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Abstract: In this paper we improve an earlier developed method of finite-state machine (FSM)
induction for controlling objects with complex behavior. This method allows to construct FSMs
with continuous (real-valued) output actions. A set of human-created training samples serves as
input data for it. We apply an ant colony optimization algorithm and a (µ, λ)-evolution strategy
for solving the problem as more effective than a genetic algorithm used in the initial method.
The modification of the method is evaluated on the problem of unmanned aircraft control.
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1. INTRODUCTION

Automata-based programming (see Polikarpova and Sha-
lyto (2009), Shalyto (2001), Gurov et al. (2007)), a rel-
atively new programming style, suggests to code com-
puter programs in a way similar to the automatization
of technological processes. A key component of automata-
based programs is a finite state machine (FSM), or an
automaton. One of the problems suitable for automata-
based programming is the problem of controlling objects
which are able to behave differently in response to the same
input data, or objects with complex behavior. An example
of such problem is the Artificial Ant problem (see Koza
(1992)).

For a variety of problems, including the Artificial Ant
problem, manual construction of FSMs is difficult. How-
ever, it is possible to automate the process of FSM con-
struction. For that, a performance criteria for FSMs is
defined. One way to do this is to introduce a fitness
function which maps FSMs to real numbers, such that for
better FSMs the value of the fitness function is greater.
There are plenty of search optimization algorithms such
as genetic algorithms or evolution strategies which can
be used for finding FSMs which maximize the fitness
function. Another approach, which does not use fitness
functions, is to define constraints an FSM must satisfy.
This approach was used in Heule and Verwer (2010) and
later in Ulyantsev and Tsarev (2012).

In Polikarpova et al. (2010), a genetic algorithm was ap-
plied to construct a Mealy FSM capable of controlling a
model of unmanned aircraft. In this approach fitness func-
tion computation was based on modelling FSM’s behavior

in a flight simulator, and a month was required to build
target FSMs with proper behavior. Later, in Alexandrov
et al. (2011) a fitness function based on training samples,
or tests, was used. This reduced the time required to build
a target FSM to several hours. The approach suggested
in Alexandrov et al. (2011) was also based on genetic
algorithms. However, it allowed to construct Mealy FSMs
with real-valued, or continuous, output actions as well as
with discrete ones. The input values, which are continuous
as well, are transformed to the predicate values used as
input events.

In the present work the approach suggested in Alexandrov
et al. (2011) is further developed. An ant colony optimiza-
tion algorithm and an evolution strategy are used to con-
struct FSMs controlling a model of an unmanned aircraft.
This approach shows better performance than approaches
described above. FlightGear (http://www.flightgear.org)
open-source flight simulator (see Fig. 1) is used for test
recording and FSM testing.

2. FINITE-STATE MACHINES

A finite-state machine is a sextuple (S,Σ,∆, δ, λ, s0),
where S is a finite set of states, Σ is a set of input events,
∆ is a set of output actions, δ : S × Σ→ S is a transition
function, λ : S ×Σ→ ∆ is an output function and s0 ∈ S
is a start state.

We define l predicates x1, ..., xl which map continuous
input flight data to Boolean values. There are 2l events
in Σ: two events xi and ¬xi for each predicate xi. Output
actions are real-valued, thus ∆ = RC where C is a number
of flight controls managed by an FSM.
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Fig. 1. FlightGear flight simulator (screenshot)
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Fig. 2. An example of a Mealy FSM with continuous
output actions (l = 2, C = 1)

When the FSM receives a new tuple of input data, the
predicate values are calculated. Then, for each predicate
xi, if there is a transition for xi or ¬xi (depending on
the predicate value) from the current state of FSM, this
transition is executed. An example of an FSM is shown in
Fig. 2.

