Learning Finite-State Machines with Classical anc
Mutation-Based Ant Colony Optimization:
Experimental Evaluation

Daniil Chivilikhin

Vladimir Ulyantsev

St. Petersburg National Research University of InfornrmatioSt. Petersburg National Research University of Informmatio

Technologies, Mechanics and Optics
Computer Technologies Department
St. Petersburg, Russia
Kronverksky pr., 49
Email: chivilikhin.daniil@gmail.com

Abstract—The problem of learning finite-state
machines (FSM) is tackled by three Ant Colony
Optimization (ACO) algorithms. The first two classical

ACO algorithms are based on the classical ACO combinatorial
problem reduction, where nodes of the ACO construction graph
represent solution components, while full solutions are built
by the ants in the process of foraging. The third recently
introduced mutation-based ACO algorithm employs another
problem mapping, where construction graph nodes represent
complete solutions. Here, ants travel between solutions to find
the optimal one.

In this paper we try to take a step back from the mutation-
based ACO to find out if classical ACO algorithms can be used
for learning FSMs. It is shown that classical ACO algorithms are
inefficient for the problem of learning FSMs in comparison to
the mutation-based ACO algorithm.

Keywords—ant colony optimization, finite-state machine, learn-
ing, induction

I. INTRODUCTION

Technologies, Mechanics and Optics
Computer Technologies Department
St. Petersburg, Russia
Kronverksky pr., 49
Email: ulyantsev@rain.ifmo.ru

or minimum cost path in the construction graph. Nodes of
the construction graph represent solution componentsiewnhi
full solutions correspond to paths in the graph. For problem
mappings performed in this canonical manner and for certain
types of ACO algorithms such aCOys -, [4], convergence

in value has been proven. That is, it was shown #h@Oys -,

will find some optimal solution if given enough resources.

In this work we show that the canonical mapping and
classical ACO algorithms with proven convergence are inef-
fective for the problem of learning FSMs. Another recently
introduced ACO-based algorithm [5] produces more prorgisin
results, though no convergence guarantees currently. exist
The benchmark problem we consider is the Artificial Ant
problem [6], which is quite commonly used in SBSE.

Il. LEARNING FINITE-STATE MACHINES

A finite-state machine is a six-tupléS, sg, X, A, J, \),
where S is a set of statessy € S is the start state) is a set

Ant colony optimization [1] is a metaheuristic inspired ¢ input events and\ is a set of output actiond.: Sx % — S

by the foraging behavior of ants. In this paper we USEg the ransitionsfunction and\ : S x & — A is the actions
ACO to tackle the problem of learning FSMs, which playsnction, An example of a finite-state machine is shown on
a key role in the area of automata-based programming [2 Fig. 1.

This programming paradigm proposes to use FSMs as key
components of software systems. The approach is partigular
useful for systems with complex behavior, i.e. systemsd¢hat
react differently to the same events depending on the Kistor
Examples of such systems are network protocols and control
systems. However, manual construction of FSMs for such
systems can be hard or even impossible. Therefore, search-
based software engineering (SBSE) methods are used. One of
the greatest advantages of automata-based programmimaj is t
programs designed using this paradigm can be automatical
verified [3], which is impossible for other types of programs
That is, one can automatically check temporal logic (1.,
Linear Time Logig properties.

ig. 1. An example of a finite-state machine with two states, éwents
)f", A) and a single output action.

Quality evalutation of FSMs is encapsulated into a real-
valuedfitness functiory. The closer the FSM’s behavior to the

ACO uses a special graph called ttenstruction graphto  desired one, the larger the value fof Thus, the FSM learning
build solutions. In order to solve an arbitrary combinatbri problem is: given the number of stat@g;,es Set of input
problem with ACO, it is typically reduced, or mapped, to eventsX and set of actiong\ find a FSM with parameters
another problem in which the goal is to find a maximum (Nguates 2, A) with a large enough fitness function value.



The problem of learning FSMs and other types of automataalgorithm iterations, a fixed number of fithess evaluations o
such as finite-state transducers (FST) and definite finite awconvergence of a fixed number of ants to the same path.
tomata (DFA), is commonly solved using various metaheuris-
tic techniques. For instance, in [7] a random mutation hill
climbing evolutionary algorithm is applied to the probler o
learning deterministic finite automata, which are somewha
similar to finite-state machines, from sets of labeled gfin
The same authors use evolutionary algorithms to learn finit
state transducers from test examples [8]. In [9] a geneti
algorithm is applied to learning extended finite-state nireeh
from test examples antTL-formulae. Finite-state machines
are learned with an evolutionary algorithm in [10] for the
Competition for Resources problem.

