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Abstract—Efficiency of evolutionary algorithms can be in-
creased by using auxiliary objectives. The method which is called
EA+RL is considered. In this method a reinforcement learning
(RL) algorithm is used to select objectives in evolutionary
algorithms (EA) during optimization. In earlier studies, rein-
forcement learning algorithms for stationary environments were
used in the EA+RL method. However, if behavior of auxiliary
objectives change during the optimization process, it can be better
to use reinforcement learning algorithms which are specially
developed for non-stationary environments. In our previous work
we proposed a new reinforcement learning algorithm to be used
in the EA+RL method. In this work we propose an improved
version of that algorithm. The new algorithm is applied to a
non-stationary problem and compared with the methods which
were used in other studies. It is shown that the proposed method
achieves optimal value more often and obtains higher values of
the target objective than the other algorithms.

I. INTRODUCTION

Important problems in evolutionary algorithms are avoiding

local optima and increasing genetic diversity. Extra objectives

can be used to overcome these difficulties [1], [2]. The

corresponding approach is called multiobjectivization. General

idea of multiobjectivization is described below.

A. Multiobjectivization

There are two methods of multiobjectivization. One of them

is based on decomposing the target objective into several

components, which are optimized simultaneously [1]. In this

method the components should be independent, but it is

not always easy or possible [1]. Another method is to use

some additional objectives that are used in combination with

the original objective [2]. This approach was successfully

applied to some practical problems, for example, the Job Shop

Scheduling Problem and the Traveling Salesman Problem [2],

[3]. At each step of the algorithm, one or several auxiliary

objectives are optimized [3]. There are methods of selecting

auxiliary objectives at each step of optimization exist. One

of them is to select auxiliary objectives in random order [2].

Another one is to use an ad-hoc heuristic [3]. The first

approach is general, but does not take into account any features

of an optimization problem, while the second one can be

Fig. 1. EA+RL objective selection method

applied only to a specific problem. The EA+RL method was

designed to deal with these issues [4].

B. EA+RL Method

In the EA+RL method, reinforcement learning [5] is used

to select an objective (fitness function in terms of an EA),

which is optimized in the current iteration of an EA. In RL,

an agent applies some action to an environment, then the

environment returns some representation of its state and a

numerical reward to the agent, and the process repeats. The

environment in EA+RL method is the EA. Each action of

the agent corresponds to an objective to be optimized at the

current iteration. The agent selects an objective from a set of

auxiliary objectives and the target objective. Note that we do

not aim to maximize the auxiliary objectives, they are just used

to increase the efficiency of the target objective optimization.

Generally, the goal of RL is to maximize the total reward [5],

calculated by formula E[
∞∑
t=0

γtrt], where γ — discount factor.

In the EA+RL method, the reward is based on the difference

of the target objective values in two sequential iterations [6].

Therefore, the total reward which is roughly equivalent to the

difference between the final and the initial values of the target

objective, is maximized. So the target objective is maximized

by RL and it is not necessary to explicitly optimize it by

EA. Therefore, on each iteration only the selected objective

is optimized by the EA. Hence, we can use a single-objective

EA which typically runs faster than a multi-objective EA.

The EA+RL method is illustrated in Fig. 1, where t is the

number of the current iteration of the EA. This method was

previously shown to be efficient for a number of problems [4].
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In previous studies, it was implied that the environment was

stationary. More precisely, the obtained reward depended only

on the applied action and the state of the environment. Con-

sequently, RL algorithms for stationary environments, such as

Q-learning, were used. However, in the case when properties

of auxiliary objectives depend on the stage of the optimization

process, the reward that is obtained as a result of the action can

be different in the same RL state. Therefore, RL algorithms for

non-stationary environments should probably be used. In our

previous work we analysed existing methods of reinforcement

learning in non-stationary environment [7]. The Reinforcement

Learning Context Detection (RLCD) algorithm is the closest

to our needs [8]. We have tried to apply the RLCD algorithm

in the EA+RL approach for solving the benchmark problem

but the experiments showed that RLCD was not efficient.

Therefore we proposed another RL approach.

