
Learning Finite-State Machines with Classical and
Mutation-Based Ant Colony Optimization:

Experimental Evaluation

Daniil Chivilikhin
St. Petersburg National Research University of Information

Technologies, Mechanics and Optics
Computer Technologies Department

St. Petersburg, Russia
Kronverksky pr., 49

Email: chivilikhin.daniil@gmail.com

Vladimir Ulyantsev
St. Petersburg National Research University of Information

Technologies, Mechanics and Optics
Computer Technologies Department

St. Petersburg, Russia
Kronverksky pr., 49

Email: ulyantsev@rain.ifmo.ru

Abstract—The problem of learning finite-state
machines (FSM) is tackled by three Ant Colony
Optimization (ACO) algorithms. The first two classical
ACO algorithms are based on the classical ACO combinatorial
problem reduction, where nodes of the ACO construction graph
represent solution components, while full solutions are built
by the ants in the process of foraging. The third recently
introduced mutation-based ACO algorithm employs another
problem mapping, where construction graph nodes represent
complete solutions. Here, ants travel between solutions to find
the optimal one.

In this paper we try to take a step back from the mutation-
based ACO to find out if classical ACO algorithms can be used
for learning FSMs. It is shown that classical ACO algorithms are
inefficient for the problem of learning FSMs in comparison to
the mutation-based ACO algorithm.

Keywords—ant colony optimization, finite-state machine, learn-
ing, induction

I. I NTRODUCTION

Ant colony optimization [1] is a metaheuristic inspired
by the foraging behavior of ants. In this paper we use
ACO to tackle the problem of learning FSMs, which plays
a key role in the area of automata-based programming [2].
This programming paradigm proposes to use FSMs as key
components of software systems. The approach is particularly
useful for systems with complex behavior, i.e. systems thatcan
react differently to the same events depending on the history.
Examples of such systems are network protocols and control
systems. However, manual construction of FSMs for such
systems can be hard or even impossible. Therefore, search-
based software engineering (SBSE) methods are used. One of
the greatest advantages of automata-based programming is that
programs designed using this paradigm can be automatically
verified [3], which is impossible for other types of programs.
That is, one can automatically check temporal logic (e.g.LTL,
Linear Time Logic) properties.

ACO uses a special graph called theconstruction graphto
build solutions. In order to solve an arbitrary combinatorial
problem with ACO, it is typically reduced, or mapped, to
another problem in which the goal is to find a maximum

or minimum cost path in the construction graph. Nodes of
the construction graph represent solution components, while
full solutions correspond to paths in the graph. For problem
mappings performed in this canonical manner and for certain
types of ACO algorithms such asACObs,τmin [4], convergence
in value has been proven. That is, it was shown thatACObs,τmin

will find some optimal solution if given enough resources.

In this work we show that the canonical mapping and
classical ACO algorithms with proven convergence are inef-
fective for the problem of learning FSMs. Another recently
introduced ACO-based algorithm [5] produces more promising
results, though no convergence guarantees currently exist.
The benchmark problem we consider is the Artificial Ant
problem [6], which is quite commonly used in SBSE.

II. L EARNING FINITE-STATE MACHINES

A finite-state machine is a six-tuple(S, s0,Σ,∆, δ, λ),
whereS is a set of states,s0 ∈ S is the start state,Σ is a set
of input events and∆ is a set of output actions.δ : S×Σ → S
is the transitions function andλ : S × Σ → ∆ is the actions
function. An example of a finite-state machine is shown on
Fig. 1.

1 2T/z

A/z T/z

A/z

Fig. 1. An example of a finite-state machine with two states, twoevents
(T , A) and a single output actionz.

Quality evalutation of FSMs is encapsulated into a real-
valuedfitness functionf . The closer the FSM’s behavior to the
desired one, the larger the value off . Thus, the FSM learning
problem is: given the number of statesNstates, set of input
eventsΣ and set of actions∆ find a FSM with parameters
(Nstates,Σ,∆) with a large enough fitness function value.

The problem of learning FSMs and other types of automata,
such as finite-state transducers (FST) and definite finite au-
tomata (DFA), is commonly solved using various metaheuris-
tic techniques. For instance, in [7] a random mutation hill
climbing evolutionary algorithm is applied to the problem of
learning deterministic finite automata, which are somewhat
similar to finite-state machines, from sets of labeled strings.
The same authors use evolutionary algorithms to learn finite-
state transducers from test examples [8]. In [9] a genetic
algorithm is applied to learning extended finite-state machines
from test examples andLTL-formulae. Finite-state machines
are learned with an evolutionary algorithm in [10] for the
Competition for Resources problem.