On the first step calledConst ruct Ant Sol uti ons a

colony of ants traverse the graph to build solutions. Each

ant is placed on some node of the construction graph. The

ant adds components to its current solution by traversieg th

egraph until it has built a complete solution. It selects the

Qext node to visit according to some probabilistic rule. $Ant

continue traversing the graph until each of them has built a

complete solution to the problem. On the second step called

Updat ePher onbnes pheromone values on connectiohs

are updated. A particular pheromone value can increase if th

edge it is associated with has been traveled by an ant or it
The authors of this paper recently introduced a new methodan decrease due to pheromone evaporation. The third ste

of learning FSMs called MuAC&m which is based on ant calledDaenonAct i ons is optional. It can be used to perform

colony optimization. This new method was compared withoperations that cannot be executed by individual ants,ilplgss

a number of evolutionary techniques for learning FSMs orusing domain knowledge.

several benchmark problems [5], [11], [12] and proved to

be more effective than genetic algorithms and evolutipnar)B' Classical Problem Reduction

strategies. However, no attempt was made to learn or induce

finite-state machines using classical ACO yet. In this paper In our problem statement defined in the previous section,

we provide a way to apply classical ACO algorithms to thethe set of candidate solutiorfs is the set of all FSMs with

problem of learning FSMs and compare out mutation-basegarameters|S| = Nsuares 2, A) and the objective functiorf

ACO method with classical ACO algorithms. is the fitness functionf. The constraints2 are that a FSM
has to be deterministic, that is, it should contain exactig o
I1l. CLASSICAL ACO FORLEARNING FSMs transition for each start statec S and evente € X. The
set of componentg’ is defined as a set of all possible FSM
A. General Scheme of Classical ACO Algorithms transitions:
Classical ACO algorithms, as described in [1], tackle C={t="{ijea),ijcSecsacA}, (1)

combinatorial problems formalized {&S, f, Q) whereS is a o . ‘ _
wherei € S is the transition’s start statg,c S is the end state,

set ofcandidate solutionsf is theobjective functiorandis . ¢ 53is an event and € A is an output action. Therefore, the
a set ofconstraintsdefining feasible candidate solutions. The construction graphG contains exactlyC| = [S|2 - S| - |A|

goal is to find a globally optimal feasible solutian. nodes. The set of connectiopdully connects the components.

This combinatorial problem is mapped on anotherAn example of the described construction graph is given in
problem defined in the following way. LetC = Fig. 2. Solid edges of the construction graph represent a
{c1,...,cx} be a finite set ofcomponentsand X = possible path of a particular ant that built the FSM from Hig.
{z ={ciy,Cipy -1 Cipy---), 2] <M < 400} be a set oprob-

lem states Then, the set of feasible candidate solutichis

a subset ofX. X C X is a set of feasible states, i.e. states
x € X that can be completed to a solution satisfying the
constraints2. The set of feasible solutions 5= X NS and

S* C S is a non-empty set of optimal feasible solutions. Next,
the construction graphG¢ = (C, L) is a graph with a set of
nodesC and a set of connections which fully connectC.
The goal in the mapped problem is to find a maximum cost
path with respect tgf which satisfies the constrainf$ and
corresponds to a feasible solution.

252 [T/2]

In ACO each connection, or edges, v) of the construction
graph has an associat@theromone value,, and can have
an associatedheuristic informationn,,. Pheromone values
play a role of the colony’s long-term memory, while heuris-
tic information represents some apriori knowledge aboet th
problem. Solutions are built by agents called ants, whieh ar
probabilistic procedures determining how to add companentrig. 2. An example of classical ACO construction graph fortésg FSMs
to the current solution depending on pheromone values and
heuristic information. An ACO algorithm typically consist To implement the constraints, theth ant uses its internal
of three steps that are repeated until an optimal solution isnemory to store its path of traversed compondijtsLet the
found or the resources allotted to the algorithm are deglete k-th ant be located at nodec C' with a set of adjacent nodes
Examples of such stopping criteria include a fixed number ofV,,. The ant first scans its memory along with, and forms a



set of componentd/,, such that no transitione N,, has a start the construction graph correspond tioutationsof FSMs —
statey € S and event € X wheredr € LF: r.i = yAr.e = e. small changes in the FSM structure. Two FSM mutation types

