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Abstract. Worst-case execution time test generation can be hard if
tested programs use complex heuristics. This is especially true in the case
of the knapsack problem, which is often called “the easiest NP-complete
problem”. For randomly generated test data, the expected running time
of some algorithms for this problem is linear. We present an approach for
generation of tests against algorithms for the knapsack problem. This ap-
proach is based on genetic algorithms. It is evaluated on five algorithms,
including one simple branch-and-bound algorithm, two algorithms by
David Pisinger and their partial implementations. The results show that
the presented approach performs statistically better than generation of
random tests belonging to certain classes. Moreover, a class of tests that
are especially hard for one of the algorithms was discovered by the genetic
algorithm.

Keywords: knapsack problem, test generation, genetic algorithms,
worst-case execution time.

1 Introduction

What is the input data which makes your program work too long? What is the
maximum delay between an input event and an output action? These questions
are related to the problem of determining the worst-case execution time of a
program or a procedure.

It is impossible to write a program that determines the worst-case execution
time of an arbitraty program, as follows from the Rice theorem [17]. However,
one may hope to find an approximate answer. This makes it reasonable to apply
search-based optimization techniques, such as genetic algorithms, to the problem
of worst-case execution time test generation [3, 4].

Many works on evolutionary worst-case execution time test generation con-
sider the case of real-time software testing [2,10–12,18,19]. Another application
where worst-case execution time matters is test generation for programming
challenge tasks [7]. There are some papers on related topics of testing discrete
mathematics algorithms [5, 6] and SAT solvers [13].
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In many papers on worst-case execution time test generation, the execution
time is optimized directly. However, measurements of the execution time contain
noise introduced by the operating system scheduling and the measured time is
often proportional to a certain time quantity [7]. To overcome these difficulties,
paper [7] advises to instrument the tested code with special counters. Each of
these counters is associated with a loop or a procedure and incremented each
time the loop is entered or the procedure is called. The values of these counters,
as well as the execution time, serve as optimization objectives.

The 0-1 knapsack problem (will be referred to as simply knapsack problem in
the rest of the paper) is a well-known combinatorial optimization problem. N
items are given, each characterized by weight wi and profit pi, and a knapsack
with a weight capacity ofW . One needs to find a subset of items of the maximum
total profit that can be placed into the knapsack, i.e. to determine xi ∈ {0, 1}
such that

∑N
i=1 wixi ≤ W and

∑N
i=1 pixi is maximum possible.

The knapsack problem is weakly NP-hard [9], and is often called “the easiest
NP-problem”, because there exist algorithms that solve a large fraction of big
instances in polynomial (even linear) time [15]. In [8], a way to construct hard
test cases (in terms of the number of elementary operations) for a certain class
of algorithms is given as follows:

pj = wj = 2K+N+1 + 2K+j + 1,

where N is the number of items, K = �log 2N�, 1 ≤ j ≤ N .
In the test case construction scheme given above, weights and profits of items

are exponential in the size of the problem. However, it may happen that in a
particular setup weights and profits are bound by a constant, so such test cases
are no longer valid.

We present an approach based on genetic algorithms to generate test cases
against algorithms for the knapsack problem. The approach is compared with
random test generation according to some known patterns [15] and it is shown
that the evolutionary approach works statistically better. For one of the algo-
rithms, the genetic algorithm discovered a new class of hard test cases.

The rest of the paper is structured as follows. In Section 2, the algorithms
for the knapsack problem are described along with the fitness functions used
to measure their performance. Section 3 outlines the ways to generate random
test data for the knapsack problem, known from [15]. In Section 4, the genetic
algorithm is described that is used to generate tests against the algorithms for the
knapsack problem. Section 5 contains experimental results both for the genetic
algorithm from Section 4 and for random tests from Section 3. Some analysis of
the generated tests is included as well, which leads to a new class of knapsack
problems that are hard for one of the algorithms. Section 6 concludes.