The authors of this paper recently introduced a new method
of learning FSMs called MuACOsm, which is based on ant
colony optimization. This new method was compared with
a number of evolutionary techniques for learning FSMs on
several benchmark problems [5], [11], [12] and proved to
be more effective than genetic algorithms and evolutionary
strategies. However, no attempt was made to learn or induce
finite-state machines using classical ACO yet. In this paper
we provide a way to apply classical ACO algorithms to the
problem of learning FSMs and compare out mutation-based
ACO method with classical ACO algorithms.

III. C LASSICAL ACO FOR LEARNING FSMS

A. General Scheme of Classical ACO Algorithms

Classical ACO algorithms, as described in [1], tackle
combinatorial problems formalized as

(

Ŝ, f̂ ,Ω
)

, whereŜ is a

set ofcandidate solutions, f̂ is theobjective functionandΩ is
a set ofconstraintsdefining feasible candidate solutions. The
goal is to find a globally optimal feasible solutions∗.

This combinatorial problem is mapped on another
problem defined in the following way. LetC =
{c1, . . . , cK} be a finite set of componentsand X =
{x = 〈ci1 , ci2 , . . . , cih , . . .〉 , |x| ≤ n < +∞} be a set ofprob-
lem states. Then, the set of feasible candidate solutionsŜ is
a subset ofX. X̃ ⊂ X is a set of feasible states, i.e. states
x ∈ X that can be completed to a solution satisfying the
constraintsΩ. The set of feasible solutions is̃S = X̃ ∩ S and
S∗ ⊂ S̃ is a non-empty set of optimal feasible solutions. Next,
the construction graphGC = (C,L) is a graph with a set of
nodesC and a set of connectionsL which fully connectC.
The goal in the mapped problem is to find a maximum cost
path with respect tôf which satisfies the constraintsΩ and
corresponds to a feasible solution.

In ACO each connection, or edge,(u, v) of the construction
graph has an associatedpheromone valueτuv and can have
an associatedheuristic informationηuv. Pheromone values
play a role of the colony’s long-term memory, while heuris-
tic information represents some apriori knowledge about the
problem. Solutions are built by agents called ants, which are
probabilistic procedures determining how to add components
to the current solution depending on pheromone values and
heuristic information. An ACO algorithm typically consists
of three steps that are repeated until an optimal solution is
found or the resources allotted to the algorithm are depleted.
Examples of such stopping criteria include a fixed number of

algorithm iterations, a fixed number of fitness evaluations or
convergence of a fixed number of ants to the same path.

On the first step calledConstructAntSolutions a
colony of ants traverse the graph to build solutions. Each
ant is placed on some node of the construction graph. The
ant adds components to its current solution by traversing the
graph until it has built a complete solution. It selects the
next node to visit according to some probabilistic rule. Ants
continue traversing the graph until each of them has built a
complete solution to the problem. On the second step called
UpdatePheromones pheromone values on connectionsL
are updated. A particular pheromone value can increase if the
edge it is associated with has been traveled by an ant or it
can decrease due to pheromone evaporation. The third step
calledDaemonActions is optional. It can be used to perform
operations that cannot be executed by individual ants, possibly
using domain knowledge.

B. Classical Problem Reduction

In our problem statement defined in the previous section,
the set of candidate solutionŝS is the set of all FSMs with
parameters(|S| = Nstates,Σ,∆) and the objective function̂f
is the fitness functionf . The constraintsΩ are that a FSM
has to be deterministic, that is, it should contain exactly one
transition for each start statei ∈ S and evente ∈ Σ. The
set of componentsC is defined as a set of all possible FSM
transitions:

C = {t = 〈i, j, e, a〉 , i, j ∈ S, e ∈ Σ, a ∈ ∆} , (1)

wherei ∈ S is the transition’s start state,j ∈ S is the end state,
e ∈ Σ is an event anda ∈ ∆ is an output action. Therefore, the
construction graphGC contains exactly|C| = |S|2 · |Σ| · |∆|
nodes. The set of connectionsL fully connects the components.
An example of the described construction graph is given in
Fig. 2. Solid edges of the construction graph represent a
possible path of a particular ant that built the FSM from Fig.1.