3. PROBLEM DESCRIPTION

We consider a finite set of training samples, or tests, which
describe the behavior of the controlled object. Having the
tests, we want to construct an FSM capable of controlling
the object. We assume that all tests are human-prepared
and therefore may not show a perfect behavior of the
controlled object. In this paper we describe an FSM in-
duction method improvement: an ant colony optimization
algorithm and an evolution strategy are applied to the
problem of controlling an unmanned aircraft. To model
the behavior of the unmanned aircraft, we use FlightGear
flight simulator, which allows to record input values cor-
responding to the flight parameters (airspeed, altitude,
etc.) of the aircraft, as well as positions of flight controls
(ailerons, rudder, etc.), or output values.

Flight control positions can be characterized with values:
integral (for controls such as starter) or real (for controls
such as elevator or ailerons). To simplify the description of
the problem, from this point on we shall assume that all
these values are real. The control of the unmanned aircraft
is performed by FSM output actions which change the
flight control positions.

The FSM induction method presented in this paper is test-
based. Each test is a sequence of flight parameters and
corresponding flight control positions. In our work all tests
in a test set describe an aerobatic figure to be performed
by the FSM controlling the aircraft.

Now let us formalize the term test. Each test T [i] (i = 1..N ,
where N is the size of the test set), has its own length len[i]
as the number of time moments recorded. We define an
input tuple in[i][t] of the i-th test (i = 1..N) at time t (t =
1..len[i]) as a sequence of P real numbers corresponding
to the flight parameters of the aircraft recorded at time t:

in[i][t] = (in[i][t][1], ..., in[i][t][P ]) .

Similarly, an output tuple out[i][t] is a sequence of C real
numbers defining the flight control positions of the aircraft
at a specific moment:

out[i][t] = (out[i][t][1], ..., out[i][t][C]) .

For each control m we assume that all output tuple values
are bounded with a pair of numbers cmin

m and cmax
m :

cmin
m ≤ out[i][t][m] ≤ cmax

m , i = 1..N, t = 1..len[i],m = 1..C.

For instance, we expect the values of elevator to belong to
the segment [−1, 1].

During test creation, input tuples and corresponding out-
put tuples are recorded with a rate of 10 Hz. When an FSM
interacts with the flight simulator, it receives an input
tuple and generates an output tuple with the same rate.

To sum up, test T [i] is formed of two tuple sequences, in[i]
and out[i], each of length len[i]. An example of a test is
shown in table 1. The data for the test example is taken
from a real test.

Table 1. Test example for P = 4, C = 3

Sequence Description t = 1 t = 10 t = 20

in[i][t][1] Pitch angle (◦) 3.078 3.544 4.112
in[i][t][2] Roll angle (◦) −0.076 0.351 3.413
in[i][t][3] Heading (◦) 198.03 198.11 198.41
in[i][t][4] Airspeed (knots) 251.42 252.29 253.20
out[i][t][1] Aileron position 0.000 0.032 0.073
out[i][t][2] Rudder position 0.000 0.016 0.037
out[i][t][3] Elevator position −0.035 −0.039 −0.037

Each FSM transition is marked with events, represented by
Boolean formulae of the form xi or ¬xi, where xi is one of
the predicates. Each predicate value at time t may depend
not only on in[i][t], but also on in[i][t′], where 1 ≤ t′ ≤ t−1.
For instance, we can compute the value of “acceleration is
positive” predicate at time t by calculating the difference
between the aircraft’s velocities at times t and t− 1.

Consider some FSM receiving predicate values computed
on the input tuples of the i-th test. Each transition j
of an FSM is marked with its own output tuple uj =
(uj [1], ..., uj [C]), which corresponds not to the flight con-
trol values, but to the changes of them. The resulting out-
put tuples ans[i][t] = (ans[i][t][1], ..., ans[i][t][C]) produced
by the FSM are defined in the following way. The resulting
output tuple at time t = 1 is equal to the first output tuple
in the test:

ans[i][1][m] = out[i][1][m],m = 1..C. (1)

If transitions j1, ..., jl were executed at time t > 1, then

ans[i][t][m] = ans[i][t− 1][m] +

l∑
s=1

ujs [m],m = 1..C. (2)
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Thus, the resulting output tuple produced by the FSM
at time t is the sum of out[i][1] and output tuples of
transitions executed up to the moment t.