2 Algorithms for the Knapsack Problem

This section describes the algorithms for the knapsack problem that are tested in
this paper.The first algorithm is a simple branch-and-boundalgorithm, calledSim-
pleBranch in this paper. The second one is the algorithm ExpKnap from [15].
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The third one is the partial implementation of the ExpKnap, that is, an imple-
mentation with several heuristics omitted, which makes it run slower than Exp-
Knap under certain circumstances. The fourth one is the algorithmHardKnap,
also from [15]. The fifth one is the partial implementation of HardKnap.

Below, we describe the SimpleBranch algorithm, outline the algorithms Ex-
pKnap and HardKnap and partial implementations of the two latter algo-
rithms. Performance measures of all these algorithms, which are used as fitness
functions, are also discussed.

2.1 Simple Branch-and-Bound Algorithm

We start with an algorithm which we call SimpleBranch. The ideas of the
algorithm are very simple and mostly come from common sense:

– sort the items in decreasing order of their profit-per-weight ratio (as is com-
monly done [15]);

– store the best known solution in a dedicated variable (initially an empty
solution);

– for each item, starting from the first one, first try to put it to the knapsack,
second try to put it aside;

– return from the current branch if the current profit plus the profit of the
yet-to-consider items is less than or equal to the profit of the best known
solution;

– don’t ignore an item if the maximum possible weight for the current state
does not exceed the knapsack capacity.

The algorithm is implemented as a single recursive function and a small num-
ber of preparation utilities. The amount of work for a single call to this function
is constant, however, the number of calls can be large. The performance measure
used for this algorithm is the number of calls to this function.

2.2 ExpKnap

The ExpKnap algorithm is described in detail in [15]. The name of the algorithm
comes from the concept of expanding core. Consider all items in decreasing order
of their profit-per-weight ratio. Let G be a solution to the knapsack problem
constructed by taking items to the knapsack starting from the first one while
the items can fit into the knapsack. The first item that does not fit is called the
break item.

The algorithm ExpKnap considers solutions to the knapsack problem en-
coded as differences from solution G (i.e. a set of elements that are present in G
but not present in the solution, or vice versa). The idea of the algorithm comes
from the fact that in most problem instances the elements that differ from so-
lution G are concentrated in a small area around the break item. This area is
called the core [15]. Enumerating all the possible solutions with a small fixed
core size is cheap. However, guessing the correct core size is a difficult problem,
and the ExpKnap algorithm solves it by expanding the core when needed.
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The partial implementation of the ExpKnap algorithm, which is used in this
paper along with the original ExpKnap algorithm, uses a simple core expansion
procedure, which just adds to the core the items that are adjacent to it. The orig-
inal algorithm uses a more complicated procedure, which may change the order
of elements to achieve better performance. It is thus expected to see the cases
when the partial implementation performs worse than the original algorithm.

Implementations of ExpKnap, similarly to SimpleBranch, contain a recur-
sive procedure which performs almost all computations. In both partial and full
implementations of ExpKnap, the performance measure is the number of calls
to this procedure.

2.3 HardKnap

The HardKnap algorithm is described in detail in [15]. This is an algorithm
from the dynamic programming family. It solves the knapsack problem by solving
subproblems of the following kind: enumerate all sets of items, which have indices
from L to R, such that no set is dominated by any other set. Set A dominates
set B if the profit of A is not smaller than the profit of B, while the weight
of A is not larger than the weight of B. A subproblem [L;R] can be solved by
solving two subproblems [L;M ] and [M + 1;R] and then merging the sets. For
the top-level problem [1;N ], one does not need to find all the sets — it is enough
to find a set with the larges profit and with a weight not exceeding the knapsack
capacity, which can be done in linear time.

The original HardKnap algorithm constructs upper bounds on the possible
solutions to the knapsack problem for each set and eliminates the sets for which
this bound is too low, thus reducing the number of considered sets and decreasing
the running time. The partial implementation of the HardKnap algorithm,
which is considered in this paper along with the original one, does not do this
kind of elimination. Effectively, this is an implementation of the Nemhauser and
Ullmann algorithm [14].

The performancemeasure for bothHardKnap implementations is the number
of set merge events. Each time the upper bound construction and filtering, which is
present in the original implementationbut ismissing in thepartial implementation,
makes the difference, the number of set merge events decreases, so we can compare
both implementations by comparing their performance measures.