1→1 [T/z]

1→1 [A/z]

1→2 [T/z]

1→2 [A/z]

2→2 [T/z]

2→2 [A/z]

2→1 [T/z]

2→1 [A/z]

Fig. 2. An example of classical ACO construction graph for learning FSMs

To implement the constraints, thek-th ant uses its internal
memory to store its path of traversed componentsLk

t . Let the
k-th ant be located at nodeu ∈ C with a set of adjacent nodes
Nu. The ant first scans its memory along withNu and forms a

set of componentŝNu such that no transitiont ∈ N̂u has a start
statey ∈ S and eventε ∈ Σ where∃r ∈ Lk

t : r.i = y∧r.e = ε.
The next nodev ∈ N̂u is selected with a probability:

pv =
ταuv

∑

w∈N̂u

ταuw
, (2)

whereα ∈ (0,+∞) is a parameter representing the signifi-
cance of pheromone values. This equation does not take into
account heuristic information because there seems to be no
meaningful way to define it for the problem of learning FSMs
with canonical mapping.

C. Classical ACO Algorithms Used

We use the Elitist Ant System (EAS) algorithm [13] and the
ACObs,τmin algorithm [4]. Both algorithms follow the general
scheme described in section III-A. A colony ofNants ants is
used to construct solutions. The optionalDaemonActions
procedure is not used in either of the algorithms.

On every iteration on theConstructAntSolutions
step each ant traverses the construction graph until it builds a
complete solution, i.e. a deterministic FSM. On each step the
ant selects the next node of the construction graph from the
successor nodes of the current node with respect to constraints.
The probability of selecting a particular node is calculated
using equation (2).

The UpdatePheromones procedure in the considered
algorithms is as follows. In the EAS the best-so-far solution
sbestdeposits pheromone along with all solutions on the current
iteration. Pheromone values are updated according to the
formula:

τuv = (1− ρ)τuv +

Nants
∑

k=1

∆τkuv + welit ·∆τbest
uv , (3)

wherewelit ∈ [0, 1] defines the weight of the elitist solution,
ρ ∈ [0, 1] is the pheromone evaporation rate,

∆τkuv =

{

f(sk), (u, v) ∈ Lk
t

0,otherwise
(4)

and

∆τbest
uv =

{

f(sbest), (u, v) ∈ Lbest
t

0,otherwise
, (5)

where sk is the k-th solution on the current iteration and
Lbest
t is the set of connections traversed by the best-so-far

ant. Pheromone update inACObs,τmin is similar, but only
the best-so-far solution deposits pheromone withwelit = 1.
Furthermore, pheromone values in both algorithms are kept
above a lower boundτmin, which was chosen to equal to0.1
in all performed experiments.

IV. M UTATION-BASED ACO FOR LEARNING FSMS

The mutation-based ACO, which was first introduced in [5]
for learning FSMs, uses a different type of problem mapping,
even though it resembles classical ACO in the way solutions
are constructed. In the mutation-based ACO for learning FSMs
called MuACOsm, nodes of the construction graphG represent
complete solutions instead of solution components. Edges of

the construction graph correspond tomutationsof FSMs –
small changes in the FSM structure. Two FSM mutation types
are used: for a random transition in the FSM we change either
the action performed on this transition or the state it leadsto.
The ants travel between solutions by mutating FSMs associated
with construction graph nodes.

More formally, nodesu andv of G can be connected with
an edge(u, v) if FSM A2 associated withv can be acquired
from FSMA1 associated withu using one mutation operation.
Consequently, any FSM can be transformed into any other
FSM with certain mutations. Therefore, a fully constructed
graphG will contain a path of mutations connecting any two
FSMs. However, full construction ofG is infeasible since it
would effectively lead to performing a brute force search. An
example of the construction graph used in MuACOsmis shown
on Fig. 3. Each edge of the graph is marked with a mutation
written in the following notation:

• Tr : (s1, e) → s2 means that the end state of transition
from states1 with evente has to be set to states2;

• Out: (s1, e) → z means that the output action of
transition from states1 with event e has to be set
to actionz.