4. FSM INDUCTION METHOD

To generate an FSM which demonstrates behavior close
to the one given by tests, we use search optimization
algorithms. We start the description of the FSM induc-
tion method with the fitness function and the individual
representation. After that, a detailed description of the
algorithm implementations is given.

4.1 Fitness Function

The fitness function f , which is defined below, is a measure
of similarity of the FSM’s behavior and the behavior shown
in the tests. The less the difference between sequences
out[i] and ans[i] is, the more the value of f is. We define
f in the following way:

f(FSM) = 1−

√√√√ 1

N

N∑
i=1

d2i ,

where di is the distance between two output tuple se-
quences:

di =

√√√√ 1

len[i]

len[i]∑
t=1

1

C

C∑
m=1

(
out[i][t][m]− ans[i][t][m]

cmax
m − cmin

m

)2

.

4.2 Individual Representation

Consider all possible FSMs with M states and T tran-
sitions and assume transition tables are used. For each
transition the output tuple, which is formed by C real
numbers, should be defined. If we used FSMs as individuals
for search optimization algorithms, the search space would
become continuous and rather huge.

However, in Alexandrov et al. (2011) a transition labeling
algorithm was suggested that, given the transition func-
tion, finds the output function which maximizes the value
of the fitness function f . Using equations 1 and 2 to expand
the values ans[i][t][m] for different i, t and m, and taking
the partial derivatives of f with respect to uj (j = 1..T ),
it is possible to get a linear equation system

∂f

∂uj
= 0 (j = 1..T ),

which is solved by the algorithm. The running time of the

transition labeling algorithm is O
(
T 3 + T 2

∑N
i=1 len[i]

)
.

Further we will refer to an FSM with only the transition
function defined as to the FSM skeleton. Thus, the way to
reduce the search space size is the following: FSM skele-
tons are used as individuals and the transition labeling
procedure is executed for each generated skeleton.

Later, if A is an FSM skeleton, f(A) will denote the fitness
function of the FSM formed from A by defining the output
tuples.

Fig. 3. A part of the construction graph. Arcs are marked
with pheromone values and fitness function values are
shown inside the circles. A possible ant path is shown
with solid arrows

4.3 Optimization Algorithms

In this paper we apply an ant colony optimization algo-
rithm and a (µ, λ)-evolution strategy to construct FSMs
with appropriate fitness values. The performance of these
algorithms is compared to the performance of the genetic
algorithm earlier used in Alexandrov et al. (2011).

We will further call some FSM skeleton A better than some
other FSM skeleton B if f (A) > f (B). Recall that output
tuples are assigned to FSM skeletons automatically once
they are generated.

Ant colony optimization algorithm. Ant colony opti-
mization (ACO) was originally proposed in Dorigo (1992).
In the present work, we apply an ACO-based algorithm
suggested in Chivilikhin and Ulyantsev (2012).

In this algorithm, the search space, which is the set of all
FSM skeletons with given number of states, is represented
in the form of a directed graph G called the construction
graph. The nodes of G are associated with FSM skeletons
while the arcs of G are associated with small changes in
skeletons – mutations. For our problem, we have chosen the
mutation to be a change of one of the skeleton’s transitions.
Thus, there is an arc between each pair of FSM skeletons
which differ in a single transition. The graph is initialized
with a single vertex and is enlarged during the algorithm.
An example of a part of the construction graph is shown
in Fig. 3.

At each iteration of the algorithm Nants ants are placed at
some vertices of the graph, and then they move searching
for individuals with high fitness values. Each ant remem-
bers the best (in terms of fitness value) vertex it visited.
The path produced by the ant which found the best vertex
of all vertices visited by ants is used to place new ants
at the next iteration of the algorithm (ants are randomly
placed along this path). Each ant’s path is formed accord-
ing to the following rules (assume the ant is in the vertex
v).