3 Tests for the Knapsack Problem

There are several strategies to generate tests for the knapsack problems. We
consider three of them [15]:

– Uncorrelated Tests. In these tests, no dependency between weights and
profits of items is specified. To generate random tests of this sort, one may
set the weight w to a random integer between 1 and the maximum weight
Wmax, and set the profit p to a random integer between 1 and the maximum
profit Pmax.
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– Strongly Correlated Tests. The difference between the profit and the
weight of an item is equal to a small number d. To generate random tests of
this sort, one may set the weight w to a random integer between max(1, 1−d)
and min(Wmax, Pmax − d) and set the profit p = w + d.

– Subset Sum Tests. These are the tests where weights are equal to profits.
Such instances of the knapsack problem are also the instances of the subset
sum problem. To generate random tests of this sort, set the weight w to a
random integer between 1 and min(Wmax, Pmax) and set the profit p = w.

It should be noted that uncorrelated tests correspond to the general case, i.e.
no constraints are put on tests. As in [15], we choose the capacity of the knapsack
to be half the sum of weights of all items.

4 Genetic Algorithm

This section describes the encoding of a problem instance as an individual of
the genetic algorithm, the evolutionary operators that are used, and some other
settings of the genetic algorithm. The fitness functions to be used with different
algorithms for the knapsack problem have been described in the corresponding
subsections of Section 2.

We perform three series of experiments with the genetic algorithm, corre-
sponding to three considered types of tests (Section 3). The new individual
creation procedure and the mutation operator are different for each test type,
all other operators and settings remain the same.

There are three parameters imposed by the knapsack problem: the number of
items N , the maximum item weight Wmax and the maximum item profit Pmax.
For the strongly correlated test type, the difference parameter d is also used. All
these parameters are fixed during each run of an algorithm.

The individual is encoded as a list of items, where each item has a specified
weight and profit. As said in Section 3, the capacity of the knapsack is chosen
to be half the sum of weights.

The procedure of new individual creation creates a list of N items, where
each item is generated at random as specified in Section 3 for the corresponding
type of test.

The mutation operator works as follows. It selects a random item and
mutates it according to the procedure described below. Then it terminates with
the probability of 0.5, otherwise it repeats the process. Such operator is capable
of making an arbitrarily large mutation, but prefers small mutations. The single
item mutation procedure, depending on the test type, does the following:

– for uncorrelated tests — adds dw ∼ �N(0, 1) ·Wmax/3� to the weight, dp ∼
�N(0, 1) · Pmax/3� to the profit, and then fits the weight to the [1;Wmax]
interval and the profit to the [1;Pmax] interval.

– for strongly correlated tests — adds dw ∼ �N(0, 1) ·min(Wmax, Pmax)/3� to
the weight w, fits it to the [max(1, 1−d);min(Wmax, Pmax+d)] interval and
sets the profit to w + d.
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(7;8) (1;2) (2;3) (5;6) (4;5) (8;9) (9;7) (3;4) (6;7)

(1;2) (3;4) (9;7) (4;5) (2;3) (9;7) (6;7) (8;9) (7;8)

(7;8) (1;2) (2;3) (9;7) (6;7) (8;9) (9;7) (3;4) (6;7)

(1;2) (3;4) (9;7) (4;5) (2;3) (5;6) (4;5) (8;9) (7;8)

Fig. 1. Illustration of the two-point crossover with shift

– for subset sum tests — adds dw ∼ �N(0, 1) ·min(Wmax, Pmax)/3� to the
weight, fits it to the [1;min(Wmax, Pmax)] interval and sets the profit equal
to the weight.

The mutation operator is applied with a probability of 0.1.
The crossover operator is a two-point crossover with shift similar to the one

proposed in [5]. This variant of crossover also performed well in [7] on a problem
which is similar to the knapsack problem. This operator takes two individuals
and returns also two individuals. It selects an exchange length L randomly from
1 to N − 1. Then it selects offsets O1 and O2 for the first and second individuals
randomly and independently from 1 to N − L. After that, the subsequences
of length L at offset O1 in the first individual and at offset O2 in the second
individual are exchanged (see Fig. 1). The crossover operator is applied with a
probability of 1.0.

