gave p-values less than 2.2×10−6 for both “Scenarios”
and “Scenarios+LTL” cases.

5. CONCLUSION
We have applied the MuACOsm algorithm to the problem

of inferring EFSMs from specification. It was found that for
the examined elevator doors and alarm clock control prob-
lems MuACOsm yields a significantly better performance
than that of GA.

Acknowledgements
This work was financially supported by the Government of
Russian Federation, Grant 074-U01, and also partially sup-
ported by RFBR, research project No. 14-07-31337 ìîë_à.

6. REFERENCES
[1] T. Back, D. B. Fogel, and Z. Michalewicz, editors.

Handbook of Evolutionary Computation. IOP
Publishing Ltd., Bristol, UK, UK, 1st edition, 1997.

[2] D. Chivilikhin and V. Ulyantsev. MuACOsm: A New
Mutation-Based Ant Colony Optimization Algorithm
for Learning Finite-State Machines. In Proceedings of
the fifteenth annual conference on Genetic and
evolutionary computation, GECCO ’13, pages 511–518,
New York, NY, USA, 2013. ACM.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
checking. MIT press, 1999.

[4] V. Levenshtein. Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Soviet Physics
Doklady, 10:707, 1966.

[5] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and
M. Birattari. The irace package, Iterated Race for
Automatic Algorithm Configuration. Technical Report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de
Bruxelles, Belgium, 2011.

[6] A. Shalyto and N. Tukkel’. SWITCH Technology: An
Automated Approach to Developing Software for
Reactive Systems. Programming and Computer
Software, 27(5):260–276, 2001.

[7] F. Tsarev and K. Egorov. Finite State Machine
Induction Using Genetic Algorithm Based on Testing
and Model Checking. In Proceedings of the 13th Annual
Conference Companion on Genetic and Evolutionary
Computation, GECCO ’11, pages 759–762, New York,
NY, USA, 2011. ACM.

[8] F. Wilcoxon. Individual Comparisons by Ranking
Methods. Biometrics Bulletin, 1(6):80–83, Dec. 1945.

68