The next node € N, is selected with a probability: are used: for a random transition in the FSM we change either
o the action performed on this transition or the state it lelads
Dy = ——1uv__ (2)  The ants travel between solutions by mutating FSMs assatiat
- Tiw with construction graph nodes.
wEN,

. . . More formally, nodes, andv of G can be connected with
wherea € (0, +co) is a parameter representing the signifi- 5 eqge(u, v) if FSM A, associated withy can be acquired
cance of pheromone values. This equation does not take inid,, EsMm A, associated with using one mutation operation.

account heuristic information because there seems to be r@onsequently any FSM can be transformed into any other
meaningful way to define it for the problem of learning FSMS gy with certain” mutations. Therefore, a fully constructed

with canonical mapping. graphG will contain a path of mutations connecting any two
_ _ FSMs. However, full construction off is infeasible since it
C. Classical ACO Algorithms Used would effectively lead to performing a brute force search. A

We use the Elitist Ant System (EAS) algorithm [13] and the €xample of the construction graph used in MuAshs shown
ACOys -, algorithm [4]. Both algorithms follow the general on Fig. 3. Each edge of the_grgph is marked with a mutation
scheme described in section IlI-A. A colony Bk ants is  “Wrten in the following notation:
used to construct solutions. The optiorizdenonAct i ons

procedure is not used in either of the algorithms. * Tr:(s1,e) — s means that the end state of transition

from states; with evente has to be set to state;
On every iteration on th&€onst r uct Ant Sol uti ons
step each ant traverses the construction graph until itl$uil
complete solution, i.e. a deterministic FSM. On each step th
ant selects the next node of the construction graph from the
successor nodes of the current node with respect to camtstrai
The probability of selecting a particular node is calculate
using equation (2).

e Out: (s1,e) — 2z means that the output action of
transition from states; with evente has to be set
to actionz.

The Updat ePher onbnes procedure in the considered S Tri(1,T)—> 2 [Out: (2, A) > z1
algorithms is as follows. In the EAS the best-so-far sohtio
sPestdeposits pheromone along with all solutions on the current @ @
iteration. Pheromone values are updated according to the

formula:

Nants
Tuw = (1 = p)Tuw + Z ATE + weyiy - ATPES (3)
k=1

\
I
where weir € [0, 1] defines the weight of the elitist solution, |
1

p € ]0,1] is the pheromone evaporation rate, // Out: (1, T) — 22/
S u,v) € L¥
a1ty ={ st @ ©
0, otherwise
and Fig. 3.  An example of a small part of the construction graph used
best F(s%, (u,v) € LY MuACOsm
A7-’LL’U = H Y (5)
0, otherwise

. . _ , The construction graph is initially empty. First, a ran-
where s, is the k-th solution on the current iteration and §om initial FSM with a fixed number of statedgares i
Ly*tis the set of connections traversed by the best-so-fagenerated. This is done by choosing a random action and
ant. Pheromone update iHCOys r,, is similar, but only  gestination state for each FSM state and input event. The
the best-so-far solution deposits pheromone wittyy = 1.  random solution is added to the construction graph and be-
Furthermore, pheromone values in both algorithms are keglymes its first node. The@onst r uct Ant Sol ut i ons and
above a lower bound,, which was chosen to equal @1 pgat ePher onones procedures are executed until an opti-
in all performed experiments. mal solution is found or computational resources are deglet

IV. M UTATION-BASED ACO FOR LEARNING FSMs On the Const ruct Ant Sol uti ons step, all ants are
first placed on the node associated with the best-so-fatigolu

The mutation-based ACO, which was first introduced in [5]Each ant, being located at nodeuniformly randomly selects

for learning FSMs, uses a different type of problem mappingone of the following rules for determining the next node.
even though it resembles classical ACO in the way solutions

are constructed. In the mutation-based ACO for learning §SM 1)  Construct new solutions The ant constructs exactly
called MUACGsm nodes of the construction graghrepresent Nmut mutations of its current solution associated with
complete solutions instead of solution components. Edfes o nodewu. Each mutated solution is added to the graph



G, if not already present there: a new nadis con-
structed and connected towith edge(u, t). The ant
selects the best constructed node, i.e. node associated
with a FSM with the largest fithness function value,
and moves to that node.