C. Previous method for EA+RL in non-stationary environment

In our previous method ε-greedy Q-learning, which is a

model-free RL algorithm [5], is used. As in the conventional

Q-learning, at each iteration, the RL agent selects an action

a and applies it to the environment, which is in state s. Then

the expected reward estimation Q(s, a) is updated using the

obtained reward. The core idea of this method is to reset Q
values sometimes, i.e. set Q(s, a) equal to zero for all s and

a. It occurs if the following condition is fulfilled: |Q(s, a) −
Q(s′, a′)| < δ for some pair (s, a) and (s′, a′), where δ is some

constant, called distinction factor. This approach was tested on

a benchmark problem. The achieved results were better than

the results obtained using other considered methods.

In this work we propose improved version of the previous

approach. The rest of the paper is organized as follows. First,

the proposed method is described. Second, a new benchmark

problem is proposed. Then the experiments are described.

Finally, the proposed RL algorithm is compared with the

methods previously used in EA+RL.

II. METHOD DESCRIPTION

As in our previous research ε-greedy Q-learning is used.

However, another condition for resetting the Q values is used.

The pseudocode of the proposed approach is presented in

Algorithm 1. There are two conditions of resetting Q values.

The first condition is fulfilled if 1) the reward is less than or

equal to zero during some consequent iterations and 2) during

c1 of these iterations the reward is less than zero, where c1 is

some constant. In this case Q values are reset.

The second condition works for fitness functions with

plateaus. It is fulfilled if the reward is less than or equal to

zero during some consequent iterations and in c2 of these

iterations the reward is equal to zero, where c2 is some

constant. In this case Q values are reset with probability equal

to optimal−current
optimal , there optimal is the optimal value of the

target criterion, current is a value of the target criterion in

this iteration.

We assume the first condition indicates that the behavior

of auxiliary objectives have changed. The second condition

Algorithm 1 The proposed method

1: Form initial generation G0

2: Initialize Q(s, a)← 0 for each state s and action a
3: Initialize iteration counter: k ← 0
4: Initialize first reset counter: reset1 ← 0
5: Initialize second reset counter: reset2 ← 0
6: while (specified number of generations or maximum value

of target objective not reached) do
7: Evaluate current state sk and pass it to agent

8: Select action a : Q(s, a) = max
a′

Q(s, a′)
9: Generate next generation Gk+1

10: Calculate reward r and the next state s′

11: Q(s, a)← Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a))

12: Initialize reset identifier: reset← false
13: if reward is less than zero: r < 0 then
14: increment first reset counter: reset1 ← reset1 + 1
15: if reward is equal to zero: r = 0 then
16: increment second reset counter: reset2 ← reset2+1
17: if reward is greater than zero: r > 0 then
18: set first reset counter to zero: reset1 ← 0
19: set second reset counter to zero: reset2 ← 0
20: if first condition is fulfilled: reset1 = c1 then
21: reset← true
22: if second condition is fulfilled: reset2 = c2 then
23: set second reset counter to zero: reset2 ← 0
24: generate random number n from 0 to 1

25: if n ≤ optimal−current
optimal then

26: reset← true
27: if reset of learning is needed: reset = true then
28: set Q(s, a) for each s and a to zero : Q(s, a)← 0
29: set first reset counter to zero: reset1 ← 0
30: set second reset counter to zero: reset2 ← 0
31: Update iteration counter: k ← k + 1

shows that the EA got stuck in local optima. Also note that

in the end of optimization process finding a better solution

takes more steps. Therefore, we decrease the probability of

resetting Q values during optimization process. It prevents

frequent resetting of Q values in the end of the optimization.

III. BENCHMARK PROBLEM

We tested our method on the following non-stationary

benchmark problem, which is harder than the previously used

one [7]. In this problem, an individual is a bit string of length

n. Let x be the number of bits in an individual which are set to

one. Then the target fitness function (objective) is g(x) = �xk �,
where k is constant, k < n and k divides n. The auxiliary

objectives are h1(x) and h2(x), which are described below.

h1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, x ≤ p1

−x+ 2p1,

p1 < x ≤ p2

x, p2 < x ≤ p3

. . .

x, ps < x ≤ n

h2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x, x ≤ p1

x, p1 < x ≤ p2

−x+ 2p2,

p2 < x ≤ p3

. . .