It is worth noting that, in the case of subset sum tests and strongly correlated
tests both mutation and crossover operators always produce tests of the type that
is equal to the type of the arguments. For example, a mutation test will produce
a strongly correlated test if a strongly correlated test is given. This means that
if the genetic algorithm is initialized with, for example, strongly correlated tests,
the results will be strongly correlated as well. In the case of uncorrelated tests,
that is, in the general case, tests can become structured spontaneously during
the evolution.

The reproduction selection is a variant of tournament selection. For each
individual to be selected, eight individuals are selected at random. Then the
individuals are grouped in pairs, and in each pair a tournament is conducted —
with a probability of 0.9, the individual with higher fitness wins. The process
is repeated with the winning individuals until only one is left. We borrow this
selection operator from [7]. The survival selection is the elitist selection with
the elite rate of 20%.

5 Experiments

This section describes the experiment setup and results.

5.1 Setup

In our experiments we considered three types of tests described in Section 3. For
each type and each algorithm for the knapsack problem, we compared the genetic
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algorithm with random test generation. To do that, we performed 100 runs of
each algorithm, and the number of fitness evaluations was limited to 500 000.
Thus, the computational budget was the same for random test generation and
for the genetic algorithm. For each run, the best individual is considered to be
the result.

The generation size in the genetic algorithm was set to 50. The knapsack
problem parameters were N = 20, Wmax = Pmax = 10000, the difference for
strongly correlated tests d = 5. We chose such a small problem size because we
wanted even the weakest algorithms to terminate in reasonable time.

The source code is available on GitHub [1].

5.2 Results

The minima, maxima, averages and means of best fitness values are presented
in Table 1 for all considered configurations. To measure statistical difference
between results for different configurations, the Wilcoxon rank sum test im-
plemented in the R system [16] is used with the alternative hypothesis set to
“greater” when the mean of the results for the first configuration is greater
than the mean for the second one, and to “less” otherwise. We reject the null
hypothesis if the p-value is less than 0.001.

Randomly Generated Tests. First, it can be seen that random uncorrelated
tests are very simple for all considered algorithms. Even for SimpleBranch the
average fitness value for random uncorrelated tests is approximately 10 times
smaller than for the hardest test found. On the other hand, random strongly
correlated tests and random subset sum tests are rather hard. Note that for Sim-
pleBranch strongly correlated tests are noticeably (p-value less than 2.2·10−16,
as reported by R) harder than subset sum tests, while for other algorithms subset
sum tests are harder (p-value less than 2.2 · 10−16 for ExpKnap, partial Exp-
Knap and partial HardKnap; p-value equal to 1.785 · 10−14 for HardKnap).

Random Tests vs. Genetic Algorithm. For each algorithm for the knapsack
problem and for each type of tests, we compared statistically the results for
random test generation and for genetic algorithms. For all configurations except
for two, the p-value was reported to be less than 2.2 ·10−16. For HardKnap and
strongly correlated tests, it was equal to 1.717·10−15, and for partialHardKnap
and subset sum tests, it was equal to 0.01209.

This means that the genetic algorithm consistently produces statistically bet-
ter results than random test generation. It seems that the small difference for
the last configuration can be explained by the fact that the hardest possible
problem instances (fitness value 15 119) were generated with high probability.
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Table 1. Experimental results

Optimizer Individual Min Max Median Mean Deviation

SimpleBranch

best of random
uncorrelated 90882 211530 108851.0 112820.74 17516.91

strongly correlated 773333 881402 804713.0 809474.83 23793.61
subset sum 671104 784717 708195.5 714033.65 27280.72

genetic
uncorrelated 520685 1048576 1048576.0 984013.90 157357.85

strongly correlated 1048576 1048613 1048576.0 1048584.09 8.77
subset sum 1048576 1048604 1048576.0 1048580.81 6.92