(1) With a probability of pnew the FSM corresponding to
v is mutated to get Nmut new neighbors of v which
are added to G with the arcs from v to them. The ant
selects the best vertex among the new neighbors and
moves to it.

(2) Otherwise, the ant moves to one of the existing
neighbors of v. The probability of moving to some
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neighbor u is proportional to the pheromone value of
the arc vu.

Each arc uv has its own pheromone value τuv which is
updated at the end of each iteration of the algorithm
after all ants made their paths (an ant stops making its
path after it visits Nstag vertices without the fitness value
increase) according to the formula:

τ ′uv = ρτuv + τbestuv ,

where ρ is the evaporation rate and τbestuv is the best
pheromone value deposited on the arc. If uv belongs to
the prefix of an ant’s path ending with the best vertex w
on it, τbestuv is updated by the value increasing with the w’s
fitness.

In our implementation we used the following parameter
values: Nants = 4, Nstag = 40, Nmut = 35, pnew = 0.25,
ρ = 0.35.

Evolution strategy. Evolution strategies (ES) (see Back
et al. (1991)) are algorithms operating with a set of
individuals called a generation. There are two types of ES:
so-called (µ, λ) and (µ + λ)-ES, where µ, λ ∈ N. For each
type of ES, the generation size is µ and λ new individuals
are generated at each iteration. The only operation used
to acquire new individuals is the mutation of individuals
from the current generation. At the end of each iteration
of a (µ, λ)-ES, a new generation is formed from µ best
mutated individuals. In contrast, in a (µ + λ)-ES µ new
individuals are chosen from both the current generation
and mutated individuals.

We have found that a (50, 500)-ES shows the best perfor-
mance on the problem stated in comparison with other
evolution strategies inspected.

Genetic algorithm. Genetic algorithms (GA) (see Koza
(1992)) are similar to evolution strategies in the way
that both algorithms operate with generations. In GA,
new individuals are generated not only using mutations,
but also using a crossover operator which forms a new
individual from two existing ones. The selection operator
forms a new generation from the current one.

In this work, the implementation of GA is similar to the
implementation used in Alexandrov et al. (2011). We use
300 as the generation size, 30 as the number of elite
individuals, the uniform crossover and the tournament
selection operators.

5. EXPERIMENTAL EVALUATION

In this section the experimental evaluation of the described
method is presented and the performance of used search
optimization algorithms is analysed.

5.1 Aerobatic Figures

The presented method was tested on two aerobatic figures:
the Nesterov loop and the barrel roll (360◦ clockwise
rotation around the roll axis). Computer simulation was
used to record tests and to model the behavior of generated
FSMs.

Fig. 4. Trajectories of the aircraft in several tests of the
Nesterov loop test set

Fig. 5. Trajectories of the aircraft in several tests of the
rotation test set

For the Nesterov loop, a model of the Piper PA34-200T
Seneca II was used. For the barrel roll, we used a model
of the Gloster Meteor, a jet fighter, as this aerobatic figure
was impossible to perform by a civil aircraft. Two sets
of 23 and 28 tests were recorded for the Nesterov loop
and the barrel roll respectively. We note that the tests
for the barrel roll did not show perfect figure execution:
the aircraft did not hold the initial altitude and heading
well. Trajectories of the aircraft in several tests from the
training sets are shown in Fig. 4 and 5.

We used eight predicates for the Nesterov loop and six
predicates for the barrel roll to map the continuous input
values recorded in the tests to Boolean ones. In Fig. 6 the
aircraft’s pitch at different times is shown for several tests
of the barrel roll test set. In it you can see a graphical
interpretation of two predicates:

(1) x1 (t) = (|pitch (t)− pitch(1)| < 2);
(2) x2 (t) = (pitch (t) > pitch (1)),

where pitch(t) is the aircraft’s pitch angle at time t. In
the barrel roll three flight controls were used: elevator,
ailerons and rudder. Fig. 7 shows the time dependence of
the aircraft’s elevator position for the same tests.