2) Probabilistic selection The next nodey is selected
from the set of adjacent node$, according to the
formula:

Ti?v ) ngv 6

e (6)
D Ty Nuw

wWEN,,
where,,, = maz (nmin, f(v) — f(u)) and
a,B € (0,400) are parameters representing the
significance of pheromone values and heuristic in-
formation respectively. Fig. 4. The Santa Fe field

Pv =

Termination conditions for individual ants and the whole
colony are defined in the following way. Each ant is allowedB. Tuning Algorithm Parameters

to mak t without an incr f it t fitn
0 MAKE Nstag SIEPS out an increase of its bes €SS parameter values for the EALCOps -, and MUACGEM

value before it is stopped. Similarly, the colony is giv&gag lected b formi full factorial 1 "
iterations to run without an increase in the best fitnessevalu'Vere SEI€cted Dy performing a Iull factorial experiment -con
sidering the Artificial Ant problem withspmax = 600 and

fore the algorithm is restarted. h colony iterat - X ; :
before the algorithm is restarted. On each colony iteratter FSMs consisting of five states. For tuning each algorithm we

all ants have finished building solutions, pheromone vahres lected certain levels of h ter I d @
updated by théJpdat ePher omones procedure as follows. SE'€CleC certain Ievels or each parameters vajue an cu
For each graph edge:, v) we storer?®s'_ the best pheromone the algorithm with all parameter value combinations. Each
’ uv H i _
value that any ant has ever deposited on this edge. First, f§l90rithm was run 50 times on each parameter value com
pation. Each run was limited to a maximum of 30000 fithess
evaluations. To assess the successfulness of the algeritlem

each ant path we select a sub-path that spans from the st

to th t node in the path an te values?®¥ on it e . . .

0 the best node e path and update values B on its used thesuccess ratewhich is defined as simply the ratio of
experimental runs in which an optimal solution with a fitness

edges. Then, for each graph edgev) pheromone values are
value greater than or equal to 89 was found. The parametel

updated according to the formula:
Tuv = (1 — p)Tuw + Tfjﬁsr. (7)  value sets were compared according to the success rate ove

L . , these 50 experiments.
For more detailed information about MUAG@ and its com-

parison with different evolutionary computation techrégu After performing the full factorial experiments for each
see [12]. algorithm we selected the parameter value sets that yield

the highest success rates. The total tuning times E3892
seconds forACOgs .., 66346 seconds for EAS and1174
seconds for MUAC®m That means that the classical ACO
A. Artificial Ant Problem Description algorithms were given more time for tuning which theordtjca

i . , uts them in a more favorable position than MuA€@which
In tr|1|e Art|f|C|ri1|I_ Ant problem [6] the goal is :CO bU"g an FSM 5sed the least time for tuning '?he parameter value leveld us
optimally controlling an agent in a game performed on square . : : . .
toroidal field divided into32 x 32 cells. The field contains % the full factorial experiments are listed in Table |. Rasder

89 pellets of food, or apples, distributed along a certai. tr values that were selected as the best are highlighted in bold

V. CASE STUDY: ARTIFICIAL ANT PROBLEM

The al’lt |S |n|t|a”y |Ocated Il’l the |eftmOSt Upper Ce” and |S TABLE I. FULL FACTORIAL DESIGN OF EXPERIMENT SETUP
“looking” east. It can determine whether the next cell corga PARAMETER VALUE LEVELS FOR ALL ALGORITHMS
a piece of food (event’) or not (event' F). In this work we Parameter | ACO - — RS Ao
use the Santa Fe field shown on Fig. 4 instead of the John 7 05,05,0.9 [ 0.1,0500 | 0.5,0.5,00
Muir field originally used in [6] and considered in [5]. Black Nants 1,5,10 1,5,10 5,10
cells contain food, white cells are empty and gray cells ctepi p L35 L35 Lo
the optimal trail. weit - 0.1,0.5,09 | -
Nstag - - 5,10, 20