ExpKnap

best of random
uncorrelated 393 1269 539.0 583.51 165.13

strongly correlated 62627 156475 76391.5 84656.27 21268.04
subset sum 176555 447333 348194.5 337375.98 64381.87

genetic
uncorrelated 428298 688129 447746.0 496336.91 81824.28

strongly correlated 428298 512278 429182.0 459105.40 32676.90
subset sum 696321 699041 698881.0 698603.88 419.75

Partial implementation of ExpKnap

best of random
uncorrelated 492 2223 683.0 724.38 199.72

strongly correlated 63915 164171 80573.5 86059.53 21265.52
subset sum 154812 445699 322171.0 312934.88 77359.58

genetic
uncorrelated 369226 688129 447746.0 487032.44 72677.54

strongly correlated 428298 541348 485316.0 465577.64 32425.55
subset sum 698369 699009 698881.0 698726.52 260.21

HardKnap

best of random
uncorrelated 771 1252 941.0 963.03 104.89

strongly correlated 13700 14401 13789.0 13811.16 103.32
subset sum 13068 15113 15022.5 14645.37 756.27

genetic
uncorrelated 3686 11457 8075.5 7892.86 1885.56

strongly correlated 13682 15113 14062.5 14205.19 449.63
subset sum 15113 15113 15113.0 15113.00 0.00

Partial implementation of HardKnap

best of random
uncorrelated 5660 6970 6230.5 6278.98 333.20

strongly correlated 15054 15074 15054.0 15054.35 2.29
subset sum 15114 15119 15119.0 15118.80 0.94

genetic
uncorrelated 9859 13790 12318.5 12219.61 699.25

strongly correlated 15060 15114 15114.0 15113.46 5.37
subset sum 15119 15119 15119.0 15119.00 0.00

Partial Implementations. We cannot compare algorithms from different fam-
ilies by performance, but we can compare algorithms with their partial imple-
mentations. In this section, unlike the others, we use the two-sided alternative
hypothesis.

For ExpKnap algorithms, statistic analysis reports surprising results — it is
possible to distinguish the full and the partial implementations only at uncor-
related random tests (p-value is 1.83 · 10−12). For subset sum tests, p-values are
0.02643 and 0.01595 for random tests and the genetic algorithm correspondingly.
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For strongly correlated tests by the genetic algorithm it is 0.1346, and for other
configurations it exceeds 0.5. It can be deduced that the difference between the
implementations improves the average-case performance, but does not influence
the worst case.

For HardKnap algorithms, however, full and partial versions are always dis-
tinguishable (p < 2.2 · 10−16).

Hard Test Analysis. We analyzed the hard test cases for ExpKnap, because
the genetic algorithm constructs tests that are much harder than random tests.

The hardest test for ExpKnap with a fitness value of 699041 belongs to the
group of subset sum tests. It consists of five items with weight and value of 1,
three items of 34, one item of 83, two items of 265, one item of 335, two items
of 614, one item of 1696, two items of 3842, one item of 5887, and two items of
10 000. Many other hard tests from the same group feature many items of 1 and
of 10 000, but no particular structure is seen.

One of the hardest tests for ExpKnap among the strongly correlated tests
(fitness value 512278) has only two types of items: one item with weight 9596
and profit 9601 and 19 items with weight 3030 and profit 3035.

A small experiment was performed to test if the latter type of tests is hard
enough. For each algorithm, ten runs were performed, each for 100 000 fitness
evaluations. The best fitness for each algorithm was the same for all runs. For
SimpleBranch it was 1048576, for ExpKnap family — 541348, for Hard-
Knap — 799 and for partial HardKnap — 803. It appears that such tests are
hard, but not the hardest, for SimpleBranch and the ExpKnap family and
easy for HardKnap.

6 Conclusion

We presented an approach to worst-case execution time test generation for al-
gorithms solving the knapsack problem. This approach is based on genetic algo-
rithms. Statistical analysis of the experimental results showed that the genetic
algorithm consistently produces harder tests than random test generation.

A new class of tests for the knapsack problem was also found — tests with
two types of items — that appeared to be very hard for the ExpKnap algorithm
family, but they are easy for another algorithm, HardKnap.

This work was partially financially supported by the Government of Russian
Federation, Grant 074-U01.
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