5.2 Results

As mentioned before, a genetic algorithm was earlier
applied to solve the problem. However, the time required
to build an FSM showing good performance was about
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Fig. 6. Pitch time dependence for several tests. Four areas
of the pitch axis are annotated with predicate values

Fig. 7. Time dependence of the elevator position for several
tests

several hours. To reduce the number of fitness function
evaluations performed by a search algorithm, the ACO
algorithm and the ES were implemented.

For both aerobatic figures and corresponding test sets, 25
runs of all three search optimization algorithms (ACO,
(µ, λ)-ES and GA) were executed. Every run was stopped
after 105 fitness function evaluations, which took about 17
or 21 minutes for different test sets. The algorithms were
searching for FSMs with M = 4 states, which was enough
to get an appropriate FSM behavior. Tables 2 and 3 show
the run statistics of the search optimization algorithms.
There are several fitness values in the left columns of the
tables. The numbers of runs in which these fitness values
were reached are presented in the three right columns of
the tables. On average, the quality of FSMs with lowest
and highest fitness values from the left columns of the
tables was different.

From the presented statistics we conclude that both ACO
and ES outperform the GA. Moreover, the performance of
the ACO-based algorithm is better than the performance
of the ES.

Table 2. Number of runs in which the fitness
values were reached (out of 25) on the Nesterov

loop test set

Fitness value ACO (µ, λ)-ES GA

0.9890 11 8 0
0.9887 21 18 2
0.9884 24 24 8
0.9881 24 24 17
0.9878 24 24 21

Table 3. Number of runs in which the fitness
values were reached (out of 25) on the barrel

roll test set

Fitness value ACO (µ, λ)-ES GA

0.9884 8 3 0
0.9882 23 18 5
0.9880 25 24 15
0.9878 25 24 19
0.9876 25 24 24

An Intel Core 2 Quad Q9400 processor was used in the
experiments. With all four cores of the processor involved
in the computation (multiple fitness function evaluations
were performed in parallel), the average run time of ACO
and ES was about 21 minutes on the barrel roll test set
and about 17 minutes on the Nesterov loop test set. The
difference of the run times is mainly due to the different
sum lengths of the test sets. In most cases, one or two runs
of one of these algorithms were enough to build an FSM
with an appropriate fitness value, i.e. the fitness value was
enough to control the aircraft.

5.3 Results Analysis

FSMs induced by the search optimization algorithms were
tested in simulation. For both aerobatic figures, the Nes-
terov loop and the barrel roll, more than 90% FSMs with
the highest fitness function values from different runs of
ACO and ES were capable of controlling the aircrafts (it
was concluded that the FSM was capable of controlling
the aircraft if five out of five figure executions performed
in simulation were successful).

FSMs made minor errors in the end of figure executions,
i.e. the aircraft’s roll or pitch angles were not close enough
to zero. However, we conclude that it is possible to fix such
faults with one of the following approaches:

(1) the endings of the tests can be recorded more accu-
rately;

(2) it is possible to find predicates better than the ones
that were used;

(3) the figure endings can be detected automatically
and the control can be transmitted to another pre-
constructed FSM that stabilizes the aircraft’s flight.

A screenshot of the Gloster Meteor performing the barrel
roll, as well as the FSM controlling it, is shown in Fig. 8.

6. CONCLUSION

The problem of test-based construction of finite-state ma-
chines with continuous output actions is considered in the
paper. The method introduced in Alexandrov et al. (2011)
is improved by the use of an ant colony optimization al-
gorithm and a (µ, λ)-evolution strategy. These algorithms
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Fig. 8. Screenshot of the Gloster Meteor performing the
barrel roll under control of an FSM shown on the
right. The current state of the FSM is marked with a
bold circle

were found to show better performance on the problem of
unmanned aircraft control than the genetic algorithm used
in Alexandrov et al. (2011).
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