The goal is to build a FSM controlling the ant that will Nstag - - 5,10, 20

allow it to eat all 89 pellets of food iBmax Steps. On each step Z])VHZ;‘ - - o

the ant can turn left (actioi), turn right (actionR) or move

forward (actioni/). If the cell to which the ant moves contains
a pellet of food, the ant eats it. We use a fitness function thaC. Experiments
takes into account both the number of eaten pelgls and

the number of the step,s; on which the last pellet was eaten: Benchmarking experiments were performed for FSMs with

Nstates€ [5, 10] and smax = 400. We intentionally use a lower

value of smax SO that we test the algorithms on problems that

f = Niood + Smax_—s'ast_l. (8)  are harder than the one we tuned them on. Each experimen
Smax was run for a maximum of0000 fitness evaluations and



was repeatedl00 times. For each number of FSM states | o ElitistAS = ACOrr, @8 MuACOsm
we recorded the mean running time, mean number of fithess >
evaluations and success rate over all experimental rugs5Fi < [ e
shows the success rate of the compared algorithms, Fig. € @ e e T
shows mean numbers of used fitness evaluations, Fig. 7 show & 102 R ST L
the mean execution time using a logarithmic scale. [ T Y L
5 il
‘I-‘-- Elitist AS = -a ACOyyr,,,  m—m MuACOsm‘ g i
100 ‘ ‘ ‘ ‘ B 10t
o
=]
2
X % 100,
o) = S— T
w &
560t 1 <
2 1075 G 7 g 9 10
2 40! i Number of FSM states
=
B RO Fig. 7. Mean execution time of experimental runs for EAS;Oy; .., and
= ot m T MuACOsm
20 2 Dot BREEEEET TR bbbl - ]
""""""""" '-'-‘m-...:,ﬁ,:,,l
all cases of the considered problem in terms of execution
05 G 7 S 9 10 time, success rate and number of required fitness evalgation
Number of FSM states Perhaps this was to be expected, since the number of node

_ _ in the classical algorithms’ construction graphs increaas
EgAgbsmSuccess rate of experimental runs for EASC'Oys 7, and N52tates and the number of connections increasesl\g‘%tes
Consequently, classical algorithms use up more computtio

resources for performing walks on the graph than for com-

30000 Lo HitistdS o AC0u-. =e MuACOsm | puting fitness function values. On the contrary, MuAS®
.................. @ mainly uses computational resources for fitness evaluation
b o g m T ol This is demonstrated by the fact that, as can be seen or

— ‘~~..'_,—" Fig. 7, mean execution times of both EAS add’Oys ..,

5 ]

inrease exponentially with the inrease of the number of FSM
states. The mean execution time of MuASi@®stays almost
constant for all values alNgizesand seems to depend only on
200001 ] the number of fithess evaluations, which can be derived from
comparing MuACGm plots on Fig. 6 and Fig. 7.

To further illustrate this, for each run we calculated the
150001 ] percentage of the execution time which is used for fithess
evaluation. The resulting values are presented in Table II.
These values allow us to say th&aC Oy, .., uses a significant
\_/\/‘ amount of time for its internal computations: almésts for
: - ' : FSMs with five states and abo@9% for FSMs with ten
’ Number of FSM states states. Qn the contrary, MuAG@ uses only about half of
time for internal computations. Futhermore, when the numbe
Fig. 6. Mean numbers of fitness evaluations in experimenta fanEAS, ~ Of FSM states was inreased from five to ten, the fitness time
ACOys 7, and MUACGEM percentage o AC Oy, -, iNreased almost by a factor of ten,

while the fithess time percentage of MuA&@only increased
To check the statistical significance of the acquired resultby about1.2.

we used the ANOVA [14] statistical test. The test was applied

Mean numbers of fitness evaluations

s

()

=N
~1
[
©
=

to theACObs - and MUACGsm algorithms. This test calcu- TABLE Il PERCENTAGE OF ALGORITHM EXECUTION TIME USED FOR
lated the probability that the two algorithms yield the same FITNESS EVALUATION

success rate. ANOVA was run for each valueéfes The Noates | ACOps -, | MUACOSm

resulting probabilities of having similar success rateseWess ?0 g-gi f ‘6121‘-260/4

than 10~* for each number of FSM states, which means that - =

the difference in the algorithms’ performance is statatic
significant. VII. CONCLUSION

Classical and mutation-based ACO algorithms for learning
FSMs were presented. It was experimentally shown that clas-
Presented experimental results demonstrate that th&cal ACO algorithms based on random walks on construction
mutation-based ACO is more efficient than classical ACO ingraphs that constist of solution components are inefficient

VI. DISCUSSION



for the problem of learning FSMs. On the contrary, the[13]
mutation-based algorithm performed significantly bettdrich

is demonstrated by both execution data such as mean numbers
of fitness evaluations and execution time, as well as by &4
statistical significance test. This is rather unfortunbtgause
classical algorithms were proven to converge in value, evhil
devising such a proof for the mutation-based algorithm iama

a challenging task.