−x+ 2ps,

ps < x ≤ n
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Fig. 2. Benchmark problem: fitness graph, g — the target objective, h1, h2 —
auxiliary objectives

Here, each pi is called a switch point, s is the number of

switch points. Note that at each switch point the behavior of

auxiliary objectives are changed. Objective hi can be negative

on [2pk−1, pk) if pk − pk−1 > pk−1. Due to implementation

needs fitness values should be positive, so the following

transform is used: hi(x) ← hi(x) + pk − 2pk−1 = −x +
2pk−1 + pk − 2pk−1 = −x+ pk. The auxiliary objectives and

the target objective are illustrated in Fig. 2. The h1 objective

helps optimization if x ∈ [0, p1], (p2, p3], ..., (ps, n] while the

h2 objective is efficient in all other cases. Note that using

the proper auxiliary objective allows to distinguish individuals

with the same value of the target objective and give preference

to the individual with higher x value. Such individual is more

likely to produce a descendant with a higher target objective

value. Ideally, for each EA iteration an auxiliary objective

which is increasing at the current interval of x values should

be selected. The main difference between this problem and

the previous one [7] is that in the case of selection inefficient

auxiliary objective the target objective value can be decreased.

So it is harder to solve the new problem.

Let us describe why this problem is non-stationary. The RL

state is a vector, the elements of the vector corresponds to the

number of a generation, average generation target objective

value and entropy of the generation fitness [9]. The number

of a generation is binned into four intervals on a logarithmic

scale. Average generation target objective value normalized

by ideal generation target objective value and binned into four

intervals. Entropy is binned into three equally sized discrete

states. Therefore, state is a vector of three numbers — numbers

of the corresponding intervals.

This state is independent of auxiliary objectives properties.

Also note that a lot of target fitness values corresponds to one

state. Therefore, the reward obtained as a result of selection

auxiliary objective h can be different in the same state s.

For example, consider a generation consisting of two in-

dividuals, let the ideal target objective value be 100, let

the maximal number of generations be 258. Consider the

following optimization steps:

• The current generation number is 100. The target objec-

tive values of individuals in generation are 80 and 78.

So the state is computed to 443 by formulas from [9].

The efficient auxiliary objective h1 is chosen. The target

objective values of individuals became 95 and 80, so the

reward is 15 and the new state is 443.

• The current generation number is 101. The state is

443. The auxiliary objective h1 changed its behavior

and became inefficient. However, the Q values have not

changed yet, so h1 is chosen. The target objective values

of individuals became 90 and 80, the reward is -5 the

new state is still 443.

In this example the reward that is obtained as a result of the

action h1 can be 15 and -5 in the same state 443. So we

showed that the same auxiliary objective can be efficient and

inefficient at the same state. Consequently, the problem is non-

stationary.

IV. EXPERIMENT DESCRIPTION

Several configurations of the formulated benchmark prob-

lem were solved using EA+RL with five different RL algo-

rithms. All the considered algorithms were run 100 times

on every problem instance, then the results were averaged.

Different values of individual length n were considered. Con-

figurations with 5 switch points and k = 10 were considered.

The maximum number of iterations was set to 5000.

There were 100 individuals in a generation. Mutation op-

erator flipped each bit with the probability of 0.001. Shift

crossover [10] was applied with the probability of 0.7.

Switch points were chosen in the following way. The first

point p1 was chosen randomly from (0, n). The second point

p2 had been being chosen randomly from (p1, n) until the

difference between p2 and the previously generated switch

points was less than 100. The other points were generated

similarly.

We tested five algorithms: the proposed method, our pre-

vious method [7], ε-greedy Q-learning [5], Delayed Q-

learning [11] and RLCD [8]. The ε-greedy Q-learning and

Delayed Q-learning algorithms were previously used in the

EA+RL method for various problems. Their parameters were

taken from [7]. For the ε-greedy Q-learning, learning rate was

set to α = 0.6, discount factor was γ = 0.01, exploration

probability was ε = 0.3. In Delayed Q-learning the following

parameters were used: update period m = 5, discount factor

γ = 0.01, bonus reward ε = 0.4. Parameters of our previous

method was set to α = 0.6, γ = 0.01, δ = 0.001. Parameters

of the proposed method was set to α = 0.6, γ = 0.01, c1 = 10,

c2 = 10.

The Wilcoxon rank sum test was performed to check if

the new algorithm and the other ones are distinguishable.

Statistical significance was tested at α = 10−2 level.