1

2

 Tr: (1, T) → 2

3

 Out: (2, A) → z1

4

5

 Tr: (1, A) → 1

6

7

 Out: (1, T) → z2

8 9

Fig. 3. An example of a small part of the construction graph usedin
MuACOsm

The construction graph is initially empty. First, a ran-
dom initial FSM with a fixed number of statesNstates is
generated. This is done by choosing a random action and
destination state for each FSM state and input event. The
random solution is added to the construction graph and be-
comes its first node. Then,ConstructAntSolutions and
UpdatePheromones procedures are executed until an opti-
mal solution is found or computational resources are depleted.

On the ConstructAntSolutions step, all ants are
first placed on the node associated with the best-so-far solution.
Each ant, being located at nodeu, uniformly randomly selects
one of the following rules for determining the next node.

1) Construct new solutions. The ant constructs exactly
Nmut mutations of its current solution associated with
nodeu. Each mutated solution is added to the graph

G, if not already present there: a new nodet is con-
structed and connected tou with edge(u, t). The ant
selects the best constructed node, i.e. node associated
with a FSM with the largest fitness function value,
and moves to that node.

2) Probabilistic selection. The next nodev is selected
from the set of adjacent nodesNu according to the
formula:

pv =
ταuv · η

β
uv

∑

w∈Nu

ταuw · ηβuw
, (6)

whereηuv = max (ηmin, f(v)− f(u)) and
α, β ∈ (0,+∞) are parameters representing the
significance of pheromone values and heuristic in-
formation respectively.

Termination conditions for individual ants and the whole
colony are defined in the following way. Each ant is allowed
to make nstag steps without an increase of its best fitness
value before it is stopped. Similarly, the colony is givenNstag
iterations to run without an increase in the best fitness value
before the algorithm is restarted. On each colony iteration, after
all ants have finished building solutions, pheromone valuesare
updated by theUpdatePheromones procedure as follows.
For each graph edge(u, v) we storeτbest

uv – the best pheromone
value that any ant has ever deposited on this edge. First, for
each ant path we select a sub-path that spans from the start
to the best node in the path and update values ofτbest

uv on its
edges. Then, for each graph edge(u, v) pheromone values are
updated according to the formula:

τuv = (1− ρ)τuv + τbest
uv . (7)

For more detailed information about MuACOsmand its com-
parison with different evolutionary computation techniques
see [12].

V. CASE STUDY: ARTIFICIAL ANT PROBLEM

A. Artificial Ant Problem Description

In the Artificial Ant problem [6] the goal is to build an FSM
optimally controlling an agent in a game performed on square
toroidal field divided into32 × 32 cells. The field contains
89 pellets of food, or apples, distributed along a certain trail.
The ant is initially located in the leftmost upper cell and is
“looking” east. It can determine whether the next cell contains
a piece of food (eventF) or not (event!F). In this work we
use the Santa Fe field shown on Fig. 4 instead of the John
Muir field originally used in [6] and considered in [5]. Black
cells contain food, white cells are empty and gray cells depict
the optimal trail.

The goal is to build a FSM controlling the ant that will
allow it to eat all 89 pellets of food insmax steps. On each step
the ant can turn left (actionL), turn right (actionR) or move
forward (actionM). If the cell to which the ant moves contains
a pellet of food, the ant eats it. We use a fitness function that
takes into account both the number of eaten pelletsnfood and
the number of the stepslast on which the last pellet was eaten:

f = nfood +
smax− slast− 1

smax
. (8)

Fig. 4. The Santa Fe field

B. Tuning Algorithm Parameters

Parameter values for the EAS,ACObs,τmin and MuACOsm
were selected by performing a full factorial experiment con-
sidering the Artificial Ant problem withsmax = 600 and
FSMs consisting of five states. For tuning each algorithm we
selected certain levels of each parameter’s value and executed
the algorithm with all parameter value combinations. Each
algorithm was run 50 times on each parameter value com-
bination. Each run was limited to a maximum of 30000 fitness
evaluations. To assess the successfulness of the algorithms we
used thesuccess rate, which is defined as simply the ratio of
experimental runs in which an optimal solution with a fitness
value greater than or equal to 89 was found. The parameter
value sets were compared according to the success rate over
these 50 experiments.

After performing the full factorial experiments for each
algorithm we selected the parameter value sets that yield
the highest success rates. The total tuning times are:18392
seconds forACObs,τmin, 66346 seconds for EAS and11174
seconds for MuACOsm. That means that the classical ACO
algorithms were given more time for tuning which theoretically
puts them in a more favorable position than MuACOsmwhich
used the least time for tuning. The parameter value levels used
in the full factorial experiments are listed in Table I. Parameter
values that were selected as the best are highlighted in bold.