Future work includes futher development of the mutation-
based MuAC@malgorithm to cope with more complex prob-
lems such as inferring FSMs from test examples &id-
formulae, as well as devising some kind of a convergencefproo
for MUACOsm

ACKNOWLEDGEMENTS

Research was supported by the Ministry of Education and
Science of Russian Federation in the framework of the fédera
program “Scientific and scientific-pedagogical personnkel o
innovative Russia in 2009-2013" (contract 16.740.11.0455
agreement 14.B37.21.0397) and by the St. Petersburg MNétion
Research University of Information Technologies, Mechani
and Optics research project 610455.

REFERENCES

[1] M. Dorigo and T. Siitzle, Ant Colony Optimization MIT Press, 2004.

[2] N. Polykarpova and A. Shalyt#utomata-based programmingPiter.,
2009, in Russian.

[8] S. E. Velder, M. A. Lukin, A. A. Shalyto, and B. R. Yaminov,
Verification of automata-based programs (Verificatsiyaoawitnykh
programm) Nauka, 2011, in Russian.

[4] T. Stutzle and M. Dorigo, “A short convergence proof for a classuof
colony optimization algorithms,IEEE Transactions on Evolutionary
Computation pp. 358-365, 2002.

[5] D. Chivilikhin and V. Ulyantsev, “Learning finite-statmachines with
ant colony optimization,” inProceedings of the 8th international
conference on Swarm Intelligencser. ANTS'12, 2012, pp. 268-275.

[6] D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. FloweR, Korf,
C. Taylor, and A. Wang, “Evolution as a theme in artificial Jife
Artificial Life Il, 1991.

[7] S. Lucas and T. Reynolds, “Learning dfa: evolution vergvidence
driven state merging,” ifProceedings of the 2003 Congress on Evolu-
tionary Computation. CEC 'Q3vol. 1, 2003, pp. 351-358.

[8] S. Lucas and J. Reynolds, “Learning finite state transdiicEvolution
versus heuristic state merging EEE Transactions on Evolutionary
Computation. vol. 11, no. 3, pp. 308-325, 2007.

[9] F. Tsarev and K. Egorov, “Finite state machine inductiemg genetic
algorithm based on testing and model checking,"Froceedings of
the 13th annual conference companion on Genetic and ewvakty
computation ser. GECCO '11, 2011, pp. 759-762.

W. M. Spears and D. F. Gordon, “Evolving finite-state maehstrate-
gies for protecting resources,” Proceedings of the 12th International
Symposium on Foundations of Intelligent Systesas ISMIS '00, 2000,
pp. 166-175.

D. Chivilikhin, V. Ulyantsev, and F. Tsarev, “Test-teabextended finite-
state machines induction with evolutionary algorithms antcatony
optimization,” inProceedings of the fourteenth international conference
on Genetic and evolutionary computation conference coroparser.
GECCO Companion '12, 2012, pp. 603-606.

D. Chivilikhin and V. Ulyantsev, “Muacosm: a new mutation
based ant colony optimization algorithm for learning firstate
machines,” inProceeding of the fifteenth annual conference on Genetic
and evolutionary computation conferencger. GECCO '13. New
York, NY, USA: ACM, 2013, pp. 511-518. [Online]. Available:
http://doi.acm.org/10.1145/2463372.2463440

[10]

(1]

[12]

M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optization by

a colony of cooperating agentdEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetjcgol. 26, no. 1, pp. 29-41, 1996.
R. G. Miller, Beyond ANOVA: Basics of Applied Statistics (Texts
in Statistical Science Series) Chapman & Hall/CRC, Jan. 1997.
[Online]. Available: http://www.worldcat.org/isbn/02070111