V. EXPERIMENT RESULTS

The average target objective values are shown in Table I as
optimal−average

optimal · 100%, where average is the average fitness,

optimal is the optimal value of the target objective. The first

column contains the length of an individual. The next five

columns contain the results achieved using new method, our
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TABLE I
AVERAGE TARGET OBJECTIVE VALUES OBTAINED USING DIFFERENT ALGORITHMS IN PERCENT UNDER THE OPTIMAL VALUE

Length New Previous Q DQ RLCD

750 0.56 1.60 (2.2×10−16) 0.64 (1.9× 10−1) 11.43 (2.2×10−16) 5.23 (2.2× 10−16)
1000 0.39 1.16 (2.2×10−16) 0.49 (7.7× 10−2) 4.23 (3.6× 10−16) 4.33 (2.2× 10−16)
1250 0.34 1.02 (2.2×10−16) 1.44 (2.4×10−15) 15.28 (2.2×10−16) 4.76 (2.2× 10−16)
1500 0.17 0.87 (2.2×10−16) 1.83 (2.2×10−16) 12.01 (2.2×10−16) 11.98 (2.2×10−16)
1750 0.27 1.14 (2.2×10−16) 1.97 (2.2×10−16) 16.56 (2.2×10−16) 8.37 (2.2× 10−16)
2000 0.78 1.55 (2.2×10−16) 2.00 (2.2×10−16) 14.54 (2.2×10−16) 6.92 (2.2× 10−16)
2250 1.07 1.59 (1.2×10−13) 1.98 (2.2×10−16) 21.91 (2.2×10−16) 15.39 (2.2×10−16)
2500 1.18 1.73 (2.2×10−16) 1.88 (2.2×10−16) 8.79 (2.2× 10−16) 16.05 (2.2×10−16)
2750 1.35 1.68 (3.2×10−12) 1.96 (2.2×10−16) 12.32 (2.2×10−16) 8.34 (2.2× 10−16)
3000 1.40 1.62 (1.2×10−11) 3.09 (2.2×10−16) 16.08 (2.2×10−16) 11.04 (2.2×10−16)
3250 1.45 1.52 (9.1× 10−5) 3.70 (2.2×10−16) 5.37 (2.2× 10−16) 18.06 (2.2×10−16)
3500 1.34 1.49 (3.0× 10−7) 3.97 (2.2×10−16) 10.33 (2.2×10−16) 12.79 (2.2×10−16)
3750 1.32 2.03 (4.0×10−16) 4.13 (2.2×10−16) 13.31 (2.2×10−16) 20.01 (2.2×10−16)

previous method, ε-greedy Q-learning, Delayed Q-learning

and RLCD. The grey background corresponds to be best result

for each problem instance. The deviation of the average fitness

in the case of using Delayed Q-learning is about 10%, the

deviation in the case of using the other algorithms is about

0.5%. For all analyzed problem instances the new method

outperforms previously used ones.

The p-values obtained when comparing the proposed

method with the other algorithms are presented in parentheses.

For our previous method, Delayed Q-learning and RLCD p-

values are less than significance level α, so the new method

is statistically distinguishable from these methods. For the ε-

greedy Q-learning p-values are less than α for the instances of

lengths greater than 1000, so the new method is statistically

distinguishable from ε-greedy Q-learning in this case.

The number of runs of the considered algorithms when the

optimal target objective value was reached is shown in Table II.

The first column contains the length of an individual. The

next five columns contain number of runs when the optimal

target objective value was reached using new method, our

previous method, ε-greedy Q-learning, Delayed Q-learning

and RLCD. For the problem instances of lengths less than 2750

the new method outperforms previously used ones. On the

other problem instances no algorithm reached optimal value.

TABLE II
NUMBER OF TIMES WHEN THE OPTIMAL VALUE OF THE TARGET

OBJECTIVE WAS REACHED

Length New Previous Q DQ RLCD
750 58 4 52 12 0

1000 61 0 51 15 0
1250 65 0 20 5 0
1500 76 0 0 1 0
1750 60 0 0 0 0
2000 60 0 0 0 0
2250 12 0 0 0 0
2500 2 0 0 0 0
2750 0 0 0 0 0

VI. CONCLUSION

An improved version of our previous reinforcement learning

approach was proposed. The proposed approach was used

to solve a benchmark problem. The Wilcoxon rank sum

test showed that the performance of the proposed method

is statistically distinguishable from the others. The achieved

results are better than the results obtained with our previous

method, ε-greedy Q-learning, Delayed Q-learning and RLCD

algorithms.
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