TABLE I. FULL FACTORIAL DESIGN OF EXPERIMENT SETUP:
PARAMETER VALUE LEVELS FOR ALL ALGORITHMS

Parameter ACObs,τmin EAS MuACO sm
ρ 0.1, 0.5, 0.9 0.1, 0.5, 0.9 0.1, 0.5, 0.9
Nants 1, 5, 10 1, 5, 10 5, 10
α 1, 3, 5 1, 3, 5 1, 5
β – – 1, 5
welit – 0.1, 0.5, 0.9 –
nstag – – 5, 10, 20
Nstag – – 5, 10, 20
Nmut – – 5, 10
pnew – – 0.5

C. Experiments

Benchmarking experiments were performed for FSMs with
Nstates∈ [5, 10] andsmax = 400. We intentionally use a lower
value ofsmax so that we test the algorithms on problems that
are harder than the one we tuned them on. Each experiment
was run for a maximum of30000 fitness evaluations and

was repeated100 times. For each number of FSM states
we recorded the mean running time, mean number of fitness
evaluations and success rate over all experimental runs. Fig. 5
shows the success rate of the compared algorithms, Fig. 6
shows mean numbers of used fitness evaluations, Fig. 7 shows
the mean execution time using a logarithmic scale.

5 6 7 8 9 10

Number of FSM states

0

20

40

60

80

100

M
e
a
n

su
cc

e
ss

ra
te

,
%

Elitist AS ACObs,τmin MuACOsm

Fig. 5. Success rate of experimental runs for EAS,ACObs,τmin and
MuACOsm

Fig. 6. Mean numbers of fitness evaluations in experimental runs for EAS,
ACObs,τmin and MuACOsm

To check the statistical significance of the acquired results
we used the ANOVA [14] statistical test. The test was applied
to theACObs,τmin and MuACOsmalgorithms. This test calcu-
lated the probability that the two algorithms yield the same
success rate. ANOVA was run for each value ofNstates. The
resulting probabilities of having similar success rates were less
than10−4 for each number of FSM states, which means that
the difference in the algorithms’ performance is statistically
significant.

VI. D ISCUSSION

Presented experimental results demonstrate that the
mutation-based ACO is more efficient than classical ACO in

5 6 7 8 9 10

Number of FSM states

10
−1

10
0

10
1

10
2

10
3

M
e
a
n

e
x
e
cu

ti
o
n

ti
m

e
,
s.

(l
o
g

sc
a
le

)

Elitist AS ACObs,τmin MuACOsm

Fig. 7. Mean execution time of experimental runs for EAS,ACObs,τmin and
MuACOsm

all cases of the considered problem in terms of execution
time, success rate and number of required fitness evaluations.
Perhaps this was to be expected, since the number of nodes
in the classical algorithms’ construction graphs increases as
N2

states and the number of connections increases asN4
states.

Consequently, classical algorithms use up more computational
resources for performing walks on the graph than for com-
puting fitness function values. On the contrary, MuACOsm
mainly uses computational resources for fitness evaluation.
This is demonstrated by the fact that, as can be seen on
Fig. 7, mean execution times of both EAS andACObs,τmin

inrease exponentially with the inrease of the number of FSM
states. The mean execution time of MuACOsm stays almost
constant for all values ofNstatesand seems to depend only on
the number of fitness evaluations, which can be derived from
comparing MuACOsmplots on Fig. 6 and Fig. 7.

To further illustrate this, for each run we calculated the
percentage of the execution time which is used for fitness
evaluation. The resulting values are presented in Table II.
These values allow us to say thatACObs,τmin uses a significant
amount of time for its internal computations: almost97% for
FSMs with five states and about99% for FSMs with ten
states. On the contrary, MuACOsm uses only about half of
time for internal computations. Futhermore, when the number
of FSM states was inreased from five to ten, the fitness time
percentage ofACObs,τmin inreased almost by a factor of ten,
while the fitness time percentage of MuACOsmonly increased
by about1.2.

TABLE II. PERCENTAGE OF ALGORITHM EXECUTION TIME USED FOR

FITNESS EVALUATION

Nstates ACObs,τmin MuACO sm
5 3.02 % 49.66 %

10 0.34 % 61.4 %

VII. C ONCLUSION

Classical and mutation-based ACO algorithms for learning
FSMs were presented. It was experimentally shown that clas-
sical ACO algorithms based on random walks on construction
graphs that constist of solution components are inefficient

for the problem of learning FSMs. On the contrary, the
mutation-based algorithm performed significantly better,which
is demonstrated by both execution data such as mean numbers
of fitness evaluations and execution time, as well as by a
statistical significance test. This is rather unfortunate,because
classical algorithms were proven to converge in value, while
devising such a proof for the mutation-based algorithm remains
a challenging task.

Future work includes futher development of the mutation-
based MuACOsmalgorithm to cope with more complex prob-
lems such as inferring FSMs from test examples andLTL-
formulae, as well as devising some kind of a convergence proof
for MuACOsm.

ACKNOWLEDGEMENTS

Research was supported by the Ministry of Education and
Science of Russian Federation in the framework of the federal
program “Scientific and scientific-pedagogical personnel of
innovative Russia in 2009-2013” (contract 16.740.11.0455,
agreement 14.B37.21.0397) and by the St. Petersburg National
Research University of Information Technologies, Mechanics
and Optics research project 610455.

REFERENCES

[1] M. Dorigo and T. Sẗutzle,Ant Colony Optimization. MIT Press, 2004.

[2] N. Polykarpova and A. Shalyto,Automata-based programming. Piter.,
2009, in Russian.

[3] S. E. Velder, M. A. Lukin, A. A. Shalyto, and B. R. Yaminov,
Verification of automata-based programs (Verificatsiya avtomatnykh
programm). Nauka, 2011, in Russian.

[4] T. Stützle and M. Dorigo, “A short convergence proof for a class ofant
colony optimization algorithms,”IEEE Transactions on Evolutionary
Computation, pp. 358–365, 2002.

[5] D. Chivilikhin and V. Ulyantsev, “Learning finite-statemachines with
ant colony optimization,” inProceedings of the 8th international
conference on Swarm Intelligence, ser. ANTS’12, 2012, pp. 268–275.

[6] D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. Flowers,R. Korf,
C. Taylor, and A. Wang, “Evolution as a theme in artificial life,”
Artificial Life II , 1991.

[7] S. Lucas and T. Reynolds, “Learning dfa: evolution versus evidence
driven state merging,” inProceedings of the 2003 Congress on Evolu-
tionary Computation. CEC ’03, vol. 1, 2003, pp. 351–358.

[8] S. Lucas and J. Reynolds, “Learning finite state transducers: Evolution
versus heuristic state merging,”IEEE Transactions on Evolutionary
Computation., vol. 11, no. 3, pp. 308–325, 2007.

[9] F. Tsarev and K. Egorov, “Finite state machine induction using genetic
algorithm based on testing and model checking,” inProceedings of
the 13th annual conference companion on Genetic and evolutionary
computation, ser. GECCO ’11, 2011, pp. 759–762.

[10] W. M. Spears and D. F. Gordon, “Evolving finite-state machine strate-
gies for protecting resources,” inProceedings of the 12th International
Symposium on Foundations of Intelligent Systems, ser. ISMIS ’00, 2000,
pp. 166–175.

[11] D. Chivilikhin, V. Ulyantsev, and F. Tsarev, “Test-based extended finite-
state machines induction with evolutionary algorithms and ant colony
optimization,” inProceedings of the fourteenth international conference
on Genetic and evolutionary computation conference companion, ser.
GECCO Companion ’12, 2012, pp. 603–606.

[12] D. Chivilikhin and V. Ulyantsev, “Muacosm: a new mutation-
based ant colony optimization algorithm for learning finite-state
machines,” inProceeding of the fifteenth annual conference on Genetic
and evolutionary computation conference, ser. GECCO ’13. New
York, NY, USA: ACM, 2013, pp. 511–518. [Online]. Available:
http://doi.acm.org/10.1145/2463372.2463440

[13] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by
a colony of cooperating agents,”IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, vol. 26, no. 1, pp. 29–41, 1996.

[14] R. G. Miller, Beyond ANOVA: Basics of Applied Statistics (Texts
in Statistical Science Series). Chapman & Hall/CRC, Jan. 1997.
[Online]. Available: http://www.worldcat.org/isbn/0412